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Abstract—A new multiuser detection scheme based on signal
subspace estimation is proposed. It is shown that under this
scheme, both the decorrelating detector and the linear minimum-
mean-square-error (MMSE) detector can be obtained blindly, i.e.,
they can be estimated from the received signal with the prior
knowledge of only the signature waveform and timing of the user
of interest. The consistency and asymptotic variance of the esti-
mates of the two linear detectors are examined. A blind adaptive
implementation based on a signal subspace tracking algorithm
is also developed. It is seen that compared with the previous
minimum-output-energy blind adaptive multiuser detector, the
proposed subspace-based blind adaptive detector offers lower
computational complexity, better performance, and robustness
against signature waveform mismatch. Two extensions are made
within the framework of signal subspace estimation. First, a blind
adaptive method is developed for estimating the effective user sig-
nature waveform in the multipath channel. Secondly, a multiuser
detection scheme using spatial diversity in the form of an antenna
array is considered. A blind adaptive technique for estimating the
array response for diversity combining is proposed. It is seen that
under the proposed subspace approach, blind adaptive channel
estimation and blind adaptive array response estimation can be
integrated with blind adaptive multiuser detection, with little
attendant increase in complexity.

Index Terms—Array response estimation, blind adaptation,
channel estimation, linear multiuser detection, subspace tracking.

I. INTRODUCTION

CODE-division multiple-access (CDMA) implemented
with direct-sequence spread-spectrum (DS–SS) modula-

tion is emerging as a popular multiple-access technology for
personal, cellular, and satellite communication services [13],
[37]. Multiuser detection techniques can substantially increase
the capacity of CDMA systems. Over the past decade, a
significant amount of research has addressed various multiuser
detection schemes [35]. Considerable recent attention has been
focused on adaptive multiuser detection [8]. For example,
methods for adapting the decorrelating, or zero-forcing, linear
detector that require the transmission of training sequences
during adaptation have been proposed in [4], [21], and [22].
An alternative linear detector, the minimum-mean-square-error
(MMSE) detector, however, can be adapted either through the
use of training sequences [1], [17], [20], [28], or in the blind
mode, i.e., with the prior knowledge of only the signature
waveform and timing of the user of interest [7], [26]. Blind
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adaptation schemes are especially attractive for the downlinks
of CDMA systems, since in a dynamic environment, it is
very difficult for a mobile user to obtain accurate information
on other active users in the channel, such as their signature
waveforms; and the frequent use of training sequence is
certainly a waste of channel bandwidth.

In this paper, we propose a new blind multiuser detec-
tion scheme which is based on signal subspace estimation.
Subspace-based high-resolution methods play an important
role in sensor array processing, spectrum analysis, and gen-
eral parameter estimation [34]. Several recent works have
addressed the use of subspaced-based methods for delay
estimation [2], [31] and channel estimation [2], [14] in CDMA
systems.

The contribution of this work is threefold. First of all,
we show that based on signal subspace estimation, both the
decorrelating detector and the linear MMSE detector can
be obtained blindly, i.e., they can be estimated from the
received signal with the prior knowledge of only the signature
waveform and timing of the user of interest. The consistency
and the asymptotic variance of the estimates of the two
subspace-based linear detectors are examined. A blind adaptive
implementation based on a signal subspace tracking algorithm
is also developed. It is seen that compared with the previous
minimum-output-energy (MOE) blind adaptive detector [7],
this subspace-based blind adaptive detector offers lower com-
putational complexity ( , where is the processing
gain, is the number of active users in the channel.) and better
performance in terms of the steady-state signal-to-interference
ratio (SIR). Moreover, the proposed detector is made robust
against signature waveform mismatch through nulling out
the noise subspace component of the mismatched signature
waveform, and through adaptive estimation of the effective
signature waveform.

The second contribution of this work is the development of
a blind adaptive method for estimating the effective signature
waveform in the multipath channel. Under certain conditions,
the problem of identifying the multipath channel gains is
equivalent to fitting the estimated signal subspace with the
subspace spanned by the known nominal signature waveforms.
We show that this subspace fitting problem can in turn
be transformed into an unconstrained minimization problem
whose local minimum is unique, and thus can be solved by
the method of steepest descent. It is seen that by employing
this blind adaptive algorithm for joint channel estimation and
multiuser detection, little performance degradation is incurred
when the signal is distorted by the multipath channel.

The third contribution of this work is the extension of
the subspace approach to multiuser detection using spatial
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diversity in the form of an antenna array. Here the key issue
is to estimate the array response to the desired user’s signal
for diversity combining. Since the number of users in CDMA
channels far exceeds the number of antenna elements, the
conventional subspace-based estimation algorithms, such as
MUSIC, ESPRIT, etc., cannot be applied. We propose a blind
adaptive estimation method based on the output of a bank of
linear multiuser detectors at the antenna array. It is seen that
this algorithm has a low computational complexity, while it is
capable of closely tracking the array response to the desired
user’s signal.

