
TARVOS – an Event-Based Simulator for Performance
Analysis, Supporting MPLS, RSVP-TE, and Fast Recovery

Marcos Portnoi, Member, IEEE

Universidade Salvador
R. Ponciano de Oliveira 126, Rio Vermelho, Salvador,

BA, Brazil. CEP 41950-275
mportnoi@ieee.org

Joberto S. B. Martins
Universidade Salvador, Computer Networks Research

Group, Distante-Learning Research Group
R. dos Colibris 18, Salvador, BA. CEP 41370-410

joberto@unifacs.br

ABSTRACT
This paper presents a new discrete event-based network simulator
named TARVOS – Computer Networks Simulator, being
designed as part of the first Author’s Masters research and will
provide support to simulating MPLS architecture, several RSVP-
TE protocol functionalities and fast recovery in case of link
failure. The tool is used in a case study, where the impact of a
link failure on a VoIP application, within an MPLS domain
network, is analyzed. The paper displays a preliminary research
of six already available simulators and reasons why they were not
adopted as tools for the Masters research. Then, it follows to
describe the basics of TARVOS implementation and exhibits the
case study simulated by this new tool.

Categories and Subject Descriptors
I.6.2 [Simulation and Modeling]: Simulation Languages---event-
based simulator.

General Terms
Management, Measurement, Performance, Reliability.

Keywords
Simulator, MPLS, RSVP-TE, fast recovery, fault recovery,
performance analysis.

1. INTRODUCTION
Services based on Web technology (Web services) are
experiencing a significant growth. In the internet, for instance,
Web 2.0 websites provide applications for the end-user such as
spreadsheets, text editors, and schedule and appointment
managers. In addition, telephony (Voice over IP or VoIP) and
video tend to be massively used, thanks to the introduction of low-
cost services such as Skype [24] and websites based on user-
generated video content, of which YouTube [26] is the main
example.
Many of these services require constraints regarding Quality of
Service (QoS): VoIP applications show little tolerance to packet
loss and delay; video streaming can sustain a certain loss, but it is
very sensitive to delay and jitter. One of the causes of packet loss

is network failure. A broken link will result in packets being
discarded until a new route is made operational by the network.
The overall process of failure recovering will cause extra delay.
The Internet Protocol (IP) used today in the internet is robust and
capable of restoring connectivity after several types of network
elements malfunctions; it is, however, a best effort based protocol;
therefore, it does not guarantee or provide any form of QoS. The
time it takes IP to re-establish connectivity might not be within
the boundaries required by end-user applications [21]. Moreover,
conventional routing protocols used with IP (BGP, OSPF) in the
internet, following the best effort philosophy, do not take into
account, for their routing calculations and decisions, link capacity
and traffic characteristics, resulting possibly in underutilized or
over utilized paths, leading to congestion and packet loss and
delay. Mechanisms need to be added to conventional TCP/IP to
achieve control of traffic flows through a network in order to
optimize performance and resource utilization (Traffic
Engineering).
The MultiProtocol Label Switching (MPLS) [23] is an
architecture that, along with a signaling protocol such as RSVP-
TE [3], can be used as a tool to implement Traffic Engineering
(TE) in networks. MPLS and RSVP-TE capabilities enable
constraint routing, tunneling and mechanisms for fast rerouting
and recovery. These may be formatted to guarantee levels of QoS
for applications.
The first Author’s Masters research intends to build a prototype
for a computer networks simulation tool, and, in order to validate
it, investigate the impact of MPLS and RSVP-TE on network
performance, especially in case of link failure, from the point of
view of a VoIP application. The methodology adopted was the
use of the conceived network simulator to obtain the performance
measures from a test topology, all presented in this paper.
The paper is formatted as follows: in order to justify construction
of a new simulator, six available computer network simulators
were analyzed in Section 2. Section 3 describes the innings and
functionalities of TARVOS simulator. The case study or
investigation is presented in Section 4, and Section 5 concludes
the paper and suggests future work.

2. AVAILABLE NETWORK SIMULATORS
2.1 OPNET
The first simulator tested was OPNET [19], from Opnet
Technologies, Inc. It provides several modules for network
simulation comprising a vast universe of the protocols and
network elements needed. The module for MPLS and RSVP-TE
is available as a separate purchase from the standard commercial
version.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WebMedia'07, October 21-24, 2007, Gramado, RS, Brazil
Copyright 2007 ACM 978-85-7669-150-1/07/0010...$5.00.

