

Constructing Federations from Simple Agents
(simpAgs) for Pengi World
Dmitri O. Kondratiev, Vasily V. Suvorov

R&D, Luxoft, 9-b Dmitrovskoye shosse
Moscow 127434, Russia.

dkondratiev@luxoft.com, vsuvorov@luxoft.com

simpAgs Framework

• builds agent federations according to different decomposition principles
from simple agents or simpAgs

• hierarchies of recursive and self-similar agents - holons

• simpAg provides live environment context

simpAg building blocks:

• sensors

• traits - properties visible in context

• evolvable behaviors – alow simpAgs to learn

Modeling Pengi world with simpAgs

Pengo Game

Pengi simpAg Federation controls penguin in Pengo Game according to Deictic
representation principles, first presented by Philip E. Agre in his work “The Dynamic
Structure of Everyday Life” (Artificial Intelligence Laboratory, Cambridge, MA).

Deictic representation: “individuate things in an agent’s world indexically – in
relation to the agent’s body and identity – and functionally – in relation to the agent’s
ongoing goals and projects” (P. Agre)

Pengi can focus on its environment with deictic entities implemented with
simpAgs sensors and traits:

• The-ice-cube-I-am-kicking

• The-direction-I-am-headed-in

• The-bee-I-am-attacking

• The-bee-on-the-other-side-of-this-ice-cube-next-to-me

Entities can have aspects:

• Is-running-away-from (entity: The-bee-I-am-attacking)

• Is-closer-to

• Is-moving-away-from

Pengi Deictic Focus simpAg provides many contexts:

• Deictic Entity context

• Marker operator contexts

• Indexing operator contexts

• Object comparison operator context

Pengi Visual System

Consists from:

• Visual Objects

• Penguins

• Bees

• Ice Cubes

Provides:

• Visual Operators

• Indexing operators

• Marker assignment operators

• Marker inspection operators can track markers

• Marker comparison operators

• Object comparison operators

Behaviors

The-two-ice-cube-trick (phase I)

(setTrait

(my-next-move-in-direction-to

 (direction-to

 (the-location-to-hit-cube-to

 (the-new-location-of-projectile-cube-in-bee-channel)

)

)

)

)

(if

(in-bee-channel and not at-hit-location

(setTrait

(my-next-move-in-direction-to

(direction-to

(the-location-to-hit-cube-in-bee-channel)

)

)

)

)

)