The rest of the paper is organized as follows. In Section II,
the signal model is introduced. In Section III, two subspace-
based linear multiuser detectors, namely, the decorrelating
detector and the linear MMSE detector, are developed. In
Section IV, a blind adaptive implementation of the subspace-
based linear MMSE detector, which is based on a signal
subspace tracking algorithm, is developed. In Section V, the
performance of the proposed subspace-based linear detectors
under signature waveform mismatch is considered; and a
blind adaptive method for estimating the effective signature
waveform in the multipath channel is developed. In Section
VI, a multiuser detection scheme using spatial diversity in the
form of an antenna array is considered; and a blind adap-
tive technique for estimating the array response for diversity
combining is proposed. Section VII contains the conclusion.

II. SIGNAL MODEL

Consider a baseband digital direct sequence (DS) CDMA
network of users. The received signal can be modeled as

(1)

where is white Gaussian noise with unit power spectral
density, and is the superposition of the data signals of
the users, given by

(2)

where is the number of data symbols per user per
frame, is the symbol interval, and where

and denote,
respectively, the received amplitude, delay, symbol stream,
and normalized signaling waveform of theth user. It is
assumed that is supported only on the interval
and has unit energy, and that is a collection of
independent equiprobable random variables. For the direct-
sequence spread-spectrum (DS-SS) multiple-access format, the
user signaling waveforms are of the form

(3)

where is the processing gain; is a
signature sequence of ’s assigned to theth user; and is
a normalized chip waveform of duration , where

In this paper, we restrict our attention to the synchronous
case of model (2), in which It

is then sufficient to consider the received signal during one
symbol interval, and the received signal model becomes

(4)

One simple suboptimal way to treat the asynchronous system
is the “one-shot” approach, in which a particular transmit-
ted data bit is estimated based on only the received signal
within the symbol interval corresponding to that data bit.
An asynchronous system of users can then be viewed as
equivalent to a synchronous system with users [17],
and the results of this paper thus apply in this context as well.
Alternatively, an asynchronous CDMA system is a special case
of the more general dispersive CDMA system in which the
channel introduces intersymbol interference (ISI), in addition
to the multiple-access interference (MAI). The subspace-based
techniques considered in this paper can also be extended to
such a dispersive CDMA system for blind joint suppression
of both MAI and ISI [38].

Consider the synchronous model (4). At the receiver, chip-
matched filtering followed by chip rate sampling yields an-
vector of chip-matched filter output samples within a symbol
interval

(5)

where

is the normalized signature waveform vector of theth user,
and is a white Gaussian noise vector with meanand
covariance matrix ( denotes the indentity
matrix). Thus we can restrict attention to the discrete-time
model (5).

III. SUBSPACE-BASED BLIND LINEAR MULTIUSER DETECTORS

A. Subspace Concept

For convenience and without loss of generality, we as-
sume that the signature waveforms of the users

are linearly independent. Denote and

diag The autocorrelation matrix of the
received signal is then given by

(6)

By performing an eigendecomposition of the matrix, we get

(7)

where

diag diag

contains the largest eigenvalues of in descending order
and contains the corresponding orthonormal
eigenvectors; and
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contains the orthonormal eigenvectors that correspond
to the eigenvalue It is easy to see thatrange
range The range space of is called the signal
subspaceand its orthogonal complement, thenoise subspace,

is spanned by Define the diagonal matrix
diag From (6) and

(7) we obtain

(8)

A linear multiuser detector for demodulating theth user’s
data bit in (5) is in the form of a correlator followed by a
hard limiter

(9)

where Next we derive expressions for two linear
multiuser detectors, namely, the decorrelating detector and
the linear MMSE detector, in terms of the signal subspace
parameters , , and

B. Decorrelating Detector

The correlation matrix of the signature waveforms is defined
as Since rank , it follows that is
invertible. Henceforth let user 1 be the user of interest. The
decorrelating detector [16] is designed to completely eliminate
the multiple-access interference (MAI) caused by other users,
at the expense of enhancing the ambient noise. It has the form
of (9) with the weight vector given by

(10)

where denotes the th element of the matrix
The weight vector in (10) is characterized by the following
results.

