

SIMPAG MAS
Dmitri O. Kondratiev

dkondr@bigfoot.com

Created: 13 Aug 2003

Table of Contents

Overview... 1

MAS and Agent Federations... 1

Agent Types ... 2

Modeling Environment with Contexts ... 2

Communication in contexts: Sensors and Traits.. 4

Behaviors.. 5

Simulation step. Context Execution .. 5

AFSM context scheduler ... 6

Context life cycle. Discovering agent services. .. 6

Building heterogeneous holonic MAS... 7

Distributed modeling .. 7

Example: Restricted Area Intrusion Detection.. 8

Subsystem/Component Breakdown ... 11

Agent subsystem... 12

Reactive Simulation Sequence... 13

AFSM Classes ... 14

AFSM Simulation Sequence... 15

BDI Agent ... 15

Simulation subsystem.. 16

 i

Facilitator subsystem.. 17

CTS - Context Tuple Space subsystem.. 18

Tuple Space Interfaces.. 20

References ... 20

 ii

Overview
SIMPAG MAS is a multi-agent system (MAS) where autonomous agents represent real
entities in modeling experiment. SIMPAG MAS is a discrete event simulation system, which
supports both time based and event driven simulations. In time based simulation continuous
time in real system is approximated with discrete time events.

One of the main SIMPAG MAS goals is to support distributed federation of interoperable
models through compliance to High Level Architecture for Modeling and Simulation (HLA)
principles developed under the leadership of the Defense Modeling and Simulation Office
(DMSO), Department of Defense (DoD).

SIMPAG MAS addresses the following high-level goals:

• Provide open, scalable architecture that is easy to extend and parameterize for
particular simulation.

• Provide environment for distributed agent-based modeling for a wide range of
applications.

• Build a highly component system that can be easily integrated with third party
modeling tools.

• Allow models scale and support a large volume of parallel computations that can be
wisely distributed across both local network and internet as needed.

• Separate modeling and visualization. Entities are modeled in terms of problem
domain and not in terms of any specific visualization tool used. On the other hand
SIMPAG MAS provides means to support different graphical environments.
Depending on the capabilities of the viewer more or less features of running model
can be visualized. Thus one and the same model may run alternatively with full-
featured 3D monitor or using 2D viewer with limited visualization or even in text
console.

MAS and Agent Federations

Multi-agent approach to simulation modeling suggests an environment where agents can
communicate and evolve. Properties of agents and environments vary considerably
depending on modeling domain. On the other hand, such properties of agents as emergent
behavior and adaptation to environment through evolution are of general value in multiple
domains. To realize these fundamental properties SIMPAG MAS defines the core set of
agent and environment features.

SIMPAG MAS allows build agent federations according to different decomposition principles
from simple agents (later in this document referred to simply as agents). Federations of the
particular interest that SIMPAG MAS should be able to realize are agent groups (swarms)
and hierarchies of recursive and self-similar agents or “holons”. As described in [GeSiVi99]
holon is “a biological or sociological structure that is stable and coherent and that consists of
further holons that function according to similar principles. No natural structure is either
“whole” or “part” in an absolute sense, instead every holon is a composition of subordinate
parts as well as a part of a larger whole.” A group of several holonic agents may form a
super-holon. This super-holon looks to the outside world like a single holon agent defined in
terms of the same architectural blocks. SIMPAG MAS does not impose any additional
constraints on autonomy of sub-holons in terms of goals sharing and resource
management between super-holon and sub-holons. Nevertheless, when needed,

 1

these constraints can be programmed with the same building blocks that SIMPAG
MAS provides.

Agent Types
Bare-bones simple agents provide basic functionality of reactive agents. SIMPAG MAS
framework also provides building blocks to construct other agent types, such as AFSM
(Augmented Finite State Machine) and BDI (Believe Desire Intention) agents. AFSM agents
are well known to be used in Brook’s Sumbsumption architecture, while BDI rational agents
are most well understood and best-developed MAS technology today.

Modeling Environment with Contexts

SIMPAG MAS uses notion of agent context (later in this text simply context) to represent
particular agent activity. Context defines attributes, behaviors and communications specific
to some activity. Examples of contexts are: room navigation, moving in a group, patrolling,
defending perimeter, etc.

