
IMPLEMENTATION OF VIDEOCONFERENCING SOFTWARE
FINAL REPORT

ECE 496Y - Design Project
Department of Electrical and Computer Engineering

Submitted By

Wong Chujoy, Jaime - 940377330
Trinh, Shing - 941464590
Ng, Harfrey - 951547410

(Group B)

Submitted To

Professor Irene Katzela

University of Toronto
Faculty of Applied Science and Engineering

April 9, 1999

EXECUTIVE SUMMARY

This report is intended to describe the design and implementation of the Video Conferencing

Software project. The objective of the project is to implement a bi-directional video conferencing tool. The

project consists of designing and implementing software to encode, and send video samples to another

system where it is decoded and played back in real time. The successful completion of the project will

produce software that will enable two users located at different terminals to communicate with each other

through video over the Internet. The project commenced in September 1998 and terminated in April 1999.

TEAM MEMBER CONTRIBUTIONS

Jaime Wong Chujoy

The implementation of the videoconferencing tool was made possible by the combined efforts of

my team members and myself. However, the project was divided into three major groups: Communication

protocol, Video encoding and display, and High level integration of parts. My contribution to the project

consisted of researching, designing and implementing the video compression and decompression utility

MPEG-1

My first task to the development of MPEG-1 consisted of researching video compression

technology to become familiar with the features and functionality of MPEG-1. This included studying the

different system calls by MPEG-1 to the X-Image Library (XIL). In order to assist the design of the video

section of the project, I was responsible in analyzing the previous project by Yasseer Rasheed. This

consisted of dissecting and studying the components of Rasheed’s software. My contribution to the video

section consisted of creating a high-level design for the initialization, compression, and decompression of

MPEG-1. Once my design was finished and assured to be at optimum, I was responsible for implementing

the design by programming using the “C” language. The decompression portion of MPEG-1 was

developed along with Harfrey Ng. In addition, we encountered serious problems with the Solaris operating

system. Along with Wing-Chung and Harfrey Ng, I was involved in solving problems with the XIL

Library.

For the preparation of this final report, my duty was to describe the “Methods and Materials or

Design” with regards to MPEG-1 video (chapter 2.4). I was responsible for composing the Cover Page,

Executive Summary, Table of Contents, and Introduction (chapter 2.1). In addition, I gathered all the

written work from the team member’s compiled into this final report (this included editing Harfrey Ng’s

written work).

Shing Trinh

We all came up with the system design through several meetings between ourselves and with our

supervisor. Before I started coding I reviewed the previous videoconferencing project done at the Network

Architecture Lab. I also looked at the example programs provided with the XIL library. From this I wrote a

minimal decoder program that would read in an MPEG-1 file, decode it, and display it in a window. After

examining the program I divided up the program into general functions that encapsulated the initialization

and display of video in a window. These functions were used by Harfrey to add the ability to view the

video being encoded in the encoder application written by Jaime. I modified our decoder to read from a

socket instead of a file and changed Jaime and Harfrey’s encoder to write to a socket also. At this point we

had a unidirectional video link. I rewrote the separate encoder and decoder programs as a series of modular

functions that could be combined into a single program. The encoder and decoder were rewritten in such a

way that both could run concurrently in their own threads. Finally the encoder and decoder functions were

both combined into the same program creating a fully bi-directional video link. This involved writing code

to initialize, run and, synchronize the two threads.

For the final report I wrote High Level Design (chapter 2.1), Video Capture and Display (chapter

2.2), the Suggestions for Future Work of the Conclusion (chapter 3.1), Code Module Descriptions

(Appendix A), and the Manual Page in (Appendix B). I along with Jaime Wong and Harfrey Ng were also

responsible putting together the final report and editing it.

Harfrey Ng

I was responsible for implementing the MPEG-1 Decoding System, Playback System and the User

Display. In this Final Report, I was responsible for writing the topics of Implementation of Decode and

Display, Problem Encountered, High Level Design of Video Conferencing Tool and Conclusion of Final

Report.

During the first term, my members and I met regularly with Professor Irene Katzela and came up

with the verified design of the Video Conferencing tool. Also, I examined the previous Video

Conferencing source code and wrote down a synopsis and a description of the useful system functions in a

document to serve as my personal summary and four group’s reference.

During the implementation of our project, there were problems from the XIL 1.3 library and SUN

Capturing Device Driver in Solaris 2.6 system. I worked together with the NAL UNIX System

Administrator, Wing-Chung Hung, to solve these system problems. Solving these problems have benefited

not only our project, but also other projects at NAL that require XIL 1.3 library and the Capturing Device.

Regarding the contribution related to the implementation, besides the responsibilities described in

the Interim Report; I have worked on some additional tasks. In the Interim Report, I wrote that I would

implement the video rendering system that receives and playbacks the decoded video frames and would

implement the User Interface. Since the rendering system is closely connected to the MPEG-1 Decoding

System, I become also responsible for implementing the MPEG-1 Decoding System along with Jaime

Wong. In conclusion, my contributions to the project are to implement the MPEG-1 Decoding System, the

Playback System, the User Display, and to solve System Problems. I also integrate these components with

Jaime Wong’s components, so that we can decode and display the captured images at local workstation.