222

OPNET is a commercial product and a license for its use is not
available in the Authors’ University. There is a free academic
version, but it is limited and its documentation is yet poor, reasons
that motivated building the new tool described here.

2.2 NS-2
NS-2 [18] is a discrete event simulator targeted at network
research. It is open source, developed mainly by VINT project,
Xerox PARC, UCB, USC/ISI, and contributions by several other
researchers and users.
NS-2 is coded in C++ in a modular fashion. The user interfaces
with the simulator using the object-oriented script language OTcl.
It was conceived natively to run under Unix systems (including
Linux), although it is possible to install it under Microsoft
Windows [22].
MPLS and RSVP-TE are not available as standard libraries in NS-
2. They were implemented through contributions from other
researchers. The MNS (MPLS for Network Simulator) module
was developed by Gaeil Ahn [9][10], its original location no
longer being available in the internet. This module contains
MPLS and CR-LDP, but not RSVP-TE. The MNS module was
further extended by [4] and [1][7] to include RSVP-TE
functionalities. These modules cannot be obtained directly from
their authors’ websites, but only through request by email or from
users who already own the modules.
NS-2 learning curve is significantly steep. One has to know the
script OTcl language and learn how to build scripts that interface
with the simulation objects coded in C++. The available
documentation is not written in a didactic style, making it difficult
for the beginner to build initial simulations without investing a
considerate amount of time in trial and error. The documentation
is especially poor for the MPLS and RSVP-TE modules, requiring
the user to read the source code in order to learn how to interface
with it and detect the offered capabilities. It is open, but
implementation of new functions or modifications demand
studying large portions of the source code. Generation of results
and statistics is not automatic. One has to build a trace file from
the simulation and perform a post processing on the file,
calculating the desired statistics, by means of a processing
language such as awk. Simulations can easily produce very large
trace files, demanding significant post processing times.
Due to those characteristics and to the fact that the main module
needed for the simulations, MNS, is yet not fully supported, NS-2
also stimulated the devise of the new simulator.

2.3 CSIM19
CSIM19 [16] is a process-oriented, discrete event simulator
available in either C, C++ or Java. It provides libraries that a
program written in the same language can use in order to model a
system and simulate it. It is a general simulator, not specific to
computer networks, and it is commercial, bearing no free version.
This alone discouraged its use in the work of the dissertation, and
inspired the construction of an open tool that bore its good
features.

2.4 Cnet v.2.0.10
Mainly developed for use in undergraduate computer networking
courses, Cnet [15] is an event-driven simulator written in C and
uses Tcl/Tk to implement its graphical interface, where the
simulator shows a representation of the topology (topologies are
constructed by means of topology files), and allows some

attributes to be configured. The purpose of this simulator is to
enable experimentation with networking protocols. IEEE 802.3
Ethernet and point-to-point WAN are built-in, and there is a
mechanism to cause corruption or loss of data frames according to
probabilities.
Cnet manual states that the simulator runs only on Linux/Unix
platforms. It is not compatible with Microsoft Windows systems
or Apple Macintosh, and does not implement MPLS or RSVP-TE
protocols. Although the source code for the simulator is freely
available, it is not thoroughly documented, and it natively
generates only basic statistics. The focus of this simulator is
protocol building and implementation, not QoS analysis, and,
together with platform limitations and lack of MPLS and RSVP-
TE protocols, it was another strong motivator for the adoption of a
self-made simulator for the research studies.

2.5 J-SIM
There are a number of simulators named J-Sim available through
a simple internet web search. This J-Sim [12] is an open source,
component-based simulator written in Java. It provides MPLS
support through a third-party extension [13], but it does not
include the RSVP-TE signaling protocol. The documentation is
available from the simulator’s website, and it does include good
descriptions of native code implementation, the philosophy behind
the simulator and some tutorials and guides for new
implementations.
Installation of the simulator, as it seems usual with Java
applications, requires setting environment variables and compiling
the source codes with third-party tools more common in
Linux/Unix platforms, and then applying patches needed by the
extensions such as MPLS. J-Sim is a dual language environment,
where the user manipulates classes written in Java using Tcl
scripts, much resembling NS-2. This poses the same problems
related to NS-2, i.e., the need to know both Java and Tcl in order
to use the simulator and implement non-existent characteristics,
and, for the same reasons, it has inspired the development of
TARVOS.

