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ABSTRACT 
This paper presents a new discrete event-based network simulator 
named TARVOS – Computer Networks Simulator, being 
designed as part of the first Author’s Masters research and will 
provide support to simulating MPLS architecture, several RSVP-
TE protocol functionalities and fast recovery in case of link 
failure.  The tool is used in a case study, where the impact of a 
link failure on a VoIP application, within an MPLS domain 
network, is analyzed.  The paper displays a preliminary research 
of six already available simulators and reasons why they were not 
adopted as tools for the Masters research.  Then, it follows to 
describe the basics of TARVOS implementation and exhibits the 
case study simulated by this new tool. 

Categories and Subject Descriptors 
I.6.2 [Simulation and Modeling]: Simulation Languages---event-
based simulator. 

General Terms 
Management, Measurement, Performance, Reliability. 

Keywords 
Simulator, MPLS, RSVP-TE, fast recovery, fault recovery, 
performance analysis. 

1. INTRODUCTION 
Services based on Web technology (Web services) are 
experiencing a significant growth.  In the internet, for instance, 
Web 2.0 websites provide applications for the end-user such as 
spreadsheets, text editors, and schedule and appointment 
managers.  In addition, telephony (Voice over IP or VoIP) and 
video tend to be massively used, thanks to the introduction of low-
cost services such as Skype [24] and websites based on user-
generated video content, of which YouTube [26] is the main 
example. 
Many of these services require constraints regarding Quality of 
Service (QoS):  VoIP applications show little tolerance to packet 
loss and delay; video streaming can sustain a certain loss, but it is 
very sensitive to delay and jitter.  One of the causes of packet loss 

is network failure.  A broken link will result in packets being 
discarded until a new route is made operational by the network.  
The overall process of failure recovering will cause extra delay.  
The Internet Protocol (IP) used today in the internet is robust and 
capable of restoring connectivity after several types of network 
elements malfunctions; it is, however, a best effort based protocol; 
therefore, it does not guarantee or provide any form of QoS.  The 
time it takes IP to re-establish connectivity might not be within 
the boundaries required by end-user applications [21].  Moreover, 
conventional routing protocols used with IP (BGP, OSPF) in the 
internet, following the best effort philosophy, do not take into 
account, for their routing calculations and decisions, link capacity 
and traffic characteristics, resulting possibly in underutilized or 
over utilized paths, leading to congestion and packet loss and 
delay.  Mechanisms need to be added to conventional TCP/IP to 
achieve control of traffic flows through a network in order to 
optimize performance and resource utilization (Traffic 
Engineering). 
The MultiProtocol Label Switching (MPLS) [23] is an 
architecture that, along with a signaling protocol such as RSVP-
TE [3], can be used as a tool to implement Traffic Engineering 
(TE) in networks.  MPLS and RSVP-TE capabilities enable 
constraint routing, tunneling and mechanisms for fast rerouting 
and recovery.  These may be formatted to guarantee levels of QoS 
for applications. 
The first Author’s Masters research intends to build a prototype 
for a computer networks simulation tool, and, in order to validate 
it, investigate the impact of MPLS and RSVP-TE on network 
performance, especially in case of link failure, from the point of 
view of a VoIP application.  The methodology adopted was the 
use of the conceived network simulator to obtain the performance 
measures from a test topology, all presented in this paper. 
The paper is formatted as follows:  in order to justify construction 
of a new simulator, six available computer network simulators 
were analyzed in Section 2.  Section 3 describes the innings and 
functionalities of TARVOS simulator.  The case study or 
investigation is presented in Section 4, and Section 5 concludes 
the paper and suggests future work. 

2. AVAILABLE NETWORK SIMULATORS 
2.1 OPNET 
The first simulator tested was OPNET [19], from Opnet 
Technologies, Inc.  It provides several modules for network 
simulation comprising a vast universe of the protocols and 
network elements needed.  The module for MPLS and RSVP-TE 
is available as a separate purchase from the standard commercial 
version. 
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OPNET is a commercial product and a license for its use is not 
available in the Authors’ University.  There is a free academic 
version, but it is limited and its documentation is yet poor, reasons 
that motivated building the new tool described here. 