Contexts allow developer program complex agent behavior as a set of more simple ones.
Thus every agent has associated context set used to represent agent activities at any given
time of simulation. One and the same agent can participate in several contexts at once, such
as move in a group and navigate room. On the other hand, at any given time some contexts
may be active while other may be not. For example, while navigating from south room
entrance to the north, at some moment “obstacle avoidance” context may become active
and be inactive at other times. To orchestrate contexts agent defines context policy that
works together with agent context set. Policy defines context priorities and rules enabling
one or more contexts and disabling others. Rules are used to describe run-time conditions
when one context can inhibit other contexts. For example, context policy may be defined in
such a way that “obstacle avoidance” context temporarily inhibits “room navigation” context.

Agents achieve goals cooperating in contexts. Thus any agent context may potentially be
shared with other agents understanding this context. When cooperating in context agents
take different roles. Some agents may request services from another agents in the same
context. In “navigate building” (NAVBLD) context agent A (who wants to get out of the
building) may use navigation info provided by agent B and also use visualization agent C to
draw A movements in 3D viewer. All three agents thus become a complex agent or super-
holon discussed earlier.

Agents may join and leave context at will. When agent gets out of the building into the street
he leaves “navigate building” context and may join another such as “car driving” context.

In the following picture lines show associations between agents and contexts. Dashed line
denotes previous association that agent A had before he left “navigate building” context.

 2

Several agents may at one and the same time navigate the same or different buildings or
drive in cars. To provide the same type of service (in the same context) to several agents this
context can have multiple instances in the running system. Thus agent A1 will work in
NAVBLD-1 context instance, while agent A2 will work in NAVBLD-2 context instance. Agents
B and C may support both context instances or provide their clones B1, B2, C1, C2 to work
in NAVBLD-1 and NAVBLD-2 respectively.

 3

To summarize:

• Agent context describes some agent activity with attributes, behaviors and
communication rules.

• Agents participate in several activities organizing contexts in context set.

• Context policy defines context priorities and rules to describe run-time conditions
when some contexts can inhibit other contexts.

• Agents cooperate and coordinate their activity in shared contexts taking different
roles to achieve common goals.

• Agents may join and leave context at will, as needed.

• In running system one and the same context may have multiple distinct instances.

Communication in contexts: Sensors and Traits

Context attributes are sensors and traits. Agent uses these attributes to communicate with
other agents in the same context.

Traits are agent properties visible to other agents. Traits can contain any information that
may interest other agents, such as agent position, speed, etc. The information exposed by a
trait is not limited to agent position, but may contain high-level information also, for example
current agent goal (“intercepting intruder”, etc). Semantics of traits are defined by context
they belong to.

 4

Sensors are used by agent to read values of traits exposed by other agents in the same
context. Information gets into sensors as soon as they are bound (connected) to
corresponding traits in the same context.

Binding traits to sensors is done by a system Facilitator agent (see context life cycle
below). To be bound trait and sensor must have the same name, or explicitly specify a list of
names (aliases) that they can be bound to.

Two agents communicate through context via a set of trait / sensor attributes. All
communication is performed with typed messages. Different communication models are
supported:

• Consumer / Producer: A producer agent uses a trait to output data and consumer
agent uses sensor to receive data from that producer.

• Client / Server. Two step process: A client agent uses a “request trait” to send
request to context and server agent uses a “request sensor” to receive client
request. After that client agent becomes consumer and server agent becomes
producer. Data goes through separate “result” trait / sensor attribute

• Point to multi-point, fan-out. One trait is connected to several sensors. Sensors may
belong to different agents or the same agent.

• Multi-point to point, fan-in. Several traits (possibly from different agents) are
connected to a single sensor.

Behaviors

Behavior is a function B(S,T) that has a set S of sensor values as an argument and T set of
trait values as its value.

I.e behavior converts sensor values into traits values.

Behavior is associated with context. Behavior program starts when context fires or executes.

Behaviors can span across contexts, for example, there may be a behavior with argument :

S = {s11, s12, s31, s72}

that will result in changing trait set:

T = {t22, t23, t35},

where sij and tij - are sensor and trait ‘j’ in context ‘i’

Behaviors have priorities. Behaviors with higher priorities may interrupt those with lower
priorities.

As an in Subsumption architecture, behavior may be suppressed or inhibited, as a result of
interruption by a higher-level behavior.

Simulation step. Context Execution

SIMPAG MAS supports both time based and event based simulation through specialized
simulation scheduler component.
 5

Every agent has a “step()” entry point called by a scheduler. On entrance to this method all
active sensors contain messages received from other agents at this simulation step.

