MY 11 TRISECTION APPROXIMATION METHODS Pg. 36
|

FIG. 6
FIG. 7
| |
---|
An alleyway has a 40 feet extension ladder leaning with its foot
|
---|
|
---|
against one wall and its top end against the opposite wall, while just
|
---|
|
---|
touching an overhang 18 feet above the pavement,
as shown in FIG. 6
|
---|
|
---|
above. Another 20 foot ladder similarly
leans against opposite walls
|
---|
|
---|
and crosses the extension ladder 6 feet above the lane, see FIG. 6
|
---|
Pg. 37
|
---|
and FIG. 7 above.
|
---|
|
---|
What is the width of the alleyway?
|
---|
In FIG. 7:
|
---|
|
---|
Since H/C = 18/6 = 3 & R >= H
|
---|
therefore ÐAOB = 3Æ
and ÐAOC = Æ
|
---|
ie. my [KLAUSIAN TRI-FOCUS LAW]
|
---|
Therefore sin3Æ = 18/20 = 0.9
|
---|
|
---|
3Æ = 64.15806o
|
---|
Æ = 21.38602o
|
---|
Thus the alley width W = 20cosÆ = 18.6229 feet = 18' 7 15/32''
|
---|
|
---|
|
---|
|
---|
|
---|
|
---|
Z = 20cos3Æ = (R2 + H2)½ = (202 + 182)½ = 8.7178feet
|
---|
|
---|
Ladder length = (X2 + W2)½ = 35.94047 feet
|
---|
|
---|
X/W = 18/(W - Z) = tanÐOAD
|
---|
X = 18W/(W-Z) = 18*18.6229/(18.6229 - Z) = 30.739 feet.
|
---|
|
---|
X = 18(18.6229)/9.905098 = 30.739 feet.
|
---|
|
---|
Using the focus formula: 1/C = 1/X + 1/Y
[from CRC TABLES]
|
---|
1/Y = 1/C - 1/X = 1/6 - 1/30.739
|
---|
Y = 7.292993 feet.
|
---|
|
---|
|
---|
|
---|
Y = 20sinÆ = 20sin21.386o = 7.292993 feet
|
---|
|
---|
KLAUSIAN TRI-FOCUS COSINE LAW: C = H/3 = 20sin3Æ/3 = 20(.9)/3 = 6
|
---|
|
---|
Using the focus formula: 1/C = 1/X + 1/Y
[from CRC TABLES]
|
---|
X = C*Y/(Y - C) = 6(7.292993)/(7.292993 - 6) = 30.739 feet.
|
---|
Pg. 39
|
---|
H = 3C = 3(6) = 18 feet.
|
---|
|
---|
X/W = H/(W - Z)
|
---|
|
---|
(W - Z) = H*W/X
|
---|
|
---|
Z = W - H*W/X = 18.6229 - 18(18.6229)/33.842 = 8.71780 feet
|
---|
|
---|
[from CRC TABLES]:
|
---|
sin3Æ/sinÆ - cos3Æ/cosÆ = (3 - 4sin2Æ) - (1 - 4sin2Æ)
|
---|
sin3Æ/sinÆ - cos3Æ/cosÆ = 2
|
---|
ie. my [KLAUSIAN TRI-FOCUS COSINE LAW]
|
---|
|
---|
|
---|
|
---|
|
---|
|
---|