2.6 OMNET++
This simulator is a discrete event environment programmed in
C++, making up modules or components that are then assembled
into models, using an internal language called NED (NEtwork
Description) [25]. It is designed primarily to use in simulation of
computer networks, but it admits being able to support simulation
of queuing networks and other systems.
A network simulation is achieved using a model, called INET
Framework, available along with several other models at the
simulator website. This model was first implemented by Xuan
Thang Nguyen, but the original website of this implementation is
no longer reachable. Its documentation indicates support of
MPLS forwarding, LDP and RSVP-TE. It is not clear, and the
extensive documentation does not mention it, whether the RSVP-
TE component includes Rapid Recovery or Failure Recovery.
Usage of Omnet is not straightforward. It comprises several
windows and menus that require walking through a large web-
based documentation, tutorials and demos in order to begin
building simulation topologies. Its characteristics of being
programmed in C++ and using a second, internal language (NED)
to build topologies, its vast code and not clearly supporting
Failure Recovery, fostered the creation of TARVOS.

223

3. BUILDING TARVOS
For the intents of the research for the Masters dissertation, a
flexible, configurable, straightforward, open and customizable
simulator was needed. Moreover, one that could produce results
with a minimum of post processing of trace files, preferably
results that could be programmed and calculated during the
simulation. Finally, one that provided MPLS and RSVP-TE
functionalities for testing failure recovery. A new simulator was
then prototyped: it was named TARVOS Computer Networks
Simulator, or TARVOS for short.

3.1 Characteristics
TARVOS is a discrete event-based simulator, coded entirely in C.
It was developed as an extension for C, containing functions and
structures that model queuing systems and, on top of those,
network elements. It consists of three main elements: the kernel,
the shell 1 and the shell 2, as portrayed in Figure 1.

Figure 1: TARVOS Construction.

3.1.1 The Kernel
The kernel is a discrete event-based queuing systems simulator
based on the SMPL simulator [14]. The designer of this kernel
[6] conceived it by rewriting SMPL using dynamic allocation,
structures and pointers, allowing a complex structure to be passed
through events, whereas the original SMPL only allowed a single
integer to be passed. The kernel implements basic queuing
system elements, such as resources and facilities that provide the
service; priority and FIFO queues for the facilities; functions and
data structures for event manipulation; and statistic functions,
random number generators and random variate generators. The
kernel was extended and modified to support down (no
operational) servers, a well-behaved priority queuing, more
statistics, and random variate generators such as Pareto and
Exponential On/Off.
The kernel sees a system as a combination of three main
components or entities: resources, tokens and events (Figure 2).
A system is composed by an interconnected collection of
resources [14]. Theses resources, in real life, may be routers,
processors, bank tellers, web servers. Basically, anything that
deliver some sort of service. The resources are called facilities in
TARVOS, and have a series of functions related to them:
definition, reservation, release, preemption and status.

A facility is defined by configuring its name and its number of
servers. When a facility is required to perform a service on a
customer, a reservation is requested for it. When the service is
finished, the facility is released. The busy condition of a facility
is reported by its status.
The tokens represent the active entities of the system; they can
model customers, tasks, network packets, people, automobiles,
bytes, etc. The dynamic behavior of a system is modeled by the
flow of tokens through the collection of resources or facilities. In
TARVOS, a token is a data structure. If this data structure models
a network packet, then it contains typical packet information, such
as source node, destination node, packet ID, MPLS label, priority,
etc.

Figure 2: Relationship of system entities, as seen by TARVOS

kernel.

The facilities, therefore, perform service on the tokens. A typical
router, modeled as a facility with one server, would receive,
transmit or enqueue a packet (modeled as a token). A network
link is modeled as a facility capable of transmitting the packet at a
given speed (calculated from the link’s bandwidth), and then
propagating the packet through the medium. The last is modeled
as a constant delay, its value dependent on the medium type.
In the process of a simulation, if a token needs to be serviced by a
facility, then a request for service is made: if the facility has free
servers, the token is put into service, and the time the service must
be concluded is scheduled. This is called an event. At that time,
the server, within the facility, that held the token is released. The
token then must continue its way through the system, requesting
service at other facilities.
If, when requesting service, a token finds a facility with all busy
servers, then this token is enqueued at the facility’s queue.
TARVOS provides a Priority Queue (PQ) for each facility. The
priority is an integer. Higher numbers mean higher priority. This
priority is specified when requesting service at a facility, and can
be contained within the token’s data structure. When the facility
is released, it collects the first token in its queue and puts it in
service. (Here, it is interesting to mention, when enqueing a
token, the simulator also records the service time for that token, so
as when the token is dequeued and put into service, the simulator
knows when to schedule the release.)
A facility can also be preempted, i.e., when a token with a certain
priority requests service and the facility is busy, then a token in
service, with a lower priority than the requesting token, will have
its service interrupted, its remaining service time computed, and