In the time based simulation time scheduler periodically calls agent entry point. Time
interval is a scheduler parameter.

In event based simulation “step()” entry point is called by event scheduler when at least
one agent context becomes active.

For any context to become active and executable (context fires) some precondition should
be met. This precondition is defined as logical formula of context sensors. When value of this
formula becomes true - behavior program associated with context gets control. Thus
collective state of some set of sensors in context becomes context activation condition.
Sensor state is defined as one of the following classes of its values:

• any

• no value

• concrete value

‘Any’ and ‘no value’ are special values. ‘Any’ means any valid sensor value. ‘No value’
means that sensor is not activated and has no valid value.

AFSM context scheduler

At any moment of simulation (simulation step) AFSM (Augmented Finite State Machine)
agent has an associated set of contexts. Context has a relative priority in context set. At
simulation step, when context with higher priority is activated it may (or may not) inhibit all
context with lower priorities (e.g. “collision avoidance” context may be configured to inhibit
“wandering” context.

Sensors of inhibited contexts become inactive so agent cannot retrieve their values at the
given simulation step.

Context life cycle. Discovering agent services.

To help other agents discover his services agent publishes his sensors and traits in Context
Tuple Space (CTS). Other agents working in the same context can also publish sensors,
traits or both in the same tuple space.

Facilitator agent monitors CTS looking for new publications from all agents. When facilitator
finds a matching trait / sensor from different agents but belonging to the same context, it
binds (connects) trait to the sensor.

When explicitly specified, single trait or sensor can be connected to multiple sensors (fan-
out) or multiple traits (fan-in) respectively. Such context attributes are called multipoint traits
and multipoint sensors.

When publishing traits and sensors in CTS agent defines the time-to-live of his publication
separately for every trait and sensor. Without time-to-live being specified, facilitator removes
traits and sensors from space after binding. To work in different instances of some context
agent needs to republish his attributes in CTS. This may be needed when one agent
cooperates with several context instances of another agent (e.g. TeamLeader agent works
with several instances of “FollowTeamLeader” context deployed by subordinate Guard
agents).

 6

Building heterogeneous holonic MAS
SIMPAG MAS allows building heterogeneous agent federations, as shown at the following
picture. Agents are shown as ellipses and contexts as rectangles. Connecting lines depict
routes of message flows between agents:

Distributed modeling
SIMPAG MAS supports distributed modeling. In this case members of agent groups
simulating model entities run on different network nodes. From agent point of view
communication between agents in context remains the same as in local case: via sensors
and traits. SIMPAG MAS abstracts remote agent communication with the notion of Remote
Sensors (RS) supported by Facilitator network.

Remote sensor consists from two entities: local sensor and remote proxy sensor. Agent
explicitly requests to publish remote sensor on simulation network. In this case Facilitator
creates local part of the sensor in local context tuple space (CTS) and requests Facilitator on
other nodes to create proxy sensors for this attribute.

 7

Facilitators maintain topology of simulation network and transfer messages between remote
sensors. Thus traits of other agents get bound to proxy sensors exactly the same way as
they are bound with local sensors. When trait message gets to proxy sensor Facilitator
transfers it to remote sensor in CTS on another node. For time-based Facilitators also
synchronize network simulation step.

Example: Restricted Area Intrusion Detection

In this example several intruders attempt to penetrate restricted area of seaport. A team of
guards tries to intercept them. Guard team consists of three guards and a team leader. All
guards are located at different (not very distant) locations and are equipped with radios to
communicate with each other. Team leader detects intrusion and coordinates counter strike.
In this very simplified example simulation scenario is defined with the following set of rules:

• All guards including team leader are modeled with the set of cooperating agents.

• Guard has a limited range vision that allows him detect other objects in his “view
area”.

• When guard sees intruder he tries to shoot him.

• Team leader navigates to main intrusion area and periodically sends his current
position to other guards on the radio.

• Guards receive team leader position and follow the team leader.

Guard is modeled as a group of cooperating agents. Guard agent performs different
activities in associated contexts with the help of other agents – helpers. For this simulation
example the following agents and contexts are defined:

 8

• VisualNav. Context used by all avatars to visualize their navigation. To be
visualized avatars need help of Visualizer agent.

o Guard traits:

� desiredPos. Guard outputs his desired position in this trait.

o Guard sensors:

� currentlPos. Guard receives his actual position in this trait.

o Visualizer traits:

� actualPos. Visualizer writes actual avatar position in this sensor.

o Visualizer sensors:

� desiredPos. Visualizer reads avatar desired position in this sensor,
which it uses to represent avatar visually (3D, 2D, etc.).