Based on my experience in the implementation of the Video Conferencing Tool, I will write the

topics of Implementation of Decode and Display (chapter 2.2, 2.3), System Problem Encountered, High

Level Design of Video Conferencing Tool (chapter 2.1), and Conclusion (chapter 3) in this Final Report.

MILESTONES

Problems Encountered

Based on the new timeline, the implementation of MPEG-1 retrieval/encoding, MPEG

decoding/playback and User Display were supposed to take place concurrently in January. However,

delays on the system occurred due to recent upgrades at NAL. The upgrades from Solaris 2.5 to Solaris 2.6

and the image library from XIL 1.2 to XIL 1.3 caused compilation and linking problems that prohibited us

from compiling the Video Conferencing Tool. As a result, we spent approximately three weeks solving

these system problems with the valuable help from the UNIX administrator, Hung Wing Chung. In effect,

the schedule of our timeline was postponed for about 3 weeks.

There were two major system problems with the XIL and video capturing. At that time, two

versions of XIL were installed in two different directories. Specifically, XIL 1.3 was installed in the

operating system while the previous XIL 1.2 was still present. As a result, the operating system had the

tendency to link with the old XIL 1.2 library when programs were compiled. To solve this problem, both

XIL 1.2 and previous copies of 1.3 were uninstalled, and a new copy of XIL 1.3 was installed. For the

video capturing problem, the images captured by the Sun Video Device could not be displayed on the

screen. The problem was fixed by reinstalling the Sun Video Device Driver.

MILESTONES (September 1998)

Activity October November January February March
Week 06 Week 12 Week 19 Week 02 Week 16 Week 04 Week 11 Week 01 Week 08 Week 08 Week 22

Backgroun 6 days
Examine Prev. Projec 7 days
Update Prev. Project 14 days**
Requierment/ Specifications 14 days**
Initial Design 21 days
Verify Design 7 days
Design Revision 7 days
Implementation
 -MPEG retreival/encoding 14 days**
 -RTP encoding/decoding
 -UDP/IP transport 28 days**
 -MPEG decoding/playback
 -GUI 7 days
Testing and Debugging 14 days
Performance Testing 7 days
Project Dead

** Midterm season - delays may be expected

- Written Reports and Oral Presentations not included in this chart.
- Delays may be expected aroundOct. 27 Written Proposal Due

Jan. 05 Interim Report Due
Mar. Design Fair
Apr. 09 Final Report

- No or little work anticipated during Christmas Break

REVISED MILESTONES

Activity October November January February March
Week 06 Week 12 Week 19 Week 02 Week 16 Week 04 Week 11 Week 01 Week 08 Week 08 Week 22

Backgroun 6 days
Examine Prev. Projec 7 days
Update Prev. Project 14 days**
Requierment/ Specifications 14 days**
Initial Design 21 days
Verify Design 7 days
Design Revision 7 days
Implementation
 -MPEG retreival/encoding 14 days**
 -MPEG decoding/playback
 -GUI
 -Test for MPEG playback 7 days
 -UDP/IP transport 28 days **
 -RTP encoding/decoding
Testing and Debugging 14 days
Performance Testing 7 days
Project Deadline

represents completed milestones represents uncompleted milestones

represents cancelled milestones
** Midterm season - delays may be expected

- Written Reports and Oral Presentations not included in this chart.
- Delays may be expected aroundOct. 27 Written Proposal Due

Jan. 05 Interim Report Due
Mar. Design Fair
Apr. 09 Final Report

- No or little work anticipated during Christmas Break

TABLE OF CONTENTS

♦ Executive Summary

♦ Team Member Contributions

• Jaime Wong Chujoy
• Shing Trinh
• Harfrey Ng

♦ Milestones

• Explanation for Delays
• Old Milestones
• Revised Milestones

♦ Table of Contents

♦ Acknowledgements

♦ Chapter 1: Introduction

1.1 Background Information
1.2 Motivation
1.3 Project Objective
1.4 Report Outline

♦ Chapter 2: Methods and Materials or Design

2.1 High Level Design
2.1.1 Sender Design
2.1.2 Receiver
2.1.3 Sender-Receiver Synchronization

2.2 Video Capture and Display Implementation

2.3 Video Display

2.4 MPEG-1 Video
2.4.1 MPEG-1 Implementation
2.4.2 MPEG-1 Initialization
2.4.3 MPEG-1 Transmission
2.4.4 MPEG-1 Reception

♦ Chapter3: Conclusion

3.1 Concluding Remarks
3.2 Suggestions for Future Work

♦ References

♦ Appendices

• Appendix A: Module Descriptions
• Appendix B: Manual Page
• Appendix C: Source Code Listing

ACKNOWLEDGEMENTS

We would like to thank our supervisor Professor Irene Katzela for her guidance, commitment,

friendly advice, and encouragement throughout the course of our design project. Her help has

unquestionably allowed us to complete the project successfully.

We would also like to extend special thanks to Daniel Lopez for all his help. His time and effort

put into ensuring our project ran as smoothly as possible was much appreciated. In addition, we like to

express gratitude to Davy (Wing-Chung) Hung for his continuous technical assistance in the Networks

Architecture Lab.