Lemma 1: The decorrelating detector in (10) is the
unique signal range , such that , and

, for
Proof: Sincerank , the vector that satisfies

the above conditions exists and is unique. It is seen from (10)
that range range Moreover

(11)

Therefore,
Lemma 2: The decorrelating detector in (10) is the

unique signal range that minimizes

subject to

Proof: Since

(12)

it then follows that for range range ,
is minimized if and only if , for By
Lemma 1,

Proposition 1: The decorrelating detector in (10) is
given in terms of the signal subspace parameters by

(13)
Proof: A signal range if and only if it can be

written as , for some Then by Lemma 2,
the decorrelating detector has the form where

(14)

where the second equality follows from (6) and the third
equality follows from (8). The optimization problem (14) can
be solved by the method of Lagrange multipliers. Let

(15)

Since the matrix is positive definite, is
a strictly convex function of Therefore, the unique global
minimum of is achieved at where , or

(16)

Therefore, , where is determined
from the constraint i.e.,

Finally, the decorrelating detector is given by
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C. Linear MMSE Detector

The canonical form of the linear minimum mean-square-
error (MMSE) multiuser detector [7] of user 1 has the form
of (9) with the weight vector , where
minimizes the MSE, defined as

(17)

subject to
Proposition 2: The linear MMSE detector is given in

terms of the signal subspace parameters by

(18)

Proof: Using (5) and (17), by the method of Lagrange
multipliers, we obtain

(19)

where we have used and Since
is positive definite, is a strictly convex function of

Therefore, the linear MMSE detector is obtained by solving
for from

(20)

where the second equality follows from the eigendecompo-
sition (7) of , and the third equality follows from the fact
that range is orthogonal to the noise subspace, i.e.,

Finally, from the constraint that , we
obtain

Remark 1: Since the decision (9) is invariant to positive
scaling, the two linear multiuser detectors given by (13) and
(18) can be interpreted as follows. First the received signalis

projected onto the signal subspace to get a-vector
which clearly is a sufficient statistic for demodulating the
users’ data bits. The signature waveform of the user of
interest is also projected onto the signal subspace to obtain

The projection of the linear multiuser detector
in the signal subspace is then a signal such that
the data bit is demodulated as According to
(13) and (18), the projections of the decorrelating detector and
the linear MMSE detector in the signal subspace are given,
respectively, by

... (21)

... (22)

Therefore, the projection of the linear multiuser detectors in
the signal subspace are obtained by projecting the signature
waveform of the user of interest onto the signal subspace,
followed by scaling the th component of this projection by a
factor of (decorrelating detector) or (MMSE
detector). Note that as , the two linear detectors become
identical.

Remark 2: Since the autocorrelation matrix, and there-
fore its eigencomponents, can be estimated from the received
signal, from the preceding discussion, we see that both the
decorrelating detector and the linear MMSE detector can be
estimated from the received signal with the prior knowledge of
only the signature waveform and timing of the user of interest,
i.e., they both can be obtainedblindly.

D. Near–Far Resistance

A commonly used performance measure for a multiuser
detector is the asymptotic multiuser efficiency (AME) [16],
defined as1

(23)

which measures the exponential decay rate of the error prob-
ability as the background noise approaches zero. A related
performance measure, the near–far resistance, is the infimum
of AME as the interferers’ energies are allowed to vary

(24)

It is well known that both the decorrelating detector [16] and
the linear MMSE detector [17] achieve the optimal near–far
resistance, given by Although it can be
inferred that the two detectors given by (13) and (18) must
achieve this optimal near–far resistance, since they are simply
different forms of the respective original detectors, in the
following we compute their near–far resistance directly. Some
results in this section will be used later to derive the AME
of the subspace-based linear detectors under the signature
waveform mismatch.

Recall that the diagonal matrix

diag

Define

diag

Let the singular value decomposition (SVD) of
be

(25)
1P1(�) is the probability of error of the detector

Q(x)
�
= (1=

p
2�)

1

x

e�(x =2) dx:
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where the matrix has for all ,
and The numbers are

the positive square roots of the eigenvalues of and
hence are uniquely determined. The columns of the
matrix are the orthonormal eigenvectors of , and
the columns of the matrix are the orthonormal
eigenvectors of We have the following result.

Lemma 3: The diagonal matrix is given by

(26)

where the is the transpose of in which the positive
singular values of are replaced by their reciprocals.