• GuardVision. Context used by Guard agent to detect intruder with the help of
ObjectDetector agent.

o Guard traits:

� currentPos. Guard outputs his current position and object
detection radius in this trait.

o Guard sensors:

� detectedObj. Guard reads information about detected object in this
sensor. Object is detected in a range specified by object detection
radius.

 9

o ObjectDetector traits:

� detectedObj. ObjectDetector writes information about detected
object in this sensor within the given range.

o ObjectDetector sensors:

� currentPos. ObjectDetector reads current guard position and
detection radius in this trait.

• Duel. When in his view guard detects an object (with the help of ObjectDetector) he
finds out if this object is intruder or not. detectedObj sensor provides enough
information to differentiate intruder from another guard or other objects. Guard
shoots at intruder and DuelArbiter notifies results of the shot. DuelArbiter works with
two avatars (e.g. guard and intruder) participating in the duel to arbitrate shots and
select a winner.

o Guard traits:

� shootAt. Guard outputs reference to object that he shoots at in this
trait.

o Guard sensors:

� shotResult. Guard reads results of his shot in this sensor (e.g. “obj
= enemyObj, status = {missed, hit})

� wasShot. This is a boolean sensor set to “true” when guard was
himself hit.

o DuelArbiter traits:

� shotResult. DuelArbiter writes results of the duelist shot in this
sensor.

� wasShot. This is a boolean trait that DuelArbiter sets to “true” for
the duelist that was hit.

o DuelArbiter sensors:

� shootAt. DuelArbiter reads reference to the object that was shot in
this trait.

• FollowTheLeader. This context is used by team leader to give orders to other
guards and collect reports from them. Both team leader and guards define sensors
and traits in this context.

o Team leader traits:

� guardCmd. Team leader outputs commands to other guards in this
trait. One command is “follow me, my position = (x, y, z)”. Other
commands: “patrol warehouse”, “report status”, etc.

o Team leader sensors:

� guardStatus. Team leader reads guard status reports from this
sensor. Status may include guard position and damage level.

 10

� guardAlarm. Team leader reads urgent alarms from other guards
sent to this sensors (without his request). These alarms may
include: “I see intruder”, “Intruder destroyed”, etc.

o Guard traits:

� guardStatus. Guard writes his status reports into this trait.

� guardAlarm. Guard writes urgent messages into this trait.

o Guard sensors:

� guardCmd. Guard reads commands from team leader in this
sensor.

Subsystem/Component Breakdown
SIMPAG MAS consists of the subsystems shown at the following picture:

Simpag
<<subsystem>>

CTS - Context Tuple
Space

<<subsystem>>

Facilitator
<<subsystem>>

Simulat ion
<<subsystem>>

Agent
<<subsystem>>

• Agent subsystem provides classes and interfaces as well as default
implementations, of agent, context and sensor / trait components that allow
developer build different types of agents. Implementing existing interfaces and
extending default implementation provided by framework ‘helper’ classes one can
create new agent types, not directly supported in the framework.

• Simulation subsystem provides interfaces and concrete implementations of
simulation scheduler. New, customized for problem domain schedulers can be
added to the framework by implementing Simulation interfaces and extending
default scheduler implementations.

 11

• Facilitator subsystem provides interfaces for agent to publish traits and sensors and
discover other contexts in the system. Facilitator performs binding of context
attributes (sensors and traits) to support context sharing between different agents.
To support distributed modeling Facilitator subsystem organizes in Facilitator
Network.

• Context Tuple Space subsystem is used by Facilitator subsystem to put, input and
read context attributes (sensor, trait) tuples in local tuple space.

