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Peg solitaire is a one-person game that is over 300 years old; most people are familiar
with the puzzle on the “standard 33-hole board” in FIGURE 1. When I first saw this
game, what struck me was the unusual shape of the board. How was this strange cross-
shaped board discovered and what is so special about it? While the history of the
game is too fragmented to answer the question of the origin of this board, this paper
will demonstrate that the special shape of the standard board can be derived from first
principles. This board arises as a consequence of two very natural requirements: that
of symmetry, and the ability to play from a board position with one peg missing to a
single peg at the same location. We’ll show that in a certain well-defined sense, the
shape of this board is unique.

Figure 1 The standard 33-hole board

We refer to a board location as a hole because a physical board contains a hole or
depression, in which the peg (or marble) sits. In all the diagrams, a hole with a peg is
denoted by the symbol , while an empty hole is denoted by the symbol . The game
begins with a peg in every hole except one, shown as the central hole in FIGURE 1. The
player then jumps one peg over another into an empty hole on the board, removing the
peg jumped over. No diagonal jumps are allowed, and the goal is to finish with one
peg.

On the standard board, it is possible to start from the position in FIGURE 1 and
finish with one peg in the center. Such a peg solitaire problem is called a complement
problem because the starting and ending board positions are complements of one an-
other (where every peg is replaced by a hole and vice versa). Note that all complement
problems in this paper (by definition) start with one peg missing and finish with one
peg.

In general, a board can be any region of holes on a square lattice. However the most
aesthetically pleasing boards are those with some kind of symmetry.

Board symmetry

The highest degree of symmetry for a board (on a square lattice) is square symmetry.
A square-symmetric board is unchanged by a reflection about either axis or either 45◦
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diagonal. Square-symmetric boards come in two varieties: even and odd, depending
on whether their width is even or odd (or equivalently, the total number of holes T is
even or odd). The standard 33-hole board is odd square-symmetric, and all such boards
have a unique central hole. Even square-symmetric boards have a block of 4 central
holes.

The pegs on odd boards can be divided into four categories: those that can reach
the central hole, those that can jump over it vertically, those that can jump over it
horizontally, and those that can neither reach it nor jump over it. Each peg remains in
the same category for the entire game. On an even board, any peg can reach one and
only one of the four central holes, and this also gives four categories of pegs. However
the four jump patterns for an even board are simply reflections of one another. Because
of this, in a general sense peg solitaire on even boards is less complex than on odd
boards, and we expect that odd boards will produce more interesting and challenging
problems.

We will use Cartesian coordinates to identify holes in a square-symmetric board,
always placing the geometrical center of the board at the origin. On an odd board, the
central hole is (0, 0), and all holes have integer coordinates. On an even board the four
central holes are (±1/2, ±1/2), and all holes have half-integer coordinates. When we
say one board is smaller than another, we always mean that the board has fewer holes.

A board is called gapless if, for any two holes on the board in the same column (or
row), all the intervening holes are also on the board. This is equivalent to specifying
that any horizontal or vertical line intersects the board either in a single interval, or not
at all. Geometrically, saying a board is gapless is stronger than connectivity, but weaker
than convexity. For example the standard 33-hole board is gapless (but not convex).
Boards with interior voids or missing pieces along an edge are not gapless. Note that
any jump must occur entirely on the board, and therefore if there is an interior void
no jump is permitted into or over this void. For this reason boards that are not gapless
can be cumbersome to play on, and we will consider only gapless boards, until the last
section.

Square(n)

m

m

m m

Figure 2 Augmenting a square-symmetric board.

The square board n holes on a side is certainly gapless and square-symmetric and
will be called Square(n). What other gapless, square-symmetric boards are possible?
Starting from Square(n), there is a geometrical technique to create a larger, square-
symmetric board. We simply add a 1 × m strip of holes symmetrically around all four
sides as in FIGURE 2. To preserve square symmetry m must have the same parity as n,
and we must have m ≤ n if the strips are not to overlap.