Proof: See Appendix I.
Using the above result, the following properties regarding

the decorrelating detector given by (13) can be verified.
Lemma 3: The decorrelating detector given by (13)

satisfies the following:

(27)

for (28)

(29)

Proof: See Appendix II.
Now it follows from Lemma 4 that the near–far resistance

of the decorrelating detector in (13) and that of the linear
MMSE detector in (18) is given by To
see this, first note that since as , the two linear detectors
become identical, they have the same asymptotic multiuser
efficiency (MAE) and near–far resistance. Hence it suffices to
find the near–far resistance of the decorrelating detectorin
(13). By Lemma 4 the output of contains only the useful
signal and the ambient Gaussian noise. The amplitude of the
useful signal at the output is ; the variance of
the noise is . The probability of error
is then given by

Therefore,

E. Asymptotics of Detector Estimates

So far we have assumed that the exact signal autocorrelation
matrix , and therefore its eigencomponents, are known. In
practice, the eigencompoments of the sample autocorrelation
matrix based on received data vectors

(30)

are used for constructing the subspace-based linear detectors
(13) and (18). In this section, we examine the consistency
and asymptotic variance of the estimates of the two linear
detectors. Since the decision rule (9) is invariant to positive
scaling on the linear detectors, for simplicity we consider

the scaled version of the linear detectors and , given,
respectively, by

(31)

(32)

and their respective estimated versions, given by

(33)

(34)

where , , and are the eigencomponents of
, i.e.,

(35)

Assume that the received signal samples are independent
and identically distributed (i.i.d.). Then the sample mean
converges to almost surely (a.s.). It then follows [36] that
as , a.s., and a.s., for

Therefore, we have

as (36)

Similarly, a.s. as Hence both the estimated
linear multiuser detectors (33) and (34) based on the received
signal arestrongly consistent. However, it is in general biased
for finite number of samples. We next consider the asymptotic
bound on the estimation errors.

First, for all eigenvalues and the largest eigenvectors of
, the following bounds hold a.s. [36], [43]:

for

for

Using these bounds, we have

(37)

Note that , , and are all bounded.
On the other hand, it is easily seen that

and
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Therefore, we obtain the asymptotic estimation error for the
linear MMSE detector, and similarly that for the decorrelating
detector, given, respectively, by

(38)

(39)

IV. BLIND ADAPTIVE MULTIUSER

DETECTION BASED ON SUBSPACE TRACKING

A. Tracking the Signal Subspace

It is seen from the previous section that the linear mul-
tiuser detectors are obtained as long as the signal subspace
components are identified. The classic approach to subspace
estimation is through batch eigenvalue decomposition (ED)
of the sample autocorrelation matrix, or batch singular value
decomposition (SVD) of the data matrix, which is compu-
tationally too expensive for adaptive applications. Modern
subspace tracking algorithms are recursive in nature and
update the subspace in a sample-by-sample fashion. Various
subspace tracking algorithms exist in the literature, e.g., [3],
[5], [6], [29], [33], and [41]. In this paper, we adopt the
recently proposed projection approximation subspace tracking
(PASTd) algorithm [41] for the blind adaptive multiuser de-
tection application. The advantages of this algorithm include
almost sure global convergence to the signal eigenvectors and
eigenvalues, low computational complexity , and the
rank tracking capability. We next briefly review the PASTd
algorithm for tracking the signal subspace.

Let be a random vector with autocorrelation matrix
Consider the scalar function

(40)

with a matrix argument It is shown in
[41] that

• is a stationary point of if and only if ,
where contains any distinct eigenvectors
of and is any unitary matrix.

• All stationary points of are saddle points except
when contains the dominant eigenvectors of In
that case, attains the global minimum.

Therefore, for , the solution of minimizing is
given by the most dominant eigenvector of In applications,
only sample vectors are available. Replacing (40) with
the exponentially weighted sums yields

(41)

The key issue of the PASTd approach is to approximate
in (41), the unknown projection of onto the

columns of , by , which can be
calculated for at time This results in a modified

cost function

(42)

The recursive least squares (RLS) algorithm can then be used
to solve for that minimizes the exponentially weighted
least squares criterion (42).

The PASTd algorithm for tracking the eigenvalues and
eigenvectors of the signal subspace is based on the deflation
technique and its basic idea is as follows. For by
minimizing in (42) the most dominant eigenvector
is updated. Then the projection of the current data vector
onto this eigenvector is removed from itself. Now the
second most dominant eigenvector becomes the most dominant
one in the updated data vector and it can be extracted similarly.
We apply this procedure repeatedly until all theeigenvectors
are estimated sequentially.

Based on the estimated eigenvalues, using information-
theoretic criteria such as the Akaike information criterion
(AIC) or minimum description length (MDL) criterion [39],
the rank of the signal subspace, or equivalently, the number
of active users in the channel, can be estimated adaptively as
well [40]. The quantities AIC and MDL are defined as follows:

(43)

(44)

where is the number of data samples used in the estima-
tion. When an exponentially weighted window with forgetting
factor is applied to the data, the equivalent number of data
samples is in the above definitions is
defined as

(45)

The estimate of rank is given by the valuethat minimizes
the the quantity (43) or (44). Finally, the algorithm for
both rank and signal subspace tracking is summarized in
Table I. The computational complexity of this algorithm is

The convergence dynamics
of the PASTd algorithm are studied in [42]. It is shown there
that with the forgetting factor under mild conditions,
this algorithm globally converges almost surely to the signal
eigenvectors and eigenvalues.