2.2 NS-2 
NS-2 [18] is a discrete event simulator targeted at network 
research.  It is open source, developed mainly by VINT project, 
Xerox PARC, UCB, USC/ISI, and contributions by several other 
researchers and users. 
NS-2 is coded in C++ in a modular fashion.  The user interfaces 
with the simulator using the object-oriented script language OTcl.  
It was conceived natively to run under Unix systems (including 
Linux), although it is possible to install it under Microsoft 
Windows [22]. 
MPLS and RSVP-TE are not available as standard libraries in NS-
2.  They were implemented through contributions from other 
researchers.  The MNS (MPLS for Network Simulator) module 
was developed by Gaeil Ahn [9][10], its original location no 
longer being available in the internet.  This module contains 
MPLS and CR-LDP, but not RSVP-TE.  The MNS module was 
further extended by [4] and [1][7] to include RSVP-TE 
functionalities.  These modules cannot be obtained directly from 
their authors’ websites, but only through request by email or from 
users who already own the modules. 
NS-2 learning curve is significantly steep.  One has to know the 
script OTcl language and learn how to build scripts that interface 
with the simulation objects coded in C++.  The available 
documentation is not written in a didactic style, making it difficult 
for the beginner to build initial simulations without investing a 
considerate amount of time in trial and error.  The documentation 
is especially poor for the MPLS and RSVP-TE modules, requiring 
the user to read the source code in order to learn how to interface 
with it and detect the offered capabilities.  It is open, but 
implementation of new functions or modifications demand 
studying large portions of the source code.  Generation of results 
and statistics is not automatic.  One has to build a trace file from 
the simulation and perform a post processing on the file, 
calculating the desired statistics, by means of a processing 
language such as awk.  Simulations can easily produce very large 
trace files, demanding significant post processing times. 
Due to those characteristics and to the fact that the main module 
needed for the simulations, MNS, is yet not fully supported, NS-2 
also stimulated the devise of the new simulator. 

2.3 CSIM19 
CSIM19 [16] is a process-oriented, discrete event simulator 
available in either C, C++ or Java.  It provides libraries that a 
program written in the same language can use in order to model a 
system and simulate it.  It is a general simulator, not specific to 
computer networks, and it is commercial, bearing no free version.  
This alone discouraged its use in the work of the dissertation, and 
inspired the construction of an open tool that bore its good 
features. 

2.4 Cnet v.2.0.10 
Mainly developed for use in undergraduate computer networking 
courses, Cnet [15] is an event-driven simulator written in C and 
uses Tcl/Tk to implement its graphical interface, where the 
simulator shows a representation of the topology (topologies are 
constructed by means of topology files), and allows some 

attributes to be configured.  The purpose of this simulator is to 
enable experimentation with networking protocols.  IEEE 802.3 
Ethernet and point-to-point WAN are built-in, and there is a 
mechanism to cause corruption or loss of data frames according to 
probabilities. 
Cnet manual states that the simulator runs only on Linux/Unix 
platforms.  It is not compatible with Microsoft Windows systems 
or Apple Macintosh, and does not implement MPLS or RSVP-TE 
protocols.  Although the source code for the simulator is freely 
available, it is not thoroughly documented, and it natively 
generates only basic statistics.  The focus of this simulator is 
protocol building and implementation, not QoS analysis, and, 
together with platform limitations and lack of MPLS and RSVP-
TE protocols, it was another strong motivator for the adoption of a 
self-made simulator for the research studies. 