Chapter 1: INTRODUCTION

1.1 Background Information

Video Conferencing

Videoconferencing is the live communication of two or more people using a combination of video,

audio, and data exchange. Over the past few years there has been an increase in demand for distant

communications. Videoconferencing has found many applications in such diverse fields as personal

communications, collaborative work, presentations, research, distance education, remote surveillance, and

entertainment.

The implementation of a videoconferencing tool has some inherent difficulties due to the large

amounts of data produced when video and audio are digitally produced. The vast amount of data causes the

video CoDec (Compressor/ Decompressor), and data network connecting the computers to slow down. The

delay in the CoDec and network will produce unwanted delays and de-synchronization between video

frames. There are many ways to decrease the size of video and audio data. One of the best ways is by

compression using the popular standards MPEG. However, the compressed information is still large

enough to cause delays in the network. As a result, a protocol that allows real-time communication is

needed.

User Datagram Packet (UDP)

UDP is a protocol layered on top of IP (Internet Protocol), the base protocol for transferring data

over the Internet. UDP is a connectionless, unreliable, datagram protocol used to send data over IP

networks such as local area networks or the Internet. When a UDP packet is sent there is no guarantee that

it will reach its destination. In addition, there is no guarantee that packets are received in the same order

they were sent, since packets may take different routes to its destination. Furthermore, duplication of

packets is possible. However, if the packet does reach its destination it is guaranteed to be error free.

Despite the problems mentioned, UDP is used as the preferred protocol in applications that require

speed but not necessarily require reliability. Non-critical means that speed and throughput are not crucial

due to low overhead. Since UDP does not provide the acknowledgements, retransmission, and ordering

features of TCP (Transmission Control Protocol), it provides a much faster end-to-end transmission time,

and makes a more efficient use of the network bandwidth. UDP by itself is not suitable for real-time

applications such as videoconferencing because it provides no facilities for synchronization, as well as

provision of real-time delay constraints. What is needed is an additional protocol, layered on top of UDP to

provide the additional real-time functionalities.

Real-Time Transport Protocol (RTP)

The Real Time Transport Protocol, introduced in 1996, provides delivery services for data with

real-time characteristics, such as interactive audio and video. It provides procedures for timing

reconstruction, loss detection, security, and content identification. RTP is designed to be independent of the

underlying transport and network layers protocols.

The RTP protocol is essential for interactive multimedia applications, like videoconferencing, due

to its real-time capabilities. There are a couple of reasons for this. Consider first the situation where IP

packets are routed across a network, where individual packet transit times can vary significantly. In order to

handle the variations in transit time delay, referred as “jitter”, a timestamp in the RTP header could be used

for delay variation calculations. If a receiver detects, from the timestamp field of the RTP header, that the

transit time for an RTP packet has an abnormally long time, the receiver may decide to discard the packet

rather than to keep the packet and distort the audio/video information later on. RTP also records the

sequence number for each packet sent so a receiver can detect lost packets, preserve sequence and request

retransmission of the corrupted or lost packets.

In congested network condition the effect on non-real-time traffic is that the transfer takes longer

to complete if RTP protocol is used. In contrast, real-time data becomes obsolete if it does not arrive within

certain time interval. As a result, the timestamp and sequence number fields become essential in alleviating

the problem.

RTP has reached widespread acceptance, especially in network multimedia applications, because

of its suitability to work with real-time traffic. It has found use in many large commercial applications such

as Netscape’s LiveMedia and Microsoft’s NetMeeting conferencing software.

1.2 Motivation

A videoconferencing system has already been implemented at NAL by a current Ph.D. student Yasseer

Rasheed as part of his Masters thesis. The system consists of a unidirectional link between two computers

over IP and ATM connections. Images from a video capture board and camera are digitized, compressed

using the MPEG-1 video standard, and transmitted over an Ethernet network through IP or ATM. The

system uses a custom proprietary protocol layered on top of IP and ATM to accomplish real-time video

transfers.

The system was originally implemented using Solaris 2.5 and the XIL 1.2. However, the operating

software and its associated libraries have been upgraded to Solaris 2.6 and XIL 1.3. The upgrade has

caused a number of incompatibilities between the unidirectional video conferencing tool and the system

libraries and as a result the program no longer runs or compiles under the new operating system.

1.3 Project Objective

The purpose of the project is to implement a bi-directional videoconferencing tool. The project

consists of designing and implementing software to encode, and send video samples from a video capture

board to another system where it is decoded and played back in real time. The system will use the MPEG-1

video standard for compression and decompression. For communication purposes, we will be using the

Real Time Protocol (RTP) together with the User Datagram Protocol / Internet Protocol (UDP/IP)

standards.

As a first step, study and research of materials that are relevant to the project will be performed.

Technologies such as video compression utilities, real-time protocols, and the Solaris operating system will

be studied and familiarized. Next, to help accomplish and accelerate the project’s objective, the

development of this project will take advantage of the research done previously at NAL. This would

facilitate the design of a new system capable of bi-directional communications using MPEG video

compression.

Initially, a plan was arranged to update the previous project by Rasheed to help familiarize with

video conferencing designs. However, the update of Rasheed’s project will not accomplished mainly due

to time constraints and also due to the relative short amount of learning experience.

The design will be accomplished by dividing the project into three main categories, which each

team member is responsible for design and implementing. The first member, Jaime Wong Chujoy, will be

responsible for the video compression/decompression of MPEG-1. The second member, Shing Trinh, will

be responsible for the communication protocols and synchronization. Last, Harfrey Ng will be responsible

for the display and help implement the decompression of MPEG-1.