B. Simulation Examples

In this section we provide two simulation examples to
illustrate the performance of the subspace-based blind adaptive
linear MMSE detector.

Example 1: This example compares the performance of the
subspace-based blind MMSE detector with the performance
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TABLE I
THE PASTd (PROJECTION APPROXIMATION SUBSPACE TRACKING WITH DEFLATION) ALGORITHM [40], [41]

FOR TRACKING BOTH THE RANK AND SIGNAL SUBSPACE COMPONENTS OF THERECEIVED SIGNAL rrr(t).
THE RANK ESTIMATION IS BASED ON THE AKAIKE INFORMATION CRITERION (AIC)

of the minimum-output-energy (MOE) blind adaptive detector
proposed in [7]. It assumes a synchronous CDMA system
with processing gain and six users The
desired user is user 1. There are four 10-dB multiple-access
interferers (MAI’s) and one 20-dB MAI, i.e., for

and for The performance
measure is the output signal-to-interference ratio (SIR), defined

as , where the expectation is
with respect to the data bits of MAI’s and the noise. In
the simulation, the expectation operation is replaced by the
time averaging operation. For the PASTd subspace tracking
algorithm, we found that with a random initialization, the
convergence is fairly slow. Therefore, in the simulations, the
initial estimates of the eigencomponents of the signal subspace
are obtained by applying an SVD to the first 50 data vectors.
The PASTd algorithm is then employed for tracking the signal
subspace. The time averaged output SIR versus number of
iterations is plotted in Fig. 1.

As a comparison, the simulated performance of the recursive
least squared (RLS) version of the MOE blind adaptive detec-
tor is also shown in Fig. 1. It has been shown in [26] that
the steady-state SIR of this algorithm is given by

, where is the optimal SIR

value, and ( is the forgetting
factor). Hence the performance of this algorithm is upper-
bounded by when , as is seen in Fig. 1.
Although an analytical expression for the steady-state SIR
of the subspace-based blind adaptive detector is very dif-
ficult to obtain, as the dynamics of the PASTd algorithm
are fairly complicated, it is seen from Fig. 1 that with the
same forgetting factor , this new blind adaptive detector
well outperforms the RLS MOE detector. Moreover, the RLS
MOE detector has a computational complexity of per
iteration, whereas the complexity per iteration of the proposed
detector is

Example 2: This example illustrates the performance of the
proposed blind adaptive detector in a dynamic multiple-access
channel where interferers may enter or exit the channel. The
simulation starts with six 10-dB MAI’s in the channel; at

, a 20-dB MAI enters the channel; at ,
the 20-dB MAI and three of the 10-dB MAI’s exit the
channel. The performance of the proposed detector is plotted in
Fig. 2. It is seen that this subspace-based blind adaptive mul-
tiuser detector can adapt rapidly to the dynamic channel traffic.
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Fig. 1. Performance comparison between the subspace-based blind linear
MMSE multiuser detector and the RLS MOE blind adaptive detector. The
processing gainN = 31: There are four 10-dB MAI’s and one 20-dB MAI in
the channel, all relative to the desired user’s signal. The signature sequence of
the desired user is anm-sequence, while the signature sequences of the MAI’s
are randomly generated. The signal-to-ambient-noise ratio after despreading
is 20 dB. The forgetting factor used in both algorithms is� = 0:995: The
data plotted are the average over 100 simulations.

Fig. 2. Performance of the subspace-based blind linear MMSE multiuser
detector in a dynamic multiple-access channel where interferers may enter or
exit the channel. Att = 0, there are six 10-dB MAI’s in the channel; at
t = 2000, a 20-dB MAI enters the channel; att = 4000, the 20-dB MAI
and three of the 10-dB MAI’s exit the channel. The processing gainN = 31:

The signal-to-noise ratio after despreading is 20 dB. The forgetting factor is
� = 0:995: The data plotted are the average over 100 simulations.