224

will be enqueued before tokens of the same priority. The
requesting token with higher priority will then take its place in the
now vacant server. When this token finishes service, the server is
released and the simulator dequeues the token at the head of the
queue. If this is the preempted token, then the server reserved for
it has its release time scheduled for the remaining service time of
the preempted token. If, when requesting a preemption in a busy
facility, no tokens with lower priority than the preempting token
are found, then the preempting token is enqueued in the same way
as a normal, non-preemptive service request.
An event is any change of state in the system. For instance, the
arrival of a new token, a service request for a token, a facility
release, a dequeue. Events are identified in the simulator by a
number, the time instant when this event must occur and the token
related to it. The event scheduler manages events by organizing
them into an event chain, a double-linked list ordered by time.
Events are continuously generated in the simulation, until a
certain stop criteria is met. Three main functions are related to
events: schedule an event (or put the event into the event chain);
cause an event (or retrieve the next event from the event chain),
and cancel an event (remove it from the event chain and discard
it).
Tokens move between resources through the scheduling of events
in time. Interconnection between resources or facilities is not
explicit for the kernel. This interconnection is implied from the
routing of tokens through the facilities; the routing, in turn, is
defined by the processing of each type of event. This processing,
from the kernel’s point of view, depends entirely on the user, who
will code it in C for each event type.

3.1.2 Shell 1
The shell 1 provides libraries that implement basic network
elements, such as packets, simplex and duplex links, nodes, static
routing, link failures, and traffic generators (exponential On/Off
and CBR). It also comprises data structures that facilitate
calculation of performance measurements and statistics, and
functions to generate traces. Shell 1 functions use mainly kernel
functions to perform their duties.
The nodes are modeled as entities capable of receiving packets
from links, forwarding packets to links, making decisions about
paths and routes, discarding packets, and collect statistics such as
delay and jitter. In short, they behave much as network routers.
Links entities connect two nodes in one way only (simplex links)
or two ways (duplex links, which are in fact two simplex links).
They are modeled, in TARVOS’s kernel point of view, as
facilities with one server per simplex link. The service provided
is transporting packets from one end of the link to the other end,
i.e., from one node to another. This is done in two steps: upon
being requested, the links first transmits the packet at full
bandwidth speed (before actually being transmitted, packets might
be policed by the simulator’s Policer, based on a token bucket
algorithm); the time it takes to transmit a packet is a relationship
between packet size and bandwidth speed. If transmission is
successful, the packet is now considered to be into the link
medium (the wire, for instance). Then, second, the packet
propagates through the medium until the destination node. This
propagation is a simple fixed delay, defined by the user. Thus, in
fact, a network link is modeled in TARVOS as a facility with one
server and a priority queue, chained to an infinite-capacity server,
which represents the link medium.

Packets, as mentioned before, are data structures in the simulator.
Packet size in bytes, source and destination node, ID number,
MPLS label, message ID and type, and explicit route object are
some information stored in those data structures.
Traffic generators are entities connected to nodes that generate
packets according to probability distributions. These
distributions, in turn, model real network traffic. TARVOS
includes a CBR (Constant Bit Rate) generator, Exponential (or
Poisson) generator, Exponential On/Off and Pareto. The
Exponential On/Off can be used to model VoIP applications.