After the design is reviewed and assured to be correct, the software will be implemented using the

“C” language and the XIL library. Once the implementation and debugging is finished, additional testing

and debugging will be required. In addition, some performance testing will be done to optimize the

execution of the software.

1.4 Report Outline

In September 1998, a proposal was written to organize the development of the project. In

addition, three interim reports were written in January 1999 to present the progress of the project at that

time. This report will describe the final design, implementation, and results of developing the video

conferencing software.

In the following sections, the high-level design and solution to the present challenges will be

presented. Furthermore, the section will describe the design of the communication protocols, video

encoding/decoding, and display. The conclusion section will describe our achievements and results of our

design and implementation. Finally, the appendices will present the module description, a user’s manual

on how to operate the software, and the source code.

Chapter 2: METHODS and MATERIALS or DESIGN

2.1 High Level Design

In order for two computers to participate in a videoconference the videoconferencing software

must be running on both computers (see figure 1). The videoconferencing software requires some sort of

video capture device to be present. Data captured on one computer is encoded, packaged, and sent over the

Internet to the other computer where it is decoded and played back through the video card; this must

happen in both directions simultaneously.

Figure 1. Video Conferencing System Level 0 Dataflow Diagram

The videoconferencing system consists of two separate subsystems: a sender and a receiver (see

figure 2). The sender is responsible for acquiring video data and sending it to the receiver at the other end

of the connection. The receiver is responsible for receiving the video data from sender and outputting the

data.

Figure 2. Video Conferencing System Level 1 Dataflow Diagram

Computer

Video Input
Device

Video Output
Device

Videoconference
Software

Video Input
Device

Video Output
Device

Videoconference
Software

Computer

Video Input
Device

Video Output
Device

Sender

Receiver

Video Input
Device

Video Output
Device

Sender

Receiver

2.1.1 Sender Design

Sending a video stream involves four stages (see figure 3):

1. Recording and Timestamping

2. Image Preview

3. MPEG compression

4. RTP Encoding and Delivery

The recording and timestamping stage is responsible for obtaining video samples. This involves

sampling frames from a video capture device. Dividing the video into frames allows for the data to be sent

in discrete packets and avoids overflowing the network with a continuous stream of data. At the time the

sample is taken, a timestamp must be added to the clip before passing it down the pipeline to retain it’s

timing information.

The image preview stage displays the captured image in a window. Allowing the sender to

preview the video being sent over the network so that he/she can make changes to camera position.

The MPEG compression stage compresses the raw video frame into MPEG-1 encoded frames.

The timestamp provides the timing information required to string the MPEG frames together to recover the

original video stream.

The RTP encoding stage adds an RTP header to the MPEG data that encodes the timing

information. A sequence number is also included in the RTP header that will allow the receiver to detect

lost frames. After an RTP header is added to the data, it is sent to the other client over the Internet via

UDP/IP and the computer’s network interface card.

Figure 3. Sender Level 1 Dataflow Diagram

2.1.2 Receiver

Playing back the data on the receiver involves three similar stages but in the reverse order (see figure 4):

1. RTP Decoding

2. MPEG Decompression

3. Synchronization and Playback

In the RTP Decoding stage the receiver waits for packets to arrive. When a new packet arrives, the

RTP header is stripped and the timestamp is extracted. The output from this stage is a timestamped MPEG-

1 frame. The RTP Decoder may also drop “late” packets (explained further on) at this point to avoid

decompressing packets that will eventually be dropped.

The MPEG Decompression stage takes the MPEG-1 frames passed to it from the previous stage

and decompresses it to a raw image that can be displayed on the computer screen.

The Synchronization and Playback stage plays back all the video frames in the correct order and at the right

time. In other words, it must playback the video with the original time gaps in between successive clips.

Figure 4. Receiver Level 1 Dataflow Diagram

Receiver

Audio/Video
Output Device

Synchronize
and Play

MPEG
Decompress

RTP
Decode

Network
Interface Card

Receiver

Audio/Video
Output Device

Synchronize
and Play

MPEG
Decompress

RTP
Decode

Network
Interface Card

To play back the packets in real-time the Synchronize and Play stage does one of two things:

1. Drops the packet if it has arrived “late” since the real-time data is no longer valid. If the timestamp of

the last packet to be played is Ti-1, and the current packet’s timestamp is Ti, and the current time is Tc,

then it is considered “late” if (Ti – Ti-1) > (Tc – Ti-1) or ∆Ti > ∆Tc (see figure 5). In other words, it is

late if the current packet’s timestamp (relative to the timestamp of previously played packet) is greater

than the current time (relative to the timestamp of previously played packet).

Figure 5. A “Late” Packet

2. Delaying playback of the packet if it has arrived early since it should be played at a later time. If the

timestamp of the last packet to be played is Ti-1 , and the current packet’s timestamp is Ti , and the

current time is Tc , then it is considered “early” if (Ti – Ti-1) < (Tc – Ti-1) or ∆Ti < ∆Tc (see figure 8). In

other words, a packet is considered “early” if the packet’s timestamp relative to the timestamp of

previously played packet is less than the current time relative to the timestamp of previously played

packet. In this case the packet must be delayed for an interval ∆Td equal to the difference between the

current time and it’s own timestamp.