V. MISMATCH AND BLIND ADAPTIVE

MULTIPATH CHANNEL ESTIMATION

A. Asymptotic Multiuser Efficiency Under Mismatch

We now consider the effect of signature waveform mismatch
on the performance of the subspace-based linear multiuser
detectors. Let with be the assumed signature
waveform of the user of interest, and be the true signature
waveform. can then be decomposed into components of the
signal subspace and noise subspace, i.e., where

range and range The signal subspace
component can then be written as

for some
Proposition 3: The asymptotic multiuser efficiency of the

decorrelating detector in (13) and that of the linear MMSE
detector in (18) under the signature waveform mismatch
is given by

(46)

Proof: Since and have the same asymptotic mul-
tiuser efficiency (AME), we only need to compute the AME
for Because a positive scaling on the detector does not
affect its AME, we consider the AME of the following scaled
version of under the signature waveform mismatch:

(47)

where the second equality follows from the fact that the noise
subspace component is orthogonal to the signal subspace

; and the third equality follows from (8). Now following
the same lines of derivation as in (67) and in (69), we obtain

(48)

(49)

Using (5) and (48), the output of is then

(50)

where The probability of error for user 1
is then given by

(51)

It then follows that the asymptotic multiuser efficiency is given
by (46).
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Remark 3: It is seen from (51) that signature waveform
mismatch causes MAI leakage at the detector output. Strong
interferers are suppressed at the output, whereas
weak interferers may lead to performance
degradation. If the mismatch is not significant, with power
control, so that the open eye condition is satisfied (i.e.,

, then the performance loss is negligible;
otherwise, the effective signature waveform should be
estimated first, as will be discussed in the following section.
Moreover, since the mismatched signature waveformis
first projected onto the signal subspace, its noise subspace
component is nulled out and does not cause performance
degradation; whereas for the blind adaptive MOE detector,
such a noise subspace component may lead to complete
cancellation of both the signal and MAI without energy
constraint on the detector [7]. We note that adaptive MOE
filtering in the signal subspace has been proposed recently in
[9] and [10]. The result in this paper indicates, however, that
adaptive filtering in the signal subspace is not needed if the
signal subspace parameters are identified, because
the linear multiuser detectors can be expressed in closed form
by these parameters.

B. Blind Adaptive Estimation of Multipath Channel Response

When the signal is transmitted over a multipath channel,
at the receiver end, the effective signature waveform is the
multipath channel response to the original signature waveform.
Subspace-based batch methods have been proposed for blind
multipath channel estimation [2], [14]. In this section, we
develop a blind adaptive method for channel estimation, which
can be combined with the subspace tracking algorithm for joint
channel estimation and multiuser detection.

Suppose that users are transmitting synchronously over
a multipath channel. The number of resolvable paths for each
user is [27], where is the signal bandwidth
and is the channel multipath spread. The impulse response
of such a multipath channel for theth user can be represented
by a tapped delayed line

(52)

where is the chip period and the coefficients
are complex channel gains. For the data signaling interval
much longer than the multipath delay spread, i.e.,

, any intersymbol interference (ISI) due to channel
dispersion can be neglected [27]. Therefore, the complex-
vector of chip-matched filter output within a symbol interval
is

(53)

where is the vector representation of the delayed user
signature waveform ; is a complex Gaussian

noise vector with mean and covariance matrix;
is the received composite signature waveform of theth user,
where

and

Suppose that the signal subspace is identified as
Since range , there exists

such that On the other hand, we also have
Therefore, is given by one solution to the linear

equation system And obviously is uniquely
determined if and only ifrank range range
In the following, we assume that this uniqueness condition
is satisfied and develop a recursive method for estimating
multipath channel response based on and

Since in practice is always a noisy estimate of the true
signal subspace, we need to solve in the least

squares sense. Define and , then
is contained in the solution to the following optimization

problem

(54)

It is well known that the solution to (54) is given by the
minimum eigenvector of the matrix Using the penalty
function method [15], the constrained optimization problem
(54) can be transformed into an unconstrained optimization
problem by defining the function

(55)

where is some positive constant. The key to developing a
recursive procedure for solving (54) is the following result,
whose real number version is found in [19].

Proposition 4: is a stationary point of if and only
if is a scaled version of an eigenvector of the matrix ,
with norm

( is the corresponding eigenvalue). Moreover, all stationary
points of are saddle points except whenis a scaled
version of the minimum eigenvector of In that case,

attains the global minimum.
Proof: See Appendix III.

By the above result, any algorithm of gradient descent type
for minimizing in (55) is guaranteed to converge to the
minimum eigenvector of The constant is required to be
greater than the minimum eigenvalue of, which is close to
. Choosing a large will force the norm of the solution

be close to .
Based on the above discussion, an adaptive algorithm for

joint channel estimation and multiuser detection is readily
obtained as follows. At time, suppose that the signal subspace
obtained by the subspace tracking algorithm is We
form the matrix and compute the matrix
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We then apply one step of update on
the estimated minimum eigenvector of , according
to the method of steepest descent

(56)

The estimated channel gain vector is a subvector of
Upon normalization, the effective signature waveform
is found, which together with the estimated signal

subspace components and , is used to form the
estimated linear MMSE detector The adaptive channel
estimator proposed here differs from previous nonadaptive
ones in that it performs on-line channel estimation. Moreover,
this channel estimator is integrated with the linear multiuser
detector and incurs little attendant computational overhead,
compared with the computationally expensive SVD-based
batch methods for channel estimation [2], [14]. Note that
the estimated channel gain vector , and therefore the
estimated signature waveform , has an arbitrary phase
ambiguity, which can be easily resolved by differentially
encoding the transmitted data.