This process of adding strips of holes symmetrically to all four sides will be referred
to as augmenting a board. Clearly we can repeat the process, adding another strip, and
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a whole (finite) sequence of strips of width mi . In order that the final board be gapless,
the integer sequence mi must be non-increasing. When Square(n) is augmented by
strips of width mi , we’ll denote the resulting board by Square(n) + (mi ). Let B be the
set of all boards obtained by this construction.

B = {Square(n) + (mi ) | 0 < mi ≤ n non-increasing and mi ≡ n (mod 2)}
PROPOSITION 1. The set B contains all gapless, square-symmetric boards.

Proof. By construction every board in B is gapless and square-symmetric. Is it pos-
sible that there is a gapless, square-symmetric board B that is not in B? No, it isn’t pos-
sible, because the gapless property ensures that the edge of the board must be formed
from contiguous strips of holes, so we can remove them to obtain a smaller board that
is still gapless and square-symmetric. We can continue this reduction inductively and
it must terminate at a square board, so B ∈ B.

Figure 3 Sample elements of B: (a) Square(5) + (3), known as the “French” board, (b)
Square(6) + (2, 2).

FIGURE 3 shows two sample elements of B. In this notation, the standard board
of FIGURE 1 is Square(3) + (3, 3). Note that Square(n) + (mi ) has T = n2 + 4

∑
mi

holes.

Null-class boards

Up until this section the rules of peg solitaire have not influenced the shape of the
board, but we now determine properties that make for good peg solitaire boards. These
stem from parity arguments along the diagonals [1], or alternatively the same theory
can be derived from algebraic requirements [2, 3]. We use the former here because it
is easier to understand the implications for square symmetry.

Consider two diagonal labelings of the holes of the board as shown in FIGURE 4
on square boards. Given a board position b, let ni (b) be the number of pegs in the
holes marked i , and t (b) be the total number of pegs on the board. A solitaire jump
cannot change the parity of the differences t − ni . This partitions the set of all possible
board positions into sixteen position classes depending on the parity of the six integers
(t − ni |i = 0, 1, . . . , 5). Thus, all play is restricted to the position class of the starting
position.

A null-class board is identified by the fact that b and the complement of b always
lie in the same position class. In particular this must be true of the full and empty
boards. We’ll use the notation T and Ni for t (b) and ni (b) when b is the full board.
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T is the total number of holes in the board and Ni is the number of holes labeled i in
FIGURE 4. The empty board lies in the position class where all six parities are even.
Therefore a null-class board is one for which the six numbers T − Ni are all even, or
equivalently, all six Ni have the same parity (all odd or all even).

0 1 2 0 1

2 0 1 2 0

1 2 0 1 2

0 1 2 0 1

2 0 1 2 0

4 3 5 4 3

3 5 4 3 5

5 4 3 5 4

4 3 5 4 3

3 5 4 3 5

Figure 4 The labeling of holes on Square(n) where n = 3, 4 or 5.

For Square(3), we can see that all six Ni = 3, therefore this board is null-class. For
n = 4 or 5, there is always an extra “0,” or N0 = N1 + 1, and these boards are not
null-class. In general, Square(n) is null-class if and only if n is a multiple of 3.

More interesting is the fact that the process of augmenting a square board does not
alter whether it is null class or not. Why is this the case? If the augmentation process
adds the hole (xh, yh), then it also adds the hole (yh, xh) reflected across the diagonal
line x = y. The process never adds holes along the diagonal x = y, which ensures
that xh �= yh , so the holes are distinct. Because the parity labeling of FIGURE 4a is
symmetric about the diagonal x = y, the two holes (xh, yh) and (yh, xh) are labeled
the same, so holes are always added in pairs with the same parity labels. Therefore
the parity of Ni does not change when the board is augmented. This completes a proof
of the following proposition.

PROPOSITION 2. Square(n) + (mi ) ∈ B is null-class if and only if n is a multiple
of 3.