Figure 6. An “Early” Packet

∆Td

Ti – timestamp of last packet to be played

Ti+1 – timestamp of current packet

∆Tc

∆Ti

Tc

Ti+1Ti

Timeline Tc – current time

Ti – timestamp of last packet to be played

Ti+1 – timestamp of current packet

∆Tc

∆Ti

Tc

TiTi-1
Timeline Tc – current time

All timestamps are represented in milliseconds. The receiver will not be concerned with the absolute

value of the timestamp but rather the relative timestamp (or the time between two successive packets). The

receiver uses the timestamp of the first packet as the basis for calculating timings of the rest of the packets.

In this scheme no master clock is needed since all timestamps are relative.

2.1.3 Sender-Receiver Synchronization

Videoconferencing requires that both sender and receiver be running simultaneously. This can be

accomplished by running the sender and receiver concurrently in separate threads. Both the sender and

receiver are fairly independent once they are running but special care must be taken in the initialization and

finalization of a video conference call.

The videoconferencing software is started in one of two modes: waiting for a call or placing a call.

In placing a call, the receiver thread is started up first so that it is ready to receive and then the sender

thread is started. In waiting for a call, the receiver thread can be started up immediately but the sender

thread must wait until a connection is made before it can start sending data. The sender must wait until a

connection is made since without a connection the sender does not know where to send data.

The program should exit when either the sender or receiver terminates. In other words, if one

thread terminates then it must signal to the other thread to terminate in order for the program to terminate

gracefully and free acquired resources. This can occur when the sender or receiver window is closed or

when the remote client closes the connection.

The only element shared by the sender and receiver threads is the socket. Therefore

synchronization of the sender and receiver can be done using the socket.

During initialization the receiver is started up before the sender to ensure that the system is always

ready to receive video data (see figure 7). Once the receiver receives the first packet of data it can identify

the source address and port of the caller. At this point the receiver notifies the sender that a call has been

received. It does so by issuing a socket connect to the address and port of the packet source. The connection

call does not actually set-up an explicit connection. It rather allows the socket to send data without

specifying the destination address and also ignores data received from any host-port pair other than the one

the socket is “connected” to. The sender periodically checks to see if the socket is connected. If the system

is in call mode then the socket will already be connected. The video data will only be sent if the socket is

connected.

Figure 7. Sender/Receiver Flow Diagram

no

no

yes

yes no

Main Thread

Create Receiver

Create Sender

Receive Data Capture Video

Connected ? Connect Socket

Display

Connected ?

Display

Send Data

Call Mode?
yes

Connect Socket

start

Connect to X
sever

Initialize the
X window’s

width and height

Figure 8--Implementation of the Decode and User Display

Make a shut
down command

on a menu

Request the X
server to report
the event mask

Map the window,
so that the window

becomes visible

Steps to create
an X window.

Create a display
image

Paint the color
on the

DisplayImage

Any remaining frame? End

Any remaining frame?

Rescale

Check if the
screen is 8 bits

or 24 bits
deep

Decompress

Produce colorcube
and dithermask

Set up the X
Colormap

Decompress
Paint the

color on the
DisplayImage

8 bits

24 bits

8 bits

No

Yes

No

Yes

2.2 Video Capture and Display Implementation

Our videoconferencing tool captures video using a Sun video camera attached to a SunVideo input

card. The XIL library allows the creation of XilImages (a standard XIL structure to store an image) that are

associated with capture device.

This involves

1. Creating a handle to the device (of type XilDevice)

2. Issuing system calls to initialize the device

3. Passing the handle to create an XilImage associated with the device

The created device image behaves just as a regular XilImage. By reading the device image’s

contents a captured image can be retrieved from the device’s frame buffer. Once a frame is read, it is

discarded from the frame buffer. Repeated reads from the image will yield a sequence of frames

representing the captured video.

By default video is captured at the NTSC resolution of 640x480 but the MPEG-1 compressor in

the current version of XIL only supports a resolution of 320x240. So the device image must be scaled to a

temporary image before it is passed to the MPEG compressor.

2.3 Video Display

Images either captured from the video camera or received from the network must be displayed in a

window. XIL allows the creation of XilImage’s that are associated with a window.

This involves:

1. Creating a handle to the window

2. Issuing system calls to initialize the window

3. Passing the handle to create an XilImage associated with the window

The created window image behaves just as a regular XilImage. By copying an image to the

window image’s buffer the image will be automatically mapped to the window’s display area. This is only

possible if the types of both images match.

In the situation where the display only supports 8-bit pseudo colour a straight copy cannot be done

since the captured images are in 24-bit true colour. Therefore an intermediate conversion must take place in

which the 24-bit true colour captured image must be converted to an 8-bit image suitable for displaying

directly to the window.

This involves:

1. Creating and installing a colourmap, which maps 24-bit colour, values onto 8-bit colour values.

2. Creating a dither mask

3. Colour conversion of the image using the colour map and dither mask.

Refer to figure 8.0

2.4 MPEG-1 Video

2.4.1 MPEG-1 Implementation

Today, most video conferencing software utilizes video compression to reduce digital bandwidth.