3.1.3 Shell 2
The shell 2 consists of libraries supplying basic MPLS and RSVP-
TE [3] control plane, forwarding and signaling functionalities,
including label switching, primary- and backup-LSP creation,
explicit and constraint routing, traffic policer, soft-state
maintenance, RSVP-TE PATH, RESV and HELLO messages,
and mechanisms for failure detection and recovery.
In order to establish an LSP tunnel between two nodes, called the
ingress LER (Label Edge Router) and egress LER, the user
invokes a function, specifying the constraints the tunnel must
meet and the explicit route. The simulator creates a
PATH_LABEL_REQUEST message, encapsulates it into a
packet, and sends it to the egress router. If each hop is capable if
meeting the constraints, the PATH message reaches the
destination egress LER; this LER creates a
RESV_LABEL_MAPPING message, encapsulated into a packet,
and sends it back to the ingress LER. This message confirms
reservations made along the path and performs the label
mappings, by means of populating a Label Information Base
(LIB) table [2]. Once the LSP tunnel is fully set up, a traffic
policer may be activated in order to force packets to comply with
the LSP constraints.
The user creates backup LSPs, in a one-to-one method [20],
invoking a specific function, giving the primary LSP number,
beginning and ending nodes (named Merge Points), and the
explicit route as parameters. The simulator composes a
PATH_DETOUR message, which traverses the explicit route,
pre-reserving resources if available. If resources are already
reserved for the primary LSP in any part of the path, the simulator
does not perform a new reservation; this way, the reserved
resources are shared between the primary and backup LSPs. Once
the PATH_DETOUR reaches de destination node (which signals
that the backup path meets the same constraints as the primary
LSP), a RESV message is sent back to the beginning Merge Point,
confirming the resource reservations.
The simulator maintains RSVP soft state by means of
PATH_REFRESH and RESV_REFRESH messages, generated in
a timely basis (the generation period is user configurable).
HELLO messages are also supported [3].
Failure detection and fast recovery are triggered mainly by
timeouts in the LSPs soft state refreshes and errors in HELLO
messages. When a node is unreachable, mainly due to a failed
link, LSPs that traverse that link will time out. Nodes that send
HELLO messages to other nodes through that link will not receive
HELLO ACKs. Fast recovery [20] will attempt to find a detour
LSP for timed out LSPs around the failed links. This is done at
node level, so no signaling is actually needed to inform other
nodes or applications of a recovery being made.

225

3.2 Preparing a Simulation
The user constructs a simulation by writing a C program,
composed of at least the main function. This program will use the
functions and structures provided by TARVOS to model the
network topology and handle a series of events. The following
paragraphs describe the steps that need to be taken in the user
program.

.Process Event
.Generate new Event

.Update Statistics

.Process Event
.Generate new Event

.Update Statistics

Extract next Event
from Event Chain

Event Type

.Process Event
.Generate new Event

.Update Statistics

Begin Loop

...

Figure 3: Simulation main loop.

First, the user builds the topology model by creating nodes and
links that connect the nodes, and attaching traffic generators to
desired nodes. The shell functions createTrafficSource,
createDuplexLink, and createNode provide the means to create
those elements. Explicit routes and other structures to collect
statistics can also be defined here.
Second, the user sets up primary LSPs (by calling the shell
function setLSP), backup LSPs (calling shell function
setBackupLSP), and schedule initial events and timers, such as the
end of the simulation and the start of the traffic generators.
Third, the program enters a loop, retrieving a new event from the
event chain and treating this event accordingly, until the
scheduled end of the simulation is reached. Typically, this part of
the program is a switch-case structure within a while loop (Figure
3). Each case treats a specific event by calling shell functions
and, if needed, generating other events. The next section brings
an overview of the typical events in a TARVOS simulation.
Fourth, after the end of the loop, the program collects data from
data structures, and performs and records the desired statistics
calculations (for instance, delay, jitter, packet loss).

3.3 Events
Literature usually states that one problem with event-based
simulators is their limited scalability; they are said to be suitable
for small and middle scale simulations. In TARVOS, effort was
done so as to limit the number of events the user program must

predict and handle. Several functions were created to mimic
network operations and to keep the number of steps a user must
process at each event at a minimum. A typical user simulation
will handle mainly ten different types of events: arrival of packet
from traffic source, link transmit request, propagate packet
through link, arrival of packet at node, arrival of control message,
refresh LSP states, generate HELLO message, timeout trigger,
start traffic generator, and end simulation. TARVOS functions
are responsible to break the events to the level of specific nodes,
links, or traffic generators.
In the arrival of packet from traffic source event, the user program
must schedule a link transmit request event for the packet (by
calling a TARVOS kernel function), schedule a new arrival from
the same traffic source (by calling a TARVOS shell function), and
trigger the reception of the packet by the current node (by calling
a TARVOS shell function). Here, the traffic policer can also be
invoked in order to guarantee conformity to constraints. This
event represents the entry of a packet into an MPLS domain.
In link transmit request, the user program calls a shell function to
decide the next node the packet should be sent, either by explicit
routing, label switching or static routing. Then, calls another shell
function that transmits the packet (or puts it into the queue, if the
resource is busy) and schedules a propagate packet through link
event.
The propagate packet through link event, the end of the packet
transmission should be scheduled, and the propagation itself is
activated. Then, an arrival of packet at node event is scheduled.
All of this is achieved by calling two shell functions.
Arrival of packet at node invokes the reception of the packet by
the current node. If the current node is not the destination of the
packet, and the packet was not discarded, then a link transmit
request event is scheduled.
The event arrival of control message should do the same as
arrival of packet at node, i.e., schedule a link transmit request. It
is the initial event called when a control message (such as PATH
or RESV) is first created; the entrance of a control message into
the MPLS domain.
In refresh LSP states, the user invokes the shell function that
triggers the refresh of all LSPs. It is interesting to notice that
synchronization in the creation of PATH_REFRESH messages is
avoided in the simulator, as instructed in [5]. This event must also
be re-scheduled.
Now, generate HELLO message triggers generation of HELLO
messages by all nodes, using algorithms to avoid synchronization.
Next, the same event is re-scheduled.
Timeout trigger, as the name suggests, triggers timeout
verification a series of timers, including LSP states and
reservations, and reception of control messages ACKs. The same
event is also re-scheduled.
Start traffic generator is an event that can be used to start traffic
generators at a specific time, by invoking TARVOS shell traffic
generators functions.
Finally, end simulation breaks the while loop, allowing the
simulation to end.

