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Blind Multiuser Detection: A Subspace Approach

Xiaodong Wang and H. Vincent Pookgllow, IEEE

Abstract—A new multiuser detection scheme based on signal adaptation schemes are especially attractive for the downlinks
subspace estimation is proposed. It is shown that under this of CDMA systems, since in a dynamic environment, it is
scheme, both the decorrelating detector and the linear minimum- 0.y ifficult for a mobile user to obtain accurate information
mean-square-error (MMSE) detector can be obtained blindly, i.e., . . L
they can be estimated from the received signal with the prior ON other active users in the channel, Such as their signature
knowledge of only the signature waveform and timing of the user waveforms; and the frequent use of training sequence is
of interest. The consistency and asymptotic variance of the esti- certainly a waste of channel bandwidth.
mates of the two linear detectors are examined. A blind adaptive In this paper, we propose a new blind multiuser detec-

implementation based on a signal subspace tracking algorithm . L - . .
is also developed. It is seen that compared with the previous tion scheme which is based on signal subspace estimation.

minimum-output-energy blind adaptive multiuser detector, the Subspace-based high-resolu_tion methods play an important
proposed subspace-based blind adaptive detector offers lowerrole in sensor array processing, spectrum analysis, and gen-

computational complexity, better performance, and robustness eral parameter estimation [34]. Several recent works have
against signature waveform mismatch. Two extensions are made addressed the use of subspaced-based methods for delay

within the framework of signal subspace estimation. First, a blind . . . - -
adaptive method is developed for estimating the effective user sig- estimation [2], [31] and channel estimation [2], [14] in CDMA

nature waveform in the multipath channel. Secondly, a multiuser SYystems.
detection scheme using spatial diversity in the form of an antenna  The contribution of this work is threefold. First of all,

array is considered. A blind adaptive technique for estimating the e show that based on signal subspace estimation, both the

array response for diversity combining is proposed. It is seen that decorrelating detector and the linear MMSE detector can
under the proposed subspace approach, blind adaptive channel

estimation and blind adaptive array response estimation can be P€ obtained blindly, i.e., they can be estimated from the
integrated with blind adaptive multiuser detection, with littte  received signal with the prior knowledge of only the signature
attendant increase in complexity. waveform and timing of the user of interest. The consistency
Index Terms—Array response estimation, blind adaptation, and the asymptotic variance of the estimates of the two
channel estimation, linear multiuser detection, subspace tracking. subspace-based linear detectors are examined. A blind adaptive
implementation based on a signal subspace tracking algorithm
is also developed. It is seen that compared with the previous
minimum-output-energy (MOE) blind adaptive detector [7],
ODE-division multiple-access (CDMA) implementechis subspace-based blind adaptive detector offers lower com-
with direct-sequence spread-spectrum (DS-SS) mOdUr!ﬂnational complexity Q(NK), where N is the processing
tion is emerging as a popular multiple-access technology fg4in, K is the number of active users in the channel.) and better
personal, cellular, and satellite communication services [13arformance in terms of the steady-state signal-to-interference
[37]. MuItiqser detection techniques can substantially increaggiq (SIR). Moreover, the proposed detector is made robust
the capacity of CDMA systems. Over the past decade,gainst signature waveform mismatch through nulling out
significant amount of research has addressed various multiuggl noise subspace component of the mismatched signature

detection schemes [35]. Considerable recent attention has b\‘/?/%(}eform, and through adaptive estimation of the effective
focused on adaptive multiuser detection [8]. For examplgignature waveform.

methods for adapting the decorrelating, or zero-forcing, lineartne second contribution of this work is the development of

detector that require the transmission of training sequUeNceyjing adaptive method for estimating the effective signature
during adaptation have been proposed in [4], [21], and [23];5 eform in the multipath channel. Under certain conditions,
An alternative linear detector, the minimum-mean-square-ert; b problem of identifying the multipath channel gains is

(MMSE) QeFector, however, can be adapted e|the_r through &uivalent to fitting the estimated signal subspace with the
use of t.rammg Sequences [1], [17], [20], [28], or in the blin ubspace spanned by the known nominal signature waveforms.
mode, i.e., W'th. the prior knowledgg of only the SIgnaturGye show that this subspace fitting problem can in turn
waveform and timing of the user of interest [7], [26]. Bllndbe transformed into an unconstrained minimization problem

whose local minimum is unique, and thus can be solved by
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diversity in the form of an antenna array. Here the key issi then sufficient to consider the received signal during one
is to estimate the array response to the desired user’s sigayhbol interval, and the received signal model becomes

for diversity combining. Since the number of users in CDMA K

channels far exceeds the number of antenna elements, the r(t) = ZAkkak(t) +on(t), te[0,7]. 4)
conventional subspace-based estimation algorithms, such as k=1