Universal solvability

Why is null-class so important? Only on a null-class board can a board position and
its complement be in the same position class. Therefore a complement problem can
only be solvable on a null-class board. For this reason, null-class boards are the most
interesting peg solitaire boards.

By Proposition 2, we know that the 37-hole “French” board of FIGURE 3a is not
null-class and therefore no complement problem is solvable. In fact, the starting posi-
tion for the central or (0, 0) complement problem is in the position class of the empty
board, and cannot be reduced to a single peg, anywhere. The impossibility of solving a
central vacancy to one peg is shared by all elements of B for which n is not a multiple
of 3.

Just because a board is null-class, however, does not imply that any complement
problem is solvable. In general we must investigate the particular board more fully
to answer this question. We will call a board universally solvable if the complement
problem is solvable at every board location.

The goal of the remainder of this paper is to determine which elements of B are
universally solvable. This would appear an ambitious goal, because the task is not
easy even for the standard 33-hole board (which is universally solvable). Nonetheless,
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we shall see that significant progress can be made. Null-class is a necessary condition
for complement problem solvability, so we now concentrate on boards for which n is
a multiple of 3.

PROPOSITION 3. The (0, 0) complement problem is unsolvable on Square(3) +
(1, 1, . . . , 1) or Square(3) + (3, 1, 1, . . . , 1). Here the sequence of consecutive 1’s can
have any length from zero to any positive integer.

Proof. For boards of the first type, the (0, 0) complement problem is clearly un-
solvable, because there is no way to remove the peg at (1, 1). For the boards of the
second type, we use the resource count, or Pagoda Function shown in FIGURE 5. This
is a real valued function of board position that (by construction) cannot increase during
play. To calculate the value of this resource count for a particular board position, one
sums the numbers where a peg is present. The reader should verify that no jump can
increase the value of this resource count.

0

−1 0  −1

−1 1 0 1 −1

0 0 0 0 0 0 0

−1 1 0 1 −1

 −1 0  −1

0

Figure 5 A resource count on Square(3) + (3, 1, 1, . . . , 1).

For the central complement problem, this resource count begins at −4 and ends at
0; since solitaire jumps cannot increase the value of a resource count, it is impossible
to reach the final state. In fact the same argument gives a much stronger result: no
matter which peg is removed at the start, it is impossible to finish with fewer than 3
pegs.

THEOREM 1. The standard 33-hole board Square(3) + (3, 3) is the smallest
square-symmetric, gapless board that is universally solvable.

Proof. This is immediate from Propositions 2 and 3, because the only null-class
members of B that are smaller than the standard 33-hole board are those covered by
Proposition 3. It is well known that the standard 33-hole board is universally solvable
[1, 2].

We can also identify the next largest universally solvable element of B, the 36-
hole board Square(6). This board is less interesting than the standard board due to its
simpler geometry and the fact that it is even square-symmetric. Many other universally
solvable boards can also be created by augmenting this board, such as Square(6) +
(mi ), where (mi ) = (2), (2, 2), (4), (4, 2) or (6). We can show this by finding solutions
to all complement problems.

Experienced peg solitaire players know that on the standard 33-hole board, the most
difficult complement problem to solve is the (3, 0) complement (or symmetric equiva-
lents). To obtain further intuition about larger boards, let us consider Wiegleb’s board,
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Figure 6 The board Square(3) + (3, 3, 3), “Wiegleb’s Board.” The significance of the
shading will be explained in the proof of Theorem 3.

shown in FIGURE 6. This board was first introduced by J. Wiegleb in 1779 [5], but has
since been relatively ignored.

Beasley [1, p. 200] states that all complement problems on Wiegleb’s board are
solvable except for the (4, 0) complement problem, with starting position shown in
FIGURE 6 (or symmetric equivalents). The difficulty of solving the (4, 0) complement
on Wiegleb’s board is in fact a problem seen in all elements of B: the most difficult
complement problem to solve begins from the center of the tip of the “arm.” Another
example is the complement problem with starting position shown in FIGURE 3b, this
problem is solvable but is the most difficult to solve on this board.