2.5 J-SIM 
There are a number of simulators named J-Sim available through 
a simple internet web search.  This J-Sim [12] is an open source, 
component-based simulator written in Java.  It provides MPLS 
support through a third-party extension [13], but it does not 
include the RSVP-TE signaling protocol.  The documentation is 
available from the simulator’s website, and it does include good 
descriptions of native code implementation, the philosophy behind 
the simulator and some tutorials and guides for new 
implementations. 
Installation of the simulator, as it seems usual with Java 
applications, requires setting environment variables and compiling 
the source codes with third-party tools more common in 
Linux/Unix platforms, and then applying patches needed by the 
extensions such as MPLS.  J-Sim is a dual language environment, 
where the user manipulates classes written in Java using Tcl 
scripts, much resembling NS-2.  This poses the same problems 
related to NS-2, i.e., the need to know both Java and Tcl in order 
to use the simulator and implement non-existent characteristics, 
and, for the same reasons, it has inspired the development of 
TARVOS. 

2.6 OMNET++ 
This simulator is a discrete event environment programmed in 
C++, making up modules or components that are then assembled 
into models, using an internal language called NED (NEtwork 
Description) [25].  It is designed primarily to use in simulation of 
computer networks, but it admits being able to support simulation 
of queuing networks and other systems. 
A network simulation is achieved using a model, called INET 
Framework, available along with several other models at the 
simulator website.  This model was first implemented by Xuan 
Thang Nguyen, but the original website of this implementation is 
no longer reachable.  Its documentation indicates support of 
MPLS forwarding, LDP and RSVP-TE.  It is not clear, and the 
extensive documentation does not mention it, whether the RSVP-
TE component includes Rapid Recovery or Failure Recovery. 
Usage of Omnet is not straightforward.  It comprises several 
windows and menus that require walking through a large web-
based documentation, tutorials and demos in order to begin 
building simulation topologies.  Its characteristics of being 
programmed in C++ and using a second, internal language (NED) 
to build topologies, its vast code and not clearly supporting 
Failure Recovery, fostered the creation of TARVOS. 
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3. BUILDING TARVOS 
For the intents of the research for the Masters dissertation, a 
flexible, configurable, straightforward, open and customizable 
simulator was needed.  Moreover, one that could produce results 
with a minimum of post processing of trace files, preferably 
results that could be programmed and calculated during the 
simulation.  Finally, one that provided MPLS and RSVP-TE 
functionalities for testing failure recovery.  A new simulator was 
then prototyped:  it was named TARVOS Computer Networks 
Simulator, or TARVOS for short. 

3.1 Characteristics 
TARVOS is a discrete event-based simulator, coded entirely in C.  
It was developed as an extension for C, containing functions and 
structures that model queuing systems and, on top of those, 
network elements.  It consists of three main elements:  the kernel, 
the shell 1 and the shell 2, as portrayed in Figure 1. 
 

 
Figure 1:  TARVOS Construction. 

 

3.1.1 The Kernel 
The kernel is a discrete event-based queuing systems simulator 
based on the SMPL simulator [14].  The designer of this kernel 
[6] conceived it by rewriting SMPL using dynamic allocation, 
structures and pointers, allowing a complex structure to be passed 
through events, whereas the original SMPL only allowed a single 
integer to be passed.  The kernel implements basic queuing 
system elements, such as resources and facilities that provide the 
service; priority and FIFO queues for the facilities; functions and 
data structures for event manipulation; and statistic functions, 
random number generators and random variate generators.  The 
kernel was extended and modified to support down (no 
operational) servers, a well-behaved priority queuing, more 
statistics, and random variate generators such as Pareto and 
Exponential On/Off. 
The kernel sees a system as a combination of three main 
components or entities:  resources, tokens and events (Figure 2). 
A system is composed by an interconnected collection of 
resources [14].  Theses resources, in real life, may be routers, 
processors, bank tellers, web servers.  Basically, anything that 
deliver some sort of service.  The resources are called facilities in 
TARVOS, and have a series of functions related to them:  
definition, reservation, release, preemption and status. 

A facility is defined by configuring its name and its number of 
servers.  When a facility is required to perform a service on a 
customer, a reservation is requested for it.  When the service is 
finished, the facility is released.  The busy condition of a facility 
is reported by its status. 
The tokens represent the active entities of the system; they can 
model customers, tasks, network packets, people, automobiles, 
bytes, etc.  The dynamic behavior of a system is modeled by the 
flow of tokens through the collection of resources or facilities.  In 
TARVOS, a token is a data structure.  If this data structure models 
a network packet, then it contains typical packet information, such 
as source node, destination node, packet ID, MPLS label, priority, 
etc. 