226

4. CASE STUDY: Impact of Fast Recovery
on a VoIP Application
To investigate and validate the simulator, a test topology was
designed, as seen in Figure 4.
The topology is composed of 10 nodes. One primary, or
protected, LSP runs through nodes 1-2-3-4-5-6. One detour or
backup LSP runs through nodes 2-7-8-9-4-5-6 (shown in Figure 4
as “Detour LSP”). Two other backup LSPs have paths through
nodes 3-8-9-5-6 and 3-10-5-6. On node 1, an Exponential On/Off
traffic generator is attached, modeling a VoIP application, sending
traffic to node 6. It generates 512-byte packets at 64Kbits per
second (the speed of a PCM codec) during the ON periods.

Figure 4: Test topology for case study.

The ON periods are distributed exponentially with mean 1.2
seconds, and the OFF periods are distributed exponentially with
mean 0.8 seconds (these means are mentioned in literature as
empirically satisfactory to model VoIP with an exponential
On/Off generator). All links are of 10Mbit bandwidth, 10ms
propagation delay. No traffic policer is in effect in this case
study. The exponential On/Off generator is started 5 seconds after
the simulation is initialized, to allow for the setting of all LSPs.
PATH messages have a fixed length of 120 bytes [8] and RSVP
states are refreshed every 30 seconds (i.e., 120-byte
PATH_REFRESH messages are generated for each LSP every 30
seconds). The timeout for RSVP states is 90 seconds. HELLO
messages are generated in every node every 5 ms, and these

messages are 20-byte long; the timeout for reception of HELLO
ACKs is 17.5 ms [3]. The simulator performs a timeout check for
states and control messages every 5 ms. The stopping criteria for
the simulation is 50 seconds (simulated time).
At 10.029 seconds from the beginning of the simulation, the link
connecting nodes 2 and 3 is scheduled to fail (this value was
chosen to match an ON time of the VoIP generator). This link is
brought up again at 15 seconds from start. When the link fails,
traffic from VoIP running through nodes 1-2-3-4-5-6 is disrupted.
The fast recovery mechanism of the MPLS domain is activated
when HELLO messages from node 2 to node 3 are lost and time
out. Locally, node 2 begins searching for primary LSPs
established on the failed link. For each one found, node 2
searches for correspondent backup LSPs. When a backup LSP is
found, node 2 updates its LIB entry, so packets label switched that
would go through the failed link, now will traverse the link
connecting nodes 2 and 7. The remaining of the label switched
path will conduct packets from the current LSP through nodes 7-
8-9-4-5 and 6.
When the functionalities of the failed link are resumed at 15
seconds simulation time, the HELLO messages acknowledge this.
The LSP is not brought back to its original path, though, since this
capability is not programmed into the simulator.
Two measurements were collected for this case study:
Application Delay (difference between the time a packet was sent
and when it was received) shown at node 6 (in seconds), and
Application Jitter (variation of the delay between two packets) at
node 6 (in seconds). In other words, the delay and jitter for
packets exclusive from the VoIP generator were calculated and
recorded at their destination at node 6.
In Figure 5, delay is recorded as being approximately 0.052 s or
52 ms before link failure. This figure is the approximate sum of
all link propagation delays (a total of 5 links) plus transmission
times. Notice that there are no competing traffic for the VoIP
generator. During ON periods, a packet is received every 0.064
seconds, which is coherent with 512-byte packets being generated
at 64Kbps (intergeneration time = (512 * 8) / 64000) = 0.064 s).