This suggests a useful generalization: we isolate the rightmost 3 × 3 section of
Wiegleb’s board (called “the needle” in the next section), and try to understand why
the complement problem starting at the tip is difficult. The rest of the board (left of this
3 × 3 section) is not as important, and we can even allow it to be arbitrary. To solve the
tip complement problem we must remove most of the pegs in the needle, but somehow
build a trail of pegs to facilitate the final jumps back into the tip.

Boards with needles

Here we consider the general situation where a board of arbitrary shape has a j × m
rectangular “needle” in the right half-plane x > 0, as in FIGURE 7b. The board in this

x = 0

y = 0

Figure 7 (a) A board containing a 1 × 3 needle. (b) A 1 × 6 needle attached to an
arbitrary board.
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section is not assumed to have any symmetry. Note that we have moved the coordinate
origin to the base of the needle.

Let us first consider the needle of width j = 1. We want to answer the question:
can we find a board containing a 1 × m needle such that the complement problem at
the tip of the needle is solvable? FIGURE 7a provides an example for the case m = 3.
The reader should find the jumps for a solution to the tip complement problem; it will
help to understand the problem and how to solve longer needles. The first two jumps
are forced, after that you will find yourself doing a lot of rightward jumps to try to get
a peg back to the end of the needle. The 1 × 4 and 1 × 5 needles are more difficult and
require successively larger boards. Can we always solve longer needles by making the
board larger and larger? No, as we will soon prove, the tip complement problem on a
1 × 6 needle is always unsolvable, no matter what board it is attached to. Although the
right-half of the board is 1-dimensional, the left half is arbitrary, so this is not true 1D
peg solitaire [4].

This problem is closely related to the “solitaire army” problem, a peg solitaire prob-
lem played on an infinite board [1, 2]. The solitaire army problem begins from a similar
board position as FIGURE 7b, with pegs filling the entire left half-plane x ≤ 0, and the
goal is to jump a peg as far to the right as possible. The surprising result [1, 2] is that
it is impossible to sent a scout (or peg) out 5 holes, no matter how many pegs are used.
This result has been generalized to n-dimensions and diagonal jumps [6, 7], as well as
other starting configurations [8].

Although similar to the solitaire army problem, our tip complement problem differs
in several respects. Most significantly, there are pegs in the right half-plane at the start.
More subtly, we cannot make any jump which is off the board, such as a rightward
jump over (0, 1) in FIGURE 7b. Nonetheless, a similar technique is used to prove the
following theorem.

THEOREM 2. On any board with a j × m needle, for j = 1, 2 or 3 and m > 5, the
tip or (m, 0) complement problem is unsolvable.

Proof. Consider the case j = 1 and the 1 × 6 needle of FIGURE 7b. We’ll prove
that the (6, 0) complement problem can’t be solved (note that any longer needle can be
considered a special case). To accomplish this, we use the resource count of FIGURE 8
(for the moment, ignore the values that are off the board). Let σ be the positive root
of x2 + x − 1, i.e. σ = 1

2(
√

5 − 1) ≈ .618. σ is the reciprocal of the classical golden
ratio. By construction σ 2 + σ = 1, and therefore

σ i + σ i−1 = σ i−2 i ∈ Z (1)

σ σ σ
σ σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ σ
σ σ σ

1

10 9 8

9 8 7 6 5 4 3 2

8 7 6 5 4 3 2

9 8 7 6 5 4 3 2

10 9 8

Figure 8 The resource count for the needle boards
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It is this property that makes the pattern in FIGURE 8 a valid resource count, i.e., no
jump can increase its total. In fact, rightward jumps lose nothing by (1), and the only
jumps that reduce the total are

1. Leftward jumps, which lose an amount twice the hole jumped over
2. Vertical jumps away from y = 0, which lose an amount twice the hole jumped over
3. Vertical jumps over y = 0, which lose an amount equal to the hole jumped over

We can also express powers of σ by the formula

σ i = (−1)i [Fi−1 − Fiσ ] i ∈ Z (2)

Where Fi are the Fibonacci numbers, identified by F1 = F2 = 1, and Fi = Fi−2 +
Fi−1. Equation (2) can be proved by induction, and applies to all i ∈ Z if we extend
the Fibonacci numbers by defining F0 = 0, F−i = (−1)i+1 Fi .