 
Figure 2:  Relationship of system entities, as seen by TARVOS 

kernel. 
 
The facilities, therefore, perform service on the tokens.  A typical 
router, modeled as a facility with one server, would receive, 
transmit or enqueue a packet (modeled as a token).  A network 
link is modeled as a facility capable of transmitting the packet at a 
given speed (calculated from the link’s bandwidth), and then 
propagating the packet through the medium.  The last is modeled 
as a constant delay, its value dependent on the medium type. 
In the process of a simulation, if a token needs to be serviced by a 
facility, then a request for service is made:  if the facility has free 
servers, the token is put into service, and the time the service must 
be concluded is scheduled.  This is called an event.  At that time, 
the server, within the facility, that held the token is released.  The 
token then must continue its way through the system, requesting 
service at other facilities. 
If, when requesting service, a token finds a facility with all busy 
servers, then this token is enqueued at the facility’s queue.  
TARVOS provides a Priority Queue (PQ) for each facility.  The 
priority is an integer.  Higher numbers mean higher priority.  This 
priority is specified when requesting service at a facility, and can 
be contained within the token’s data structure.  When the facility 
is released, it collects the first token in its queue and puts it in 
service.  (Here, it is interesting to mention, when enqueing a 
token, the simulator also records the service time for that token, so 
as when the token is dequeued and put into service, the simulator 
knows when to schedule the release.) 
A facility can also be preempted, i.e., when a token with a certain 
priority requests service and the facility is busy, then a token in 
service, with a lower priority than the requesting token, will have 
its service interrupted, its remaining service time computed, and 
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will be enqueued before tokens of the same priority.  The 
requesting token with higher priority will then take its place in the 
now vacant server.  When this token finishes service, the server is 
released and the simulator dequeues the token at the head of the 
queue.  If this is the preempted token, then the server reserved for 
it has its release time scheduled for the remaining service time of 
the preempted token.  If, when requesting a preemption in a busy 
facility, no tokens with lower priority than the preempting token 
are found, then the preempting token is enqueued in the same way 
as a normal, non-preemptive service request. 
An event is any change of state in the system.  For instance, the 
arrival of a new token, a service request for a token, a facility 
release, a dequeue.  Events are identified in the simulator by a 
number, the time instant when this event must occur and the token 
related to it.  The event scheduler manages events by organizing 
them into an event chain, a double-linked list ordered by time.  
Events are continuously generated in the simulation, until a 
certain stop criteria is met.  Three main functions are related to 
events:  schedule an event (or put the event into the event chain); 
cause an event (or retrieve the next event from the event chain), 
and cancel an event (remove it from the event chain and discard 
it). 
Tokens move between resources through the scheduling of events 
in time.  Interconnection between resources or facilities is not 
explicit for the kernel.  This interconnection is implied from the 
routing of tokens through the facilities; the routing, in turn, is 
defined by the processing of each type of event.  This processing, 
from the kernel’s point of view, depends entirely on the user, who 
will code it in C for each event type. 

3.1.2 Shell 1 
The shell 1 provides libraries that implement basic network 
elements, such as packets, simplex and duplex links, nodes, static 
routing, link failures, and traffic generators (exponential On/Off 
and CBR).  It also comprises data structures that facilitate 
calculation of performance measurements and statistics, and 
functions to generate traces.  Shell 1 functions use mainly kernel 
functions to perform their duties. 
The nodes are modeled as entities capable of receiving packets 
from links, forwarding packets to links, making decisions about 
paths and routes, discarding packets, and collect statistics such as 
delay and jitter.  In short, they behave much as network routers. 
Links entities connect two nodes in one way only (simplex links) 
or two ways (duplex links, which are in fact two simplex links).  
They are modeled, in TARVOS’s kernel point of view, as 
facilities with one server per simplex link.  The service provided 
is transporting packets from one end of the link to the other end, 
i.e., from one node to another.  This is done in two steps:  upon 
being requested, the links first transmits the packet at full 
bandwidth speed (before actually being transmitted, packets might 
be policed by the simulator’s Policer, based on a token bucket 
algorithm); the time it takes to transmit a packet is a relationship 
between packet size and bandwidth speed.  If transmission is 
successful, the packet is now considered to be into the link 
medium (the wire, for instance).  Then, second, the packet 
propagates through the medium until the destination node.  This 
propagation is a simple fixed delay, defined by the user.  Thus, in 
fact, a network link is modeled in TARVOS as a facility with one 
server and a priority queue, chained to an infinite-capacity server, 
which represents the link medium. 