Figure 5: Application Delay measured at destination (seconds).

Application Delay at Destination

0.052048

0.0728672

0.000
0.010
0.020
0.030
0.040
0.050
0.060
0.070
0.080

8.
01

9

9.
16

1

9.
22

5

9.
28

9

9.
81

1

9.
87

5

9.
93

9

10
.0

03

10
.1

52

10
.2

16

10
.2

80

10
.3

44

10
.4

08

10
.4

72

Simulation Time (s)

D
el

ay
 (s

)

227

In this scenario depicted in Figure 5, node 6 will perceive
problems with communication from the VoIP application after the
packet received at 10.003 seconds. The next packet should arrive
at 10.067; a new packet is only received, though, at 10.152
seconds, representing an extra delay of 85 ms for this packet.
Henceforth, interarrival times resume the expected value of 0.064
seconds during ON periods. Between 10.003 and 10.152, a fast
recovery was performed locally in node 2, switching traffic from
the original path to the backup path. This complete backup path

traversing nodes 1-2-7-8-9-4-5-6 is longer than the primary one,
containing two more links of 10Mbps and 10 ms of propagation
delay. This reflects on the new delay figure, now of 72.9 ms
approximately (the new figure contains the extra link delays and
transmission times). The simulator also reported that 5 packets
were dropped between nodes 2 and 3 at the moment of link
failure, comprising control messages and application packets.

Figure 6: Application Jitter measured at destination (seconds).

In Figure 6, a measurement of the jitter in application packets
shows basically no jitter moments before link failure. This is
understandable, since the VoIP application is the only traffic in
the network, not competing with any other traffic but the periodic
generation of PATH, RESV and HELLO messages from the
nodes. At the exact time the first packet is received at node 6,
after link failure, the jitter is recorded at 20.8 ms approximately.
Henceforth, the jitter is again brought to zero. The figure of 20.8
ms is not coincidentally the difference between the delay before
failure (52 ms) and the delay after failure (72.8 ms).

4.1 Impact on Quality of Service
For VoIP applications, the G.144 recommendations from ITU-T
[11] states that a delay from 0 to 150 ms is acceptable. For jitter
values, one guideline [17] suggests that values inferior to 40 ms
are not perceivable. Values from 40 to 75 ms are still of good
quality, but noticeable. Values above 75 ms would be not
acceptable.
In the case study, delays are always inferior to ITU-T
recommendations. This is, of course, a simple testbed with no
concurrent traffic. Jitter is measured at zero throughout most of
the simulation, but when failure and fast recovery occur. Its value
of 20.8 ms can be considered undetectable to a user, and it is
important to notice it is present only once. The jitter rapidly
resumes its average value of zero. Thus, it is a jitter caused by
loss of packets due to link failure and extra delay caused by a
longer path, traversed by the backup LSP. As soon as local fast
recovery is completed (which happens almost instantly, since it is

dependent only on the processing power of the local router), VoIP
traffic resumes without further disruption.

5. CONCLUSION AND FUTURE WORK
This paper intends to present a new simulation tool for computer
networks, named TARVOS. The contribution of this simulator to
the research and academic community can be listed in the
following points. The tool will be offered as open source. It can
be fully customized and provides a high level of control, for the
user, of the simulation, since the user programs the flow of events
and is able to follow exactly the processes taken at each event.
The use of the C language (and no other script language) makes it
relatively easy to understand implementation of the simulator
functions (by reading the source code) and for building simulation
models. By means of a template, one can rapidly construct a main
function to simulate a network topology and collect several
statistics.
A case study is depicted, where the impact of MPLS fast recovery
after a link failure is analyzed on a VoIP application. The
simulated case study showed the behavior of MPLS fast recovery
and how a VoIP traffic if influenced, from the traffic destination
point of view. The simulation demonstrated that the link failure
caused a disruption in traffic, visible specially in the jitter
recordings. Fast recovery, however, limited this disruption to a
very brief moment, allowing traffic to resume quickly.
Listed, as prospective work: the programming of TCP protocol
simulation into TARVOS; inclusion of self-similar traffic
generators, for modeling video applications; multiple queues for

Application Jitter at Destination

0.0208192

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

8.
02

9.
16

9.
23

9.
29

9.
81

9.
88

9.
94

10
.0

0

10
.1

5

10
.2

2

10
.2

8

10
.3

4

10
.4

1

10
.4

7

Simulation Time (s)

Ji
tte

r (
s)

228

one facility and other queue disciplines, such as WFQ (Weighted
Fair Queueing), WRR (Weighted Round Robin), RR (Round
Robin); rebuild data structures to allow multiple simulations and
automatic calculation of confidence intervals; include routing
protocols (OSPF, for instance); and, finally, producing a complete
documentation for the simulation tool.