Agent subsystem

Agent
<<subsystem>>

AgentFactory

ContextAttribute
<<abstract>>

Stepable

AFSMContextImpl

AFSMContextSched

1..n

1

1..n

1

AFSMAge
ntImpl

<<uses>>

Context

Sensor Trait
0..n 0..n0..n 0..n

PositionMessage

AFSMContext
BDIContext

<<implements>>

BDIContextImpl

<<implements>>

BDIAgent
Impl

1..n

<<uses>>

ReactiveCon
text Impl

<<implements>>

ReactiveAg
entImpl

1..n

<<uses>> Message

<<implements>>

AgentHelper

<<uses>> <<uses>>

<<implements>>

<<uses>>

1..n
1..n

SensorProxy

SensorProxyImpl

<<implements>>

AgentHelper is a concrete class that provides default, “bare-bones” agent implementation.
Different agent types are implemented with concrete classes extending AgentHelper class,
for example ReactiveAgentImpl, ASFMAgentImpl and BDIAgentImpl.

Concrete agent class implements Stepable interface used by SimScheduler implementation
to manage agent activation in discrete event simulation.

According to different agent types different Context types are provided, such as
AFSMContext and BDIContext. All concrete context classes must implement corresponding
specialized context interface. Currently framework provides ReactiveContextImpl with
AFSMContextImpl and BDIContextImpl next to come.

All agent types use Sensor and Trait context attributes for agent communication. In high-
level rational modelling language context attributes will hold logic variables. Framework
synchronizes values of these variables for all agents participating in the same context
instance at every simulation step.

 12

Both Trait and Sensor classes has a set of references to each other. Trait reference set is
used to route messages from trait to all connected sensors. Sensor reference set is used by
Facilitator to de-allocate connected traits when sensor itself is de-allocated.

SensorProxy is used by Facilitator subsystem to publish remote sensors on network nodes
comprising distributed simulation.

Setting trait values and passing them to binded sensors is done with typed message objects.
Different message types are implemented with classes and interfaces extending Message
interface. PositionMessage is an example of typed message used in the framework.

AgentFactory provides concrete implementations of all Agent subsystem classes.

More detail on Agent subsystem is given in the following diagrams:

Context

publishSensor(s : Sensor) : boolean
publishTrait(t : Trait) : boolean

revokeSensor(s : Sensor) : boolean
revokeTrait(t : Trait) : boolean

isActive() : boolean

Sensor
Trait

connect(s : Sensor) : boolean

Stepable

init() : boolean
step() : void

Pos it ionMessage

PositionMessage(position : float , msg : String)
getPosition() : float

Message

ContextAttribute
id_ : int
context_ : Context

getId() : int
getContext() : Context
getAttrName() : String
setMessage(m : Message) : boolean
getMessage() : Message

<<abstract>>

SensorList

addSensor(s : Sensor) : boolean
remSensor(s : Sensor) : boolean
getSensor() : Sensor

Reactive Simulation Sequence
The following diagram illustrates message-passing cycle used in framework for all agent
types at every simulation step.

 13

Framework guarantees delivery of all possible messages to agent sensors between two
consecutive simulation steps. When agent gets control from simulation scheduler in his step
method he can read new values of his sensors and / or write values to his traits, as show in
the diagram:

 :
SimSchedulerImpl1

 :
ReactiveAgentImpl

 : Sensor : Trait : Sensor

s tep() getMessage()

setMessage(m : Message)
setMessage(m : Message)

Framework delivers new trait values to binded messages in the form of typed messages. All
simulation messages must be delivered in during simulation time step.

AFSM Classes
Not implemented.

AFSM (Augmented Finite State Machines) agent classes can be used to simulate Brooks’
Subsumption Architecture.

Simple behaviors, performed by AFSM agent, are hierarchically organized so that more
complex behaviors emerge. Inhibition and Suppression between contexts provides
distributed control, incremental addition of agent capabilities and results in pre-wired patterns
of behavior.

 14

AFSMContextSched

getActiveContext() : AFSMContext

ContextList

addContext(c : Context) : boolean
remContext(c : Context) : boolean
getNext() : Context

AFSMContext

setActivationCondition(c : ActivationCondition) : boolean

Context

Act ivationCondition

andSensor(sensorName : String, value : Object) : boolean
orSensor(sensorName : String, value : Object) : boolean

AFSM Simulation Sequence
Not implemented.

AFSM agent adds to reactive simulation sequence context scheduler (see AFSM context
scheduler description in “Main Concepts”). After agent has selected an active context,
simulation continues according reactive case described above. (see “Reactive Simulation
Sequence”).

 :
SimSchedulerImpl1

 :
AFSMAgentImpl

 :
AFSMContextSched

 :
AFSMContextImpl

 : ContextList

step()
*[while != null] getActiveContext()

getNext()
isActive()

BDI Agent
Not implemented.