Packets, as mentioned before, are data structures in the simulator.  
Packet size in bytes, source and destination node, ID number, 
MPLS label, message ID and type, and explicit route object are 
some information stored in those data structures. 
Traffic generators are entities connected to nodes that generate 
packets according to probability distributions.  These 
distributions, in turn, model real network traffic.  TARVOS 
includes a CBR (Constant Bit Rate) generator, Exponential (or 
Poisson) generator, Exponential On/Off and Pareto.  The 
Exponential On/Off can be used to model VoIP applications. 

3.1.3 Shell 2 
The shell 2 consists of libraries supplying basic MPLS and RSVP-
TE [3] control plane, forwarding and signaling functionalities, 
including label switching, primary- and backup-LSP creation, 
explicit and constraint routing, traffic policer, soft-state 
maintenance, RSVP-TE PATH, RESV and HELLO messages, 
and mechanisms for failure detection and recovery. 
In order to establish an LSP tunnel between two nodes, called the 
ingress LER (Label Edge Router) and egress LER, the user 
invokes a function, specifying the constraints the tunnel must 
meet and the explicit route.  The simulator creates a 
PATH_LABEL_REQUEST message, encapsulates it into a 
packet, and sends it to the egress router.  If each hop is capable if 
meeting the constraints, the PATH message reaches the 
destination egress LER; this LER creates a 
RESV_LABEL_MAPPING message, encapsulated into a packet, 
and sends it back to the ingress LER.  This message confirms 
reservations made along the path and performs the label 
mappings, by means of populating a Label Information Base 
(LIB) table [2].  Once the LSP tunnel is fully set up, a traffic 
policer may be activated in order to force packets to comply with 
the LSP constraints. 
The user creates backup LSPs, in a one-to-one method [20], 
invoking a specific function, giving the primary LSP number, 
beginning and ending nodes (named Merge Points), and the 
explicit route as parameters.  The simulator composes a 
PATH_DETOUR message, which traverses the explicit route, 
pre-reserving resources if available.  If resources are already 
reserved for the primary LSP in any part of the path, the simulator 
does not perform a new reservation; this way, the reserved 
resources are shared between the primary and backup LSPs.  Once 
the PATH_DETOUR reaches de destination node (which signals 
that the backup path meets the same constraints as the primary 
LSP), a RESV message is sent back to the beginning Merge Point, 
confirming the resource reservations. 
The simulator maintains RSVP soft state by means of 
PATH_REFRESH and RESV_REFRESH messages, generated in 
a timely basis (the generation period is user configurable).  
HELLO messages are also supported [3]. 
Failure detection and fast recovery are triggered mainly by 
timeouts in the LSPs soft state refreshes and errors in HELLO 
messages.  When a node is unreachable, mainly due to a failed 
link, LSPs that traverse that link will time out.  Nodes that send 
HELLO messages to other nodes through that link will not receive 
HELLO ACKs.  Fast recovery [20] will attempt to find a detour 
LSP for timed out LSPs around the failed links.  This is done at 
node level, so no signaling is actually needed to inform other 
nodes or applications of a recovery being made. 
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3.2 Preparing a Simulation 
The user constructs a simulation by writing a C program, 
composed of at least the main function.  This program will use the 
functions and structures provided by TARVOS to model the 
network topology and handle a series of events.  The following 
paragraphs describe the steps that need to be taken in the user 
program. 