Likewise, this project requires a video compression utility that has satisfactory video quality, compression

ratio, and is readily available for implementation. MPEG-1 was chosen for the compression and

decompression of video images in this project for several reasons. During research into different

compression technologies, MPEG-1 was found to have good video quality and compression ratio. The

operating system at NAL contained MPEG-1 libraries that would make development of video compression

easier, since there was no need to purchase and install a third party CoDec. Also, MPEG-1 is widely used

today in many multimedia applications. This would make our software easier to test and debug in the

beginning, since sample video images can be easily found from the Internet.

The development for MPEG-1 was started by studying the XIL library system call functions. In

addition, the videoconferencing software from Rasheed was examined to familiarize with the MPEG-1

implementation. Rasheed’s software was analyzed thoroughly and various components of his design were

reused into our project.

The implementation of MPEG-1 was divided into three major components to facilitate the

organization and execution of the software. The first component requires specific video values to initialize

the overall system and to meet the demands of the user. This would allow hardware initialization and

precise video specifications to be met. The second component consists of using the initialization routine to

acquire and transmit MPEG-1 compressed video images using the communication protocols. Finally, the

last component involves acquiring the MPEG-1 video data from the communication protocol and

decompressing it into the user’s display.

2.4.2 MPEG-1 Initialization

For the execution of the MPEG-1 system, there is a need for initializing the system and the user’s

requirements. This is accomplished by executing system calls offered by the XIL library. The routine

consists of seven steps to successfully initialize the video parameters at the server (Fig. 9).

The first step consists of setting the hardware parameters such as video port, video format

(NTSC/PAL), frame skip rate, and buffer size. The second step involves configuring the dimensions of the

captured raw image data. A relatively small window capture size is created so that the video data will not

occupy excessive memory. The raw image will be reduced to half the capture size in order for the image to

be acceptable for viewing. As a result of this step, the raw image will be transformed to lower resolution.

If these steps are not successful, the system will not proceed to the next step and will exit the initialization

sequence. However, if the former sequences were successful, the system will proceed to initialize the X-

window display, which was elaborated in chapter 2.3 (Video Display) of this paper.

The following creates the states and variables needed for an MPEG-1 sequence. It includes the

creation of a compressor pattern specified by the user. The compressor pattern consists of three types of

frames. Interlaced (I-picture), Previous (P-picture), and Bi-directional (B-picture). These frames are used

for the motion estimation feature of MPEG-1. The I-pictures are based on the independence of each frame.

Like raw digital images, I-pictures assume independence for each frame. In other words, each frame does

not need any information from other frames in order to be displayed. However, P-pictures are based on the

dependence of the previous frame, hence the name motion estimation. When compressing an image, two

frames are needed and only the difference between the two frames will be saved. During decoding of a

sequence, a “key” frame or I-picture is needed to start the decoding. Similarly, a B-frame involves the

dependence of frames, not only using the preceding frames, but also the succeeding frames. Again, an I-

picture is needed to start the decoding.

The next step, bit-rate initialization, the system will first require to recognize the type of frame. If

the MPEG-1 sequence contains I-pictures only, the compression type will have a variable bit rate.

However, if the sequence contains P or B-pictures, the compression type will have a constant bit rate. If P

or B pictures are used, then specific weights for each type of frame are specified, and a constant bit rate

will be produced. On the other hand, if I-pictures are only used, variable bit rate compression will be used

and calculated dynamically by the XIL library.

Figure 9 - Server MPEG1 Initialisation

START

INITIALIZE VIDEO
PARAMETERS

• Port (Video Card)
• Format (NTSC/PAL)
• Image skip

INITIALIZE CAPTURE
HEIGHT & WIDTH

• Check for NTSC/PAL
specifications

• Calculate scaling

Initialisation
Successful?

Exit
(output error

message)

INITIALIZE
X-Windows

(display preview)

• Create CIS
(Compressed Image
Sequence) for MPEG-1

• Set frame buffer

Set MPEG-1compressor
pattern
(I-P-B)

Constant
Bit Rate?

Set weights for
CBR

Set bit rate
Accordingly

Save
Attributes

MPEG-1 contains three types of frames:
• Intraframe (I) – Independent frames, decoder needs

no information from a preceding pictures to decode.
Compression/decompression done very quickly.

• Predictive (P) – Encodes difference between
samples. Requires previous frame to predict/
(en)decode picture. Contains less bits than (I) frame.

• Bi-directional (B) – Similar to (P) frame. Can
predict/ (en)decode from preceding or succeeding
frame.

yes

no

yes

no

2.4.3 MPEG-1 Transmission

During the start of the server (Fig. 10), MPEG-1 must be first initialized as mentioned in the

previous section. Once this has successfully been accomplished, the transmission routine will enter into a

loop. Inside the loop, the first step is to acquire the raw image data from the video card buffer. Each raw

frame will be converted into an MPEG-1 frame and stored in memory. If this procedure is successful, the

MPEG-1 frame will be retrieved from memory and forwarded to the communication socket where it will be

packetized by the RTP protocol.

In addition, the user will have the option to display the captured image on his/her monitor. If this

option is exercised, the system will have to go back the number of frames that were transmitted and retrieve

those frames from memory. Once this has been accomplished, the transmitted/-displayed frames will be

flushed from the computer system. The above sequences will repeat until the user window is closed or

until an error has occurred.