Now let us compute the total resource count in FIGURE 8 over the starting position
in FIGURE 7b. First, we have the useful summing formula

b∑
i=a

σ i = σ a − σ b+1

1 − σ
= σ a−2 − σ b−1 a ≤ b (3)

The sum of all the values in the column x = 0, by (3) and (1), is

∞∑
i=6

σ i +
∞∑

i=7

σ i = σ 4 + σ 5 = σ 3

Therefore the initial value of the resource count for the (6, 0) complement starting
position is, using (3) and (2) is

∞∑
i=3

σ i +
5∑

i=1

σ i = σ + (σ−1 − σ 4) = 5σ − 1 (4)

In reality the board is finite, and (4) provides an upper bound on the initial value of
the resource count. If the initial value of the resource count (or an upper bound) minus
the amount lost by any required jumps is less than the value of the final position, the
problem is unsolvable. This computation will be called the solvability criterion: the
problem is unsolvable if

⎡
⎣

initial
resource

count

⎤
⎦ −

⎡
⎣

amount lost
by required

jumps

⎤
⎦ −

⎡
⎣

final
resource

count

⎤
⎦ < 0

Note that after the first jump, there will be a peg at (6, 0) and this hole must be cleared
before the final jump. The only possibility is a leftward jump over (5, 0), which loses
2σ in resource count. So the solvability criterion gives

[5σ − 1] − [2σ ] − [1] = 3σ − 2 = −σ 4 < 0

Therefore the tip complement problem on the 1 × 6 needle is unsolvable.
For the case j = 2, we extend the 1-needle board of FIGURE 8 to include the holes

at (1 − 6, 1). The starting resource count value is given by (4), plus the amount added
by the six additional holes. This amount is

6∑
i=1

σ i = σ−1 − σ 5 = 4 − 4σ (5)
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Combining (4) and (5) the starting value of the resource count is 3 + σ . After the
first jump, we must clear the pegs at (6, 0) and (6, 1), which can only be accomplished
by leftward jumps over (5, 0) and (5, 1), losing 2σ and 2σ 2. It seems we must have
additional leftward jumps to remove the pegs along y = 1, but how can we be sure?
This is answered neatly by the exit theorems, first stated by Beasley [1, p. 117], or see
[2, p. 829]. One exit theorem states that any region of the board with at least 3 holes
that starts out full but finishes empty must have at least two exits. An exit is any jump
that removes a peg from the region and ends outside it. The first jump that removes a
peg from the region must be an exit, and so must the last one.

Consider the region R1 = (4 − 6, 1). This region starts out full and finishes empty,
so must have two exits, and these can only be the leftward jumps over (4, 1) or (3, 1),
which each lose at least 2σ 4. Likewise the region R2 = (2 − 6, 1) must have two exits,
and these cannot be the same exits as for R1. For R2 we require two leftward jumps
over (2, 1) or (1, 1), which each lose at least 2σ 6. The solvability criterion therefore
gives:

[3 + σ ] − [2σ + 2σ 2 + 4σ 4 + 4σ 6] − [1] = 45σ − 28 = −(3σ 6 + σ 8) < 0

So the (6, 0) complement problem on the 2 × 6 needle is unsolvable.
The final case is j = 3; this adds another row of holes at y = −1. The initial re-

source count value, from (4) and (5), is 7 − 3σ . The big change is that we now can
clear (6, 0) with a vertical jump, let us suppose it is cleared by an upward jump. We
then must have two leftward jumps over (5, 1), and as exits from R1 and R2 we can use
two leftward jumps over (3, 1) and (1, 1) as before. In addition we require one left-
ward jump over (4, −1), and for the regions R3 = (3 − 5, −1) and R4 = (1 − 5, −1)

two exit jumps over (2, −1) and (0, −1). If we tally all this up, the solvability criterion
yields