.Process Event
.Generate new Event

.Update Statistics

.Process Event
.Generate new Event

.Update Statistics

Extract next Event 
from Event Chain

Event Type

.Process Event
.Generate new Event

.Update Statistics

Begin Loop

...

 
Figure 3:  Simulation main loop. 

 
First, the user builds the topology model by creating nodes and 
links that connect the nodes, and attaching traffic generators to 
desired nodes.  The shell functions createTrafficSource, 
createDuplexLink, and createNode provide the means to create 
those elements.  Explicit routes and other structures to collect 
statistics can also be defined here. 
Second, the user sets up primary LSPs (by calling the shell 
function setLSP), backup LSPs (calling shell function 
setBackupLSP), and schedule initial events and timers, such as the 
end of the simulation and the start of the traffic generators. 
Third, the program enters a loop, retrieving a new event from the 
event chain and treating this event accordingly, until the 
scheduled end of the simulation is reached.  Typically, this part of 
the program is a switch-case structure within a while loop (Figure 
3).  Each case treats a specific event by calling shell functions 
and, if needed, generating other events.  The next section brings 
an overview of the typical events in a TARVOS simulation. 
Fourth, after the end of the loop, the program collects data from 
data structures, and performs and records the desired statistics 
calculations (for instance, delay, jitter, packet loss). 

3.3 Events 
Literature usually states that one problem with event-based 
simulators is their limited scalability; they are said to be suitable 
for small and middle scale simulations.  In TARVOS, effort was 
done so as to limit the number of events the user program must 

predict and handle.  Several functions were created to mimic 
network operations and to keep the number of steps a user must 
process at each event at a minimum.  A typical user simulation 
will handle mainly ten different types of events:  arrival of packet 
from traffic source, link transmit request, propagate packet 
through link, arrival of packet at node, arrival of control message, 
refresh LSP states, generate HELLO message, timeout trigger, 
start traffic generator, and end simulation.  TARVOS functions 
are responsible to break the events to the level of specific nodes, 
links, or traffic generators. 
In the arrival of packet from traffic source event, the user program 
must schedule a link transmit request event for the packet (by 
calling a TARVOS kernel function), schedule a new arrival from 
the same traffic source (by calling a TARVOS shell function), and 
trigger the reception of the packet by the current node (by calling 
a TARVOS shell function).  Here, the traffic policer can also be 
invoked in order to guarantee conformity to constraints.  This 
event represents the entry of a packet into an MPLS domain. 
In link transmit request, the user program calls a shell function to 
decide the next node the packet should be sent, either by explicit 
routing, label switching or static routing.  Then, calls another shell 
function that transmits the packet (or puts it into the queue, if the 
resource is busy) and schedules a propagate packet through link 
event. 
The propagate packet through link event, the end of the packet 
transmission should be scheduled, and the propagation itself is 
activated.  Then, an arrival of packet at node event is scheduled.  
All of this is achieved by calling two shell functions. 
Arrival of packet at node invokes the reception of the packet by 
the current node.  If the current node is not the destination of the 
packet, and the packet was not discarded, then a link transmit 
request event is scheduled. 
The event arrival of control message should do the same as 
arrival of packet at node, i.e., schedule a link transmit request.  It 
is the initial event called when a control message (such as PATH 
or RESV) is first created; the entrance of a control message into 
the MPLS domain. 
In refresh LSP states, the user invokes the shell function that 
triggers the refresh of all LSPs.  It is interesting to notice that 
synchronization in the creation of PATH_REFRESH messages is 
avoided in the simulator, as instructed in [5].  This event must also 
be re-scheduled. 
Now, generate HELLO message triggers generation of HELLO 
messages by all nodes, using algorithms to avoid synchronization.  
Next, the same event is re-scheduled. 
Timeout trigger, as the name suggests, triggers timeout 
verification a series of timers, including LSP states and 
reservations, and reception of control messages ACKs.  The same 
event is also re-scheduled. 
Start traffic generator is an event that can be used to start traffic 
generators at a specific time, by invoking TARVOS shell traffic 
generators functions. 
Finally, end simulation breaks the while loop, allowing the 
simulation to end. 