BDI context has associated set of beliifes(KBase), desires(Goal, GoalList) and
intentions(TaskList, TaskPlan) as well as inference engine implementations.

 15

BDIContext

addTaskPlan(g : Goal, t : TaskPlan) : boolean
remTaskPlan(g : Goal, t : TaskPlan) : boolean

getTaskList(g : Goal) : TaskList
getGoals() : GoalList
addGoal() : boolean
remGoal() : boolean

GoalList Goal

1..n1..n

TaskList TaskPlan

1..n1..n

InferenceEngine

<<uses>> <<uses>>

KBase

<<uses>>

Simulation subsystem
To be included in simulation agent must implement Stepable interface used by simulation
scheduler implementation. Scheduler controls life cycle of every agent type used in the
framework. Default implementation provides non-preemptive agent scheduler.

More sophisticated schedulers may include time adjustment schemes and pure event-based
schedulers.

 16

Simulation
<<subsystem>>

SimScheduler

start() : boolean
addStepable(s : Stepable) : boolean
remStepable(s : Stepable) : boolean

run() : void

Runnable

SimFact
ory

ReactiveAgentImpl AFSMAgentImpl

BDIAgentImpl

SimSchedulerImpl1
agentList_ : Vector
TIME_STEP : int

<<creates>>

<<implements>>

<<implements>>

<<runs>> <<runs>>

<<runs>>

Facilitator subsystem
Facilitator is a scheduler component as any other agent in the system. Facilitator gets control
from simulation scheduler through Stepable interface that it implements.

Facilitator maintains attribute map containing all context attributes (sensors and traits)
hashed with IDs unique to simulation node. Facilitator uses attribute amp and CTS (Context
Tuple Space) to find and bind matching sensors and traits during agent context (service)
discovery phase.

FacilitatorNet subsystem (not implemented) provides:

• Facilitator network topology discovery and maintenance protocols

• Message transport protocols

• Distributed simulation time synchronization mechanism and protocols

 17

Facil itator
<<subsystem>>

Stepable

init() : boolean
step() : void

At tributeMap

addAttribute(attr : ContextAttribute) : boolean
remAtt ribute(id : int) : boolean
getAttribute(id : int) : boolean

TupleSpace FacilitatorImpl

<<implements>>

<<uses>>

<<uses>>

AttributeM
apImpl

<<implements>>

FacFactory

<<creates>>

<<creates>>

FaciltatorNet

CTS - Context Tuple Space subsystem
CTS provides local implementation of tuple space (TS) used in a single simulation node.
CTS abstracts concrete TS implementation. Currently CTS uses Lights [LighTS] - a Java
implementation of the tuple space.

 18

CTS - Context Tuple Space
<<subsystem>>

ITupleITupleSpace
IField

Fileld

<<implements>>

Tuple

<<implements>>

TupleSpace

<<implements>>

TupleSpace
Factory

<<creates>>
<<creates>>

<<creates>>

 19

Tuple Space Interfaces

ITupleSpace

out(tuple : ITuple) : void
count(template : ITuple) : int

rdg(template : ITuple) : ITuple[]
inp(template : ITuple) : ITuple

ITuple

addActual(obj : java.io.Serializable) : ITuple
addFormal(classObj : java.lang.Class) : ITuple

set(field : IField, index : int) : ITuple

References

[GeSiVi99] Gerber, C.; Siekmann, J.; Vierke,G.: Holonic Multi-Agent Systems,
DFKI-RR-99-01

[LighTS] http://lights.sourceforge.net/ LighTS Java implementation of the tuple space.

 20

http://lights.sourceforge.net/

	Created: 13 Aug 2003
	Overview
	MAS and Agent Federations
	Agent Types
	Modeling Environment with Contexts
	Communication in contexts: Sensors and Traits
	Behaviors
	Simulation step. Context Execution
	AFSM context scheduler
	Context life cycle. Discovering agent services.
	Building heterogeneous holonic MAS
	Distributed modeling
	Example: Restricted Area Intrusion Detection

	Subsystem/Component Breakdown
	Agent subsystem
	Reactive Simulation Sequence
	AFSM Classes
	AFSM Simulation Sequence
	BDI Agent

	Simulation subsystem
	Facilitator subsystem
	CTS - Context Tuple Space subsystem
	Tuple Space Interfaces

	References