6. REFERENCES
[1] Adami, D. et al. Signalling protocols in diffserv-aware

MPLS networks: design and implementation of RSVP-TE
network simulator. IEEE Global Telecommunications
Conference (GLOBECOM’05), vol. 2, p. 792-796.

[2] Andersson, L. et al. LDP Specification. IETF RFC 3036.
Jan. 2001.

[3] Awduche, D. et al. RSVP-TE: Extensions to RSVP for LSP
Tunnels. IETF RFC 3209. Dec. 2001.

[4] Boeringer, R. RSVP-TE patch for MNS/ns-2.
http://www.ideo-labs.com/index.php?structureID=44.
Access on Sep. 20, 2006.

[5] Braden, R. et al. Resource ReSerVation Protocol (RSVP)
VVersion 1 Functional Specification. IETF RFC 2205. Sep.
1997.

[6] Brito, Sergio de Figueiredo Brito. Universidade Salvador,
Salvador, Brazil (2006). E-mail: sergiobrito@unifacs.br

[7] Callegari, C. Vitucci, F. RSVP-TE patch for MNS/ns-2.
http://netgroup-serv.iet.unipi.it/rsvp-te_ns/. Access on Sep.
20, 2006.

[8] Davie, B. et al. Integrated Services in the Presence of
Compressible Flows. IETF RFC 3006. Nov. 2000.

[9] Gaeil Ahn. MNS (MPLS Network Simulator).
http://flower.ce.cnu.ac.kr/~fog1/mns/. This link is no longer
valid.

[10] Gaeil Ahn; Woojik Chun. Design and implementation of
MPLS network simulator supporting LDP and CR-LDP.
IEEE International Conference on Networks (ICON 2000), p.
441-446.

[11] Goode, Bur. Voice over Internet Protocol. Proceedings of
the IEEE, vol. 90, n. 9, p. 1495-1517, Sep. 2002.

[12] Hung-ying Tyan. J-Sim Simulator. http://www.j-sim.org.
Last website update: Jan. 28, 2005. Access on: Nov. 28,
2006.

[13] JavaSim Extensions. http://www.info.ucl.ac.be/~bqu/jsim.
Access on: Nov. 28, 2006.

[14] MacDougall, M. H. Simulating computer systems. The MIT
Press, 1987.

[15] McDonald, Chris. cnet Network Simulator v.2.0.10.
University of Western Australia.
http://www.csse.uwa.edu.au/cnet. Access on: Nov. 28,
2006.

[16] Mesquite Software. http://www.mesquite.com. Access on
Sep. 20, 2006.

[17] Miras, Dimitrious. (2002) Network QoS Needs of
Advanced Internet Applications: a survey.
http://www.cs.ucl.ac.uk/staff/D.Miras. Access on: Dec. 10,
2006.

[18] NS Network Simulator. http://www.isi.edu/nsnam. Access
on Sep. 20.2006.

[19] OPNET Technologies. http://www.opnet.com. Access on
Sep. 20, 2006.

[20] Pan, P.; Swallow, G.; Atlas, A. Fast Reroute Extensions to
RSVP-TE for LSP Tunnels. IETF RFC 4090. May. 2005.

[21] Petersson, Johan M. O. MPLS Based Recovery
Mechanisms. Master Thesis, University of Oslo, Norway,
2005.

[22] Portnoi, Marcos; Araújo, Rafael G. B. Network Simulator –
visão geral da ferramenta de simulação de redes. SEPA -
Seminário Estudantil de Produção Acadêmica. Salvador,
year VI, n. 6, v. 6, p. 173-181, 2002.

[23] Rosen, E.; Viswanathan, A.; Callon, R. Multiprotocol label
switching arquitecture. IETF RFC 3031, Jan 2001.

[24] Skype Ltd. http://www.skype.com . Access on: Sep. 19,
2006.

[25] Varga, András. OMNET++ Discrete Event Simulation
System. http://www.omnetpp.org. Access on: Nov. 29,
2006.

[26] YouTube, Inc. http://www.youtube.com. Access on: Sep.
19, 2006.

229