226



4. CASE STUDY:  Impact of Fast Recovery 
on a VoIP Application 
To investigate and validate the simulator, a test topology was 
designed, as seen in Figure 4. 
The topology is composed of 10 nodes.  One primary, or 
protected, LSP runs through nodes 1-2-3-4-5-6.  One detour or 
backup LSP runs through nodes 2-7-8-9-4-5-6 (shown in Figure 4 
as “Detour LSP”).  Two other backup LSPs have paths through 
nodes 3-8-9-5-6 and 3-10-5-6.  On node 1, an Exponential On/Off 
traffic generator is attached, modeling a VoIP application, sending 
traffic to node 6.  It generates 512-byte packets at 64Kbits per 
second (the speed of a PCM codec) during the ON periods. 
 

 
Figure 4:  Test topology for case study. 

 
The ON periods are distributed exponentially with mean 1.2 
seconds, and the OFF periods are distributed exponentially with 
mean 0.8 seconds (these means are mentioned in literature as 
empirically satisfactory to model VoIP with an exponential 
On/Off generator).  All links are of 10Mbit bandwidth, 10ms 
propagation delay.  No traffic policer is in effect in this case 
study.  The exponential On/Off generator is started 5 seconds after 
the simulation is initialized, to allow for the setting of all LSPs. 
PATH messages have a fixed length of 120 bytes [8] and RSVP 
states are refreshed every 30 seconds (i.e., 120-byte 
PATH_REFRESH messages are generated for each LSP every 30 
seconds).  The timeout for RSVP states is 90 seconds.  HELLO 
messages are generated in every node every 5 ms, and these 

messages are 20-byte long; the timeout for reception of HELLO 
ACKs is 17.5 ms [3].  The simulator performs a timeout check for 
states and control messages every 5 ms.  The stopping criteria for 
the simulation is 50 seconds (simulated time). 
At 10.029 seconds from the beginning of the simulation, the link 
connecting nodes 2 and 3 is scheduled to fail (this value was 
chosen to match an ON time of the VoIP generator).  This link is 
brought up again at 15 seconds from start.  When the link fails, 
traffic from VoIP running through nodes 1-2-3-4-5-6 is disrupted.  
The fast recovery mechanism of the MPLS domain is activated 
when HELLO messages from node 2 to node 3 are lost and time 
out.  Locally, node 2 begins searching for primary LSPs 
established on the failed link.  For each one found, node 2 
searches for correspondent backup LSPs.  When a backup LSP is 
found, node 2 updates its LIB entry, so packets label switched that 
would go through the failed link, now will traverse the link 
connecting nodes 2 and 7.  The remaining of the label switched 
path will conduct packets from the current LSP through nodes 7-
8-9-4-5 and 6. 
When the functionalities of the failed link are resumed at 15 
seconds simulation time, the HELLO messages acknowledge this.  
The LSP is not brought back to its original path, though, since this 
capability is not programmed into the simulator. 
Two measurements were collected for this case study:  
Application Delay (difference between the time a packet was sent 
and when it was received) shown at node 6 (in seconds), and 
Application Jitter (variation of the delay between two packets) at 
node 6 (in seconds).  In other words, the delay and jitter for 
packets exclusive from the VoIP generator were calculated and 
recorded at their destination at node 6. 
In Figure 5, delay is recorded as being approximately 0.052 s or 
52 ms before link failure.  This figure is the approximate sum of 
all link propagation delays (a total of 5 links) plus transmission 
times.  Notice that there are no competing traffic for the VoIP 
generator.  During ON periods, a packet is received every 0.064 
seconds, which is coherent with 512-byte packets being generated 
at 64Kbps (intergeneration time = (512 * 8) / 64000) = 0.064 s). 