[7 − 3σ ] − [1 + 4σ 2 + 4σ 4 + 4σ 6 + 2σ 3 + 4σ 5 + 4σ 7] − [1] = 19 − 31σ

= −(2σ 7 + σ 5) < 0

In this case leftward jumps are not the only possible exits for the four regions. We
can use two downward jumps over (4, 0) as exits for both R1 and R2, which lose 2σ 2,
and two upward jumps over (3, 0) as exits for both R3 and R4, which lose 2σ 3. The
solvability criterion then gives

[7 − 3σ ] − [1 + 6σ 2 + 4σ 3] − [1] = 3 − 5σ = −σ 5 < 0

We can also try clearing (6, 0) with a leftward jump, but the solvability condition is
again negative. The (6, 0) complement on the 3 × 6 needle cannot be solved.

Is m > 5 in Theorem 2 the best possible bound? FIGURE 9 shows a 56-hole board
with a 1 × 5 needle where the tip complement problem is solvable (in fact this board
is universally solvable). A 75-hole board with a 3 × 5 needle with solvable tip com-
plement problem can be found in [9]. The 2 × 5 needle is the most difficult of the
three—the smallest known board has 134 holes. Square-symmetric examples can be
found in Square(15) + (1, 1, 1, 1, 1) and Square(15) + (3, 3, 3, 3, 3).

What about needles of width m = 4 and beyond? Notice that any hole in a 4-needle
has some horizontal and vertical jump into it. This extra freedom should allow us to
find universally solvable examples that are as long as we like. For example, the 4 × 6
rectangular board by itself is universally solvable [1, p. 184]. It is not difficult to show
that the 4 × m rectangular board is universally solvable for any m ≥ 6 that is a multiple
of 3 (using “packages and purges [2, p. 807]”).
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Figure 9 A board with a 1 × 5 needle with solvable tip complement problem.

Back to square symmetry

We can now use the results on needle boards to show that the standard board is even
more remarkable.

THEOREM 3. The standard 33-hole board is the only universally solvable board in
B of the form Square(3) + (mi ).

Proof. Here mi must have the form (3, 3, . . . , 3, 1, 1, . . . , 1); let n3 be the num-
ber of 3’s in mi and n1 the number of 1’s. To prove this theorem, it suffices to show
that the (n3 + n1 + 1, 0) complement problem at the tip of the “arm” is unsolvable,
except for the case n3 = 2; n1 = 0. Many cases are proved unsolvable by Proposition
3 or Theorem 2. In fact, Theorem 2 can be further generalized to show that the tip
complement problem on any board with n3 + n1 > 5 is unsolvable. The proof uses
exactly the same techniques as Theorem 2, and we omit it. This leaves a total of nine
special cases: n3 = 2, n1 = 1, 2, 3; n3 = 3, n1 = 0, 1, 2; n3 = 4, n1 = 0, 1; n3 = 5,
n1 = 0.

The first three boards can be handled using the resource count of FIGURE 10 (note
the Fibonacci numbers along the x-axis). For the (4, 0) complement problem in FIG-
URE 10, this resource count begins at 45, and finishes at 21. But again the leftward
jump to clear (4, 0) loses 26, so the solvability criterion gives [45] − [26] − [21] =
−2 < 0.
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0

 −2 3 −5

2 3 5

0 0 0 0 0 0 0

0 1 1 2 3 5 8 13 21

0 0 0 0 0 0 0

2 3 5

 −2 3 −5

0

Figure 10 A resource count on Square(3) + (3, 3, 1)