Example 3: This example is to demonstrate the perfor-
mance of the proposed blind adaptive algorithm for joint
multipath channel estimation and multiuser detection. The
number of resolvable paths There are four 10-dB
MAI’s and one 20-dB MAI in the channel, as in Example 1.
Fig. 3 shows the convergence behavior of the blind adaptive
channel estimator. Fig. 4 shows the time-averaged SIR versus
the number of iterations. It is seen that by employing the
proposed algorithm, little performance degradation is incurred
when the signal is distorted by the multipath channel.

VI. SPATIAL PROCESSING ANDBLIND

ADAPTIVE ARRAY RESPONSEESTIMATION

A. Spatial Processing and Diversity Combining

One approach that shows promise for substantial capacity
enhancement for CDMA systems is the use of spatial pro-
cessing with multiple-sensor antenna arrays [23]. Combined
multiuser detection and array processing has been considered
previously, e.g., [12], [18], and [32]. However, one of the
challenges in this area is to develop an efficient technique for
estimating the array response to the desired user’s signal. In
this section, we consider a blind adaptive multiuser detector
that employs spatial diversity in the form of an antenna array.

Suppose that an array of sensors is employed at the
receiver. Let be the -vector of array response to the
th user. For a linear array, theth component of this array

response is given by

(57)

where is the inter-sensor spacing, is the wavelength of
the carrier, and is the th user signal’s direction of arrival

(a)

(b)

Fig. 3. Convergence of the blind adaptive multipath channel estimator. The
number of resolvable pathsL = 3: There are four 10-dB MAI’s and one
20-dB MAI in the channel, relative to the desired user’s signal. Shown in the
figures are the real (a) and imaginary (b) components of the three estimated
multipath gains versus the number of iterations.

(DOA). The received signal at theth sensor is then given by

(58)

where is a complex Gaussian random vector with mean
and covariance matrix Suppose that a bank of

decorrelating detectors are employed at the array
output, one for each sensor. Let

be the output vector of the bank of decorrelators. Assuming
that the noise is spatially uncorrelated, then it is
easily seen that the complex-vector has a Gaussian
distribution, i.e., Therefore,
the maximum-likelihood decision rule for based on is
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Fig. 4. Performance of the blind adaptive algorithm for joint effective
signature waveform estimation and linear MMSE multiuser detection. The
processing gainN = 31: There are four 10-dB MAI’s and one 20-dB MAI
in the channel. The signal-to-noise ratio after despreading is 20 dB. The
number of resolvable pathsL = 3: The data plotted are the average over
100 simulations.

given by [25]

(59)

If instead is the output vector of the bank of linear MMSE
detectors, its distribution is then approximately Gaussian [24]
and hence the same decision rule can still be used. Therefore,
the key issue here is to determine the array response vector
Once the array response (i.e., spatial signature) is accurately
estimated, it is also possible to use joint space–time multiuser
detection to achieve better performance.

B. Blind Adaptive Estimation of Array Response

Since in general the number of users in the CDMA channels
far exceeds the number of antennas, the conventional subspace
techniques for DOA estimation such as MUSIC, ESPRIT, etc.,
are not applicable. However, based on the output vectorof
the bank of linear multiuser detectors, a simple blind adaptive
method for estimating the array responsecan be developed
as follows. Notice that the autocorrelation matrix ofis given
by

(60)

It is seen from (60) that is the principal eigenvector of
Now as in the PASTd algorithm for subspace tracking,is
the unique global minimum point of the cost function

(61)

Consider the exponentially weighted version of the cost func-
tion (61)

(62)

TABLE II
BLIND ADAPTIVE ALGORITHM FOR ESTIMATING THE ANTENNA ARRAY

RESPONSEaaa(t) TO THE DESIRED USER’S SIGNAL, BASED ON THE

OUTPUT zzz(t) OF A BANK OF LINEAR MULTIUSER DETECTORS

where , is the approximation of the
unknown projection of onto Then
by minimizing in (62) recursively, a blind adaptive
algorithm for array response estimation is obtained. This
algorithm is listed in Table II.

Example 4: This example illustrates the performance of the
blind adaptive array response estimation algorithm. Consider
an array of sensors, with half-wavelength spacing,
i.e., The DOA of the signal of interest varies
according to for

Then by (57) the phases of the first and third sensor
response satisfy , for

Shown in Fig. 5 are plots of the estimated
phases of the array response, based on the output of the bank
of (exact) decorrelators (Fig. 5(a)) and the output of the bank
of subspace-based adaptive MMSE detectors (Fig 5(b)). It is
seen that the proposed algorithm can closely track the array
response to the signal of interest.