 

 
Figure 5:  Application Delay measured at destination (seconds). 
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In this scenario depicted in Figure 5, node 6 will perceive 
problems with communication from the VoIP application after the 
packet received at 10.003 seconds.  The next packet should arrive 
at 10.067; a new packet is only received, though, at 10.152 
seconds, representing an extra delay of 85 ms for this packet.  
Henceforth, interarrival times resume the expected value of 0.064 
seconds during ON periods.  Between 10.003 and 10.152, a fast 
recovery was performed locally in node 2, switching traffic from 
the original path to the backup path.  This complete backup path 

traversing nodes 1-2-7-8-9-4-5-6 is longer than the primary one, 
containing two more links of 10Mbps and 10 ms of propagation 
delay.  This reflects on the new delay figure, now of 72.9 ms 
approximately (the new figure contains the extra link delays and 
transmission times).  The simulator also reported that 5 packets 
were dropped between nodes 2 and 3 at the moment of link 
failure, comprising control messages and application packets. 
 

 

 
Figure 6:  Application Jitter measured at destination (seconds). 

 
In Figure 6, a measurement of the jitter in application packets 
shows basically no jitter moments before link failure.  This is 
understandable, since the VoIP application is the only traffic in 
the network, not competing with any other traffic but the periodic 
generation of PATH, RESV and HELLO messages from the 
nodes.  At the exact time the first packet is received at node 6, 
after link failure, the jitter is recorded at 20.8 ms approximately.  
Henceforth, the jitter is again brought to zero.  The figure of 20.8 
ms is not coincidentally the difference between the delay before 
failure (52 ms) and the delay after failure (72.8 ms). 

4.1 Impact on Quality of Service 
For VoIP applications, the G.144 recommendations from ITU-T 
[11] states that a delay from 0 to 150 ms is acceptable.  For jitter 
values, one guideline [17] suggests that values inferior to 40 ms 
are not perceivable.  Values from 40 to 75 ms are still of good 
quality, but noticeable.  Values above 75 ms would be not 
acceptable. 
In the case study, delays are always inferior to ITU-T 
recommendations.  This is, of course, a simple testbed with no 
concurrent traffic.  Jitter is measured at zero throughout most of 
the simulation, but when failure and fast recovery occur.  Its value 
of 20.8 ms can be considered undetectable to a user, and it is 
important to notice it is present only once.  The jitter rapidly 
resumes its average value of zero.  Thus, it is a jitter caused by 
loss of packets due to link failure and extra delay caused by a 
longer path, traversed by the backup LSP.  As soon as local fast 
recovery is completed (which happens almost instantly, since it is 

dependent only on the processing power of the local router), VoIP 
traffic resumes without further disruption. 

5. CONCLUSION AND FUTURE WORK 
This paper intends to present a new simulation tool for computer 
networks, named TARVOS.  The contribution of this simulator to 
the research and academic community can be listed in the 
following points.  The tool will be offered as open source.  It can 
be fully customized and provides a high level of control, for the 
user, of the simulation, since the user programs the flow of events 
and is able to follow exactly the processes taken at each event.  
The use of the C language (and no other script language) makes it 
relatively easy to understand implementation of the simulator 
functions (by reading the source code) and for building simulation 
models.  By means of a template, one can rapidly construct a main 
function to simulate a network topology and collect several 
statistics. 
A case study is depicted, where the impact of MPLS fast recovery 
after a link failure is analyzed on a VoIP application.  The 
simulated case study showed the behavior of MPLS fast recovery 
and how a VoIP traffic if influenced, from the traffic destination 
point of view.  The simulation demonstrated that the link failure 
caused a disruption in traffic, visible specially in the jitter 
recordings.  Fast recovery, however, limited this disruption to a 
very brief moment, allowing traffic to resume quickly. 
Listed, as prospective work:  the programming of TCP protocol 
simulation into TARVOS; inclusion of self-similar traffic 
generators, for modeling video applications; multiple queues for 
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one facility and other queue disciplines, such as WFQ (Weighted 
Fair Queueing), WRR (Weighted Round Robin), RR (Round 
Robin); rebuild data structures to allow multiple simulations and 
automatic calculation of confidence intervals; include routing 
protocols (OSPF, for instance); and, finally, producing a complete 
documentation for the simulation tool. 
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