This leaves six boards where the tip complement problem is difficult to prove un-
solvable. For them, we use an integer programming (IP) model of the problem. We
do not attempt to model the peg solitaire problem exactly (as in [10]), but allow any
integer number of pegs in each hole, and a solitaire jump adds (−1, −1, +1) to three
consecutive holes. In this IP model, the order of the jumps is unimportant. For ex-
ample, let’s consider the (4, 0) complement problem on Wiegleb’s board (FIGURE 6).
On this board there are 108 geometrically possible jumps, and the number of each are
our unknowns xi . For each hole on the board, we have a linear equation which states
that the starting number of pegs in this hole, minus the jumps that start from or jump
over this hole, plus the jumps that end at this hole, equal the final number of pegs in
this hole. This is a linear programming problem with 45 equations and 108 unknowns
whose solution is restricted to non-negative integers, a standard problem for which
computer solvers exist.

This IP model is not equivalent to the original peg solitaire problem, but it is solv-
able if the original problem is. Thus, if we can prove the IP model is unsolvable, it
will prove the original problem unsolvable. Unfortunately, the (unmodified) IP model
is solvable.

To complete the proof, we add to the IP model additional constraints that must be
satisfied by the (4, 0) tip complement problem:

1. ≥ 2 rightward jumps into (4, 0) (the first and last jumps)

2. Exit requirements for each of the 8 shaded regions in FIGURE 6 (there are 5 possible
exit jumps for each region)

When submitted to an integer programming solver (we recommend the free NEOS
solver on the web [11]), the solver returns “integer infeasible.” Similar computer proofs
work for all 6 difficult boards. This is a rather subtle unsolvability, for if we take
Wiegleb’s board and remove the 3 holes at x = −4 the IP solver no longer reports
that the (4, 0) complement is infeasible, and this 42-hole board can be shown to be
universally solvable [9].

A final remarkable fact comes immediately from Theorem 3, since we know (or can
determine) that Square(9) is universally solvable.

COROLLARY. Among odd square-symmetric, gapless boards, the standard 33-hole
board is the only board with less than 81 holes that is universally solvable.
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Boards with gaps

Here we consider the role of the gapless assumption in the above analysis. If we require
only that a board be square-symmetric and null-class, what strange and interesting
boards may result? First, it is easy to see that any board that is square-symmetric is
either null-class, or can be made null-class by removing or adding the central hole(s)
(one hole for an odd board, all 4 for an even board). Because of this the number of null-
class, square-symmetric boards is large. However the vast majority are uninteresting
to play peg solitaire on, for the board may not be connected, or there may be a hole
into which no jump is possible.

A computer search for the smallest universally solvable, square-symmetric boards
came up with the two boards in FIGURE 11. The reader may enjoy finding solutions to
all complement problems on these boards.

Figure 11 The smallest square-symmetric universally solvable boards (even and odd).
Found by exhaustive computer search.

Conclusions

The concepts of null-class and symmetry provide a powerful combination for under-
standing peg solitaire boards. We have shown that the standard 33-hole board plays
a special and unique role. It is the smallest gapless, square-symmetric board that is
universally solvable. In fact it is even more special than this, because among gapless,
odd square-symmetric boards, it is the only board with fewer than 81 holes that is
universally solvable.

We should note that if we relax our symmetry requirements to rectangular symme-
try, there are many universally solvable boards near the size of the standard board. For
example, if we take the standard 33-hole board and remove the 6 holes at y = ±3,
this 27-hole board is universally solvable. We can take Wiegleb’s board and remove
the 6 holes at y = ±4, this 39-hole board is also universally solvable, and the (4, 0)

complement problem has a unique solution, up to jump order and symmetry [12]. We
can also play peg solitaire on a checkers board (allowing only diagonal jumps), this
32-hole board is universally solvable as well [13].

In this paper we have considered peg solitaire from a rather abstract perspective
gained from years of exploration of the game, by hand and on a computer. We have
given no actual solutions to problems, except for FIGURE 9. We hope the reader will
be motivated to dust off a board (or find a computer version of the game) and try to
solve the seven different complement problems on the standard board, and begin to
explore problems on some of the other board shapes presented.
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