Figure 10 - SERVER Transmission

dStart of
Server

Initialise Server /
Configure MPEG1

Settings
(Refer to MPEG1

Initialisation)

• Acquire image and convert to
compressed image sequence
(MPEG-1)

Complete
Frame Exists?

START
Main
Loop

Acquire:
MPEG-1 data, byte

and frame #

Toss MPEG-1 data
and other parameters

to RTP

Display
Captured
Image?

Display Image
To Windows

Go back # of
frames acquired

no

no

yes

yes

2.4.4 MPEG-1 Reception

During the start of the client (Fig. 11), the X-window must be first initialized (refer to chapter 2.3).

Once the X-window this has been successfully initialized, the receiver system will enter into a loop. Inside

the loop, the first step is to acquire the depacketized MPEG-1 frame from the receiver queue. This part of

the data will contain valuable information for decompressing purposes. Information such as height, width,

and frame type will be acquired and along with the actual MPEG-1 video data, the frame can be

successfully decompressed. The decompressed image will be routed to the X-windows display, where the

user can view the received image. The above sequences will repeat until the user window is closed or until

an error has occurred.

Figure 11 - CLIENT Receiver

Start of
Receiver

INITIALISE:
• Display State
• Simple X-Window
• XIL output to X-Window

START
Main Loop

Acquire video from
communication protocol

Acquire MPEG-1 frame
information:
• Height
• Width
• Datatype

Use MPEG-1 frame
information, and call

MPEG-1 Library to decode
frame.

Route Decompressed Video
to X-Window display.

Chapter 3: CONCLUSION

3.1 Concluding Remarks

So far, we have successfully implemented a bi-directional video conferencing tool that uses

UDP/IP protocols for communication. We have previously installed the RTP protocol, but is currently not

in our system. During testing with the RTP protocol, our system was functioning erratically. We have

noticed that implementing the RTP protocol causes the system to become unstable and to crash

periodically. We attempted to debug this problem but we were not successful due to time constraints.

Instead, we have commented the source code that implements the RTP protocol. Nevertheless, testing of

the video conferencing tool proved that the receiver can playback the video frames smoothly.

Our project meets the bi-directional requirement. The conferencing tool allows each end system

(e.g. Jupiter and Saturn) to act as both a sender and a receiver at the same time. As a result, each system

was able to capture, send, receive, and display images concurrently.

Our successful implementation of the Video Conferencing has a number of contributions. First,

we have solved several Solaris system problems. Before we work on this project, several other previous

NAL projects that use XIL cannot be compiled using the XIL 1.3 library in the newly upgraded Solaris 2.6

System at NAL. Also, no one was able to use the attached Sun Video Device to capture images in the

newly upgraded system. During our progress of implementing the project, we were able to fix all these

problems with the help of the UNIX administrator, Wing-Chung Hung. As a result, users in NAL are able

to use the XIL 1.3 library and also use the Sun Video Device to capture images.

In conclusion, our current video conferencing tool satisfies several key communication features

and is a valuable research tool in the field video conferencing. Indeed, this current working program serves

as an immediate point for next year’s design project to extend the functionality of our system.

3.2 Suggestions for Future Work

The currently implemented videoconferencing tool only supports one-to-one communications.

One possible extension would be to add support for many-to-many communications, which is available in

most other videoconferencing software. This would allow a person using the videoconferencing tool to talk

to more than one person at a time. To do this efficiently, IP multicasting must be taken advantage of IP

multicasting makes more efficient use of the network bandwidth by sending only a single copy of data into

the network, which can be picked up by multiple receivers. IP multicasting is supported in the RTP library

used for the project.

Another extension would be to add support for ATM transport. ATM transport could allow for

more tightly controlled Quality of Service guarantees in data delivery.

Our system has minimal user interface consisting of windows displaying video. A well-designed

user interface could be built around the videoconferencing system making it much more user friendly. The

user interface could be used to report session statistics and allow the user to dynamically change system

parameters.

The video-processing library we used for our project at this point does not support MPEG-2

compression/decompression. If however MPEG-2 were to be supported in future versions of the library,

MPEG-2 could replace the current MPEG-1 compression to provide higher compression rates and better

video quality.

References

B.P. Lathi, 1998. Modern Digital & Analog Communication Systems – 3rd edition, Oxford University
Press, New York, sec. 8.6.

Hoffman, D., G. Fernando, V. Goyal, M. Civanlar. January 1998. RTP Payload Format for
MPEG1/MPEG2 Video. RFC 2250. http://info.internet.isi.edu/in-notes/rfc/files/rfc2250.txt.

Katzela, I. 1998. Multimedia Networking. University of Toronto.

Liu, C. August 1997. Multimedia Over IP: RSVP, RTP, RTCP, RTSP.
http://www.cis.ohio-state.edu/~jain/cis788-97/ip_multimedia/index.htm

Leon-Garcia, A., Widjaja I. 1998. Communication Networks: Fundamental Concepts and Key
Architectures. University of Toronto.

Motion Pictures Expert Organization, 1998. MPEG-1 FAQ.
http://www.mpeg.org/faq

Robinet, J. 1998. An Implementation of a Gateway for Heirarchically Encoded Video Across ATM and IP
Networks. Masters Thesis. University of Toronto. Department of Electrical and Computer
Engineering.