VII. CONCLUSION

In this paper, we have developed a new blind adaptive
multiuser detection technique based on signal subspace esti-
mation. Compared with the previous minimum-output-energy
blind adaptive multiuser detection algorithm, it is seen that
the proposed method has lower computational complexity and
better performance, and it is robust against signature waveform
mismatch. Within the framework of signal subspace estima-
tion, we have also developed a blind adaptive algorithm for
estimating the effective signature waveform in the multipath
channel, and a blind adaptive algorithm for estimating the array
response when an antenna array is employed. It is seen that
under the proposed subspace approach, blind adaptive channel
estimation and blind adaptive array response estimation can be
integrated with blind adaptive multiuser detection, with little
attendant increase in complexity. Finally, we note from the
simulation examples that the PASTd subspace tracking algo-
rithm has a relatively slow convergence rate, which may pose
a problem for a time-varying system. Nevertheless, subspace
tracking is a very active research field in signal processing
and it is anticipated that with the emergence of more powerful
fast subspace trackers (e.g., [30]), the performance of the
subspace-based adaptive multiuser detectors will be improved.

APPENDIX I
PROOF OF LEMMA 3

Denote and
From (8), the eigenvalue decomposition of is given by

Then the Moore–Penrose generalized
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(a)

(b)

Fig. 5. Performance of the blind adaptive algorithm for array response
estimation. The number of sensorsJ = 3, with half-wavelength spacing,
i.e., d = �=2: The DOA of the signal of interest�1 varies with time such
that the phases of the sensor responses�1 varies linearly from�(�=2) to
�=2, and�3 varies linearly from�=2 to �(�=2): Shown are the plots of
the estimated phases of the array response. In (a) the estimation is based on
the outputs of the exact decorrelating detectors. In (b) the estimation is based
on the outputs of the subspace-based blind adaptive MMSE detectors. The
forgetting factor used in the array response estimation algorithm is0:96 and
that in the subspace tracking algorithm is0:995. It is seen that in both plots
the array response is closely tracked.

inverse [11] of matrix is given by

(63)

On the other hand, the Moore–Penrose generalized inverse
of a matrix is the unique matrix that satisfies [11]

a) and are symmetric; b) ; and c)
Next we show that by verifying

these three conditions. We first verify condition a). Using (25),
we have

(64)

where the second equality follows from the facts that
and Since the

diagonal matrix diag , it follows from (64) that
is symmetric. Similarly, is also symmetric. Next we

verify condition b).

(65)

where in the second equality, the following facts are used:
and ; the

third equality follows from the fact that Condition
c) can be similarly verified, i.e., Therefore, we
have

(66)

Now (26) follows immediately from (66) and the fact that

APPENDIX II
PROOF OF LEMMA 4

Define

Then from (13) we have Let be the th
unit basis of , i.e., all entries of are zeros except the
th entry, which is . Since , we have

(67)

where the second equality follows from (63); the third equality
follows from (25) and (66); and the fourth equality follows
from the facts that
and Therefore, and for

To prove (29), using (67), we notice that

(68)

where

(69)
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where the second equality follows from the facts that
, , and (25); the third equality follows

from (26); the fourth equality follows from the facts that
and ;

the sixth equality follows from (25); and the last equality
follows from the fact that

APPENDIX III
PROOF OF PROPOSITION 6

Define The proof in [19] is only for a real
symmetric matrix In the following we give a proof for a
Hermitian matrix Since is Hermitian we have
and , where the subscript and represent the
real and imaginary parts of the complex matrix, respectively.

Now define and Then it can

be readily verified that in (55) can be written as

(70)

The gradient and Hessian matrix of are given, respec-
tively, by

(71)

(72)

Let and be the eigenvalues and
corresponding eigenvectors of the matrix It can be ver-
ified that each is an eigenvalue of of multiplicity ,

with the corresponding eigenvectors and

It is then seen from (71) that
if and only if is a scaled version of an eigenvector of matrix
, or equivalently, is a scaled version of matrix , i.e.,

The norm is determined from

(73)

Solving for we obtain Now the
Hessian matrix at any stationary point is

(74)

where and

It is
seen from (74) that the Hessian is semipositive definite if and
only if is the smallest eigenvalue of the matrix, then
the corresponding stationary point is the only local minimum;
otherwise, the Hessian is indefinite at the stationary point,
which is a saddle point. On the other hand,

(75)

with equality achieved if and only if is a scaled version of
the minimum eigenvector with norm
Therefore, the local minimum is the global minimum.
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