Schulzrinne, H. January 1996. RTP Profile for Audio and Video Conferences with Minimal Control.
RFC 1890. http://info.internet.isi.edu/in-notes/rfc/files/rfc1890.txt.

Schulzrinne, H. October 1997. About RTP and the Audio-Visual Transport Working Group.
http://www.cs.columbia.edu/~hgs/rtp.

Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V. January 1996. RTP: A Transport Protocol for
 Real-Time Applications. RFC 1889. http://info.internet.isi.edu/in-notes/rfc/files/rfc1889.txt.

Schulzrinne, H., Lennox, J., Rubenstein, D., Rosenberg, J. June 1998.
RTP Library API Specification Lucent Technologies.

Stevens, W. 1998. UNIX Network Programming. 2nd ed. New Jersey: Prentice-Hall.

Sun Microsystems Inc. 1994. Sun Video User’s Guide.

Sun Microsystems Inc. 1997. SunVideo Plus Answerbook.
http://docs.sun.com/ab2/@Ab1CollToc?abcardcat=%2Fsafedir%2Fspace4%2Fpkgs%2Foldversio
ncol%2Fab1%2FSUNWsvpab%2Fab_cardcatalog;subject=workstation

Sun Microsystems Inc. 1997. Solaris XIL 1.3 Answerbook.
http://docs.sun.com/ab2/@Ab1CollToc?abcardcat=/safedir/space3/pkgs/collections/ab1/answerbo
oks/english/solaris_2.6/SUNWAxi/ab_cardcatalog

Appendix A: Code Module Descriptions

librtp.a

Lucent Technologies’ static library for RTP.

librtpunix.a

Lucent Technologies’ static library for RTP.

mpeg1.h

Defines the RtvcMpeg1Weights structure for setting the MPEG_WEIGHTS parameter in the RTVC
device.

receiver.c

Main code for receiver process responsible for receiving MPEG-1 frames, decompressing them, and
displaying them in a window.

receiver.h

Header file containing exported function prototypes from receiver.c module.

rtp_api.h

RTP API types, structures, and functions that a user of RTP might require. (Included with Lucent
Technologies’ RTP libraries).

rtp_highlevel.h

RTP API types, structures, and necessary functions exclusive to the high-level (network-dependent) parts
of the interface. (Included with Lucent Technologies’ RTP libraries).

rtp_util.c

Wrapper functions for RTP API calls. These functions encapsulate frequently used RTP API call
sequences.

rtp_util.h

Header file containing exported function prototypes from rtp_util.c module.

sender.c

Main code for sender process responsible for capturing images from video camera, compressing images to
MPEG-1, and sending them to the network.

sender.h

Header file containing exported function prototypes from sender.c module.

timeval.c

Contains functions for converting timeval structures (used in system calls to retrieve time).

udp.c

Wrapper functions for common socket API calls used with datagram sockets.

udp.h

Header file containing exported function prototypes from udp.c module.

vctool.c

Primary module containing the main function. This is responsible for opening XIL, opening the display,
parsing command line parameters, initializing and running the sender and receiver.

xil_util.c

Utility functions for encapsulating sequences of XIL API calls such as compressing CIS’s, creating colour
maps, and creating windows.

xil_util.h

Header file containing exported function prototypes from xil_util.c module.

Appendix B: Manual Page

NAME
vctool – bi-directional Internet videoconferencing tool

SYNOPSIS
vctool [–p pattern] [-is image_skip] [-cbr cbr_rate] [-d device] [-dn device_name]
 [-dp device_port] [-l local_port] [-c host:port]

DESCRIPTION
vctool is a real-time videoconferencing tool that allows bidirectional transmission of captured
video. The software is used with SunVideo card

The videoconferencing tool can be started up in one of two modes: listen mode or call mode.

The person expecting to receive a call must start vctool up in listen mode. To start up in listen
mode a listening port must be specified. The -l flag is used to instruct the vctool to start up in
listen mode and the number following the flag specifies the local port to listen on.

The person making the call must start vctool up in connect mode. To start up in connect mode the
remote host and port to which you would like to connect to must be specified. The -c flag is used
to instruct the vctool to start up in connect mode. The flag is followed by a string representing a
host-port pair separated by a colon. If there is no receiver listening on the specified port then the
program will exit.

OPTIONS
-p pattern

Use alternate pattern for MPEG-1 compression. Pattern can be a sequence of I, P, B
representing I-frames, P-frames, and B-frames, respectively. (default = “I”)

-is image_skip
Sets the number of frames to skip in capturing video. (default = 0)

-cbr cbr_rate
Sets the data rate for constant bit rate MPEG-1 encoding (default = 115,000)

-d device
Sets the device class to use. (default = “SUNrtvc”)

-d device_name
Sets the name of device to use for capturing. (default = “/dev/rtvc0”)

-dp device_port
Sets the capture device port. (default = 1)

EXAMPLES
1. The following command:

 example% vctool -l 5555

 Starts up the video conferencing tool in listen mode listening on local port 5555 for a call.

2. The following command:

 example% vctool -c jupiter:5555

Starts up the videoconferencing tool in call mode where it will try to connect to the computer
named Jupiter who is already listening on port 5555.

Appendix C: Source Code Listing