MUSIC, ESPRIT, etc., cannot be applied. We propose a bli®@he simple suboptimal way to treat the asynchronous system
adaptive estimation method based on the output of a banki©fthe “one-shot” approach, in which a particular transmit-
linear multiuser detectors at the antenna array. It is seen tte@d data bit is estimated based on only the received signal
this algorithm has a low computational complexity, while it isvithin the symbol interval corresponding to that data bit.
capable of closely tracking the array response to the desia asynchronous system df users can then be viewed as
user’s signal. equivalent to a synchronous system WK — 1 users [17],

The rest of the paper is organized as follows. In Section Hnd the results of this paper thus apply in this context as well.
the signal model is introduced. In Section Ill, two subspacgdternatively, an asynchronous CDMA system is a special case
based linear multiuser detectors, namely, the decorrelatisggthe more general dispersive CDMA system in which the
detector and the linear MMSE detector, are developed. ¢hannel introduces intersymbol interference (IS), in addition
Section 1V, a blind adaptive implementation of the subspacgy the multiple-access interference (MAI). The subspace-based
based linear MMSE detector, which is based on a sign@kchniques considered in this paper can also be extended to
subspace tracking algorithm, is developed. In Section V, teech a dispersive CDMA system for blind joint suppression
performance of the proposed subspace-based linear deteadrisoth MAI and ISI [38].
under signature waveform mismatch is considered; and aConsider the synchronous model (4). At the receiver, chip-
blind adaptive method for estimating the effective signaturaatched filtering followed by chip rate sampling yieldsAn
waveform in the multipath channel is developed. In Sectiarector of chip-matched filter output samples within a symbol
VI, a multiuser detection scheme using spatial diversity in thaterval T

form of an antenna array is considered; and a blind adap- K
tive technique for estimating the array response for diversity r= Z Arbpsy +on (5)
combining is proposed. Section VIl contains the conclusion. k=1

where

[I. SIGNAL MODEL Y ‘
_ o 8w = (1/VN)B Bt - Bl
Consider a baseband digital direct sequence (DS) CDMA

network of K users. The received signal can be modeled as the normalized signature waveform vector of #th user,
and n is a white Gaussian noise vector with me@nand
r(t) = 5(t) +on(t) (1) covariance matrixIy (In denotes theN x N indentity
wheren(t) is white Gaussian noise with unit power spectrdnatrix). Thus we can restrict attention to the discrete-time
density, andS(t) is the superposition of the data signals ofodel (5).
the K users, given by

I1l. SUBSPACEBASED BLIND LINEAR MULTIUSER DETECTORS

St => A Y b(i)si(t—iT — 7,) 2
k=1

i=—M A. Subspace Concept

where 2M + 1 is the number of data symbols per user per For convenience and without loss pf generality, we as-
frame, T is the symbol interval, and wherdy, 7, {b(i); sume that the signature waveforrfis; }2  of the K users

i = 0,41,---,£M} and {s,(t);0 < ¢ < T} denote, are linearly independent. Denot8 2 [8; 8- 8x] and
respectively, the received amplitude, delay, symbol strean, & diag (A2,---, A2.). The autocorrelation matrix of the
and normalized signaling waveform of thgh user. It is received sigr11:';w i; tf{lsen given by

assumed thas(¢) is supported only on the intervédd, 77 X

and has unit energy, and thdb,(¢)} is a collection of A T 2. T, 2 T, 2

. . . : =F = A s, Iy =8SA Iy.
independent equiprobabiel random variables. For the direct- ¢ frr} ; ks T oIy = SAST + o7l
sequence spread-spectrum (DS-SS) multiple-access format, the B 6)

user signaling waveforms are of the form ] ) N
By performing an eigendecomposition of the matflxwe get

N-1 T
su(t) =D Bt —jI.),  t€[0,T] ®3) C=UANUT=[U, U,] {AS A } {ZT} )
j=0 n ¥
: . . ) where
where N is the processing gain(sg,s¥,---,8%_,) is a

signature sequence dfl’s assigned to théth user; andyis U = [Us Un], A = diag (As, An); As = diag (A, -+ Ak )

a normalized chip waveform of duratidhi, whereNT. =T. contains theK largest eigenvalues @ in descending order
In this paper, we restrict our attention to the synchronoasdlU, = [u; - - - ux] contains the corresponding orthonormal

case of model (2), in whichy = 75 = -+« = 7 = 0. It eigenvectors;A,, = o*Iy_x and U, = [ugy;- - uy]
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contains theV — K orthonormal eigenvectors that correspond  Proof: Since

to the eigenvalues?. It is easy to see thatange (S) =

range (UUs). The range space ol is called thesignal K K r
subspaceand its orthogonal complement, theise subspace ¢(d) IdTE{ <Z Akbk3k> <Z Akbksk> }d
is spanned b¥/,,. Define theN x N diagonal matrixA, 2A- = =

o2y = diag (A — 0%, +, A\ — 02,0,---,0). From (6) and

(7) we obtain =d’ <Z Aksksk>

SAST = U (A, — 21\ UL = UAU”. (8)
A linear multiuser detector for demodulating tti¢h user's =A}d"s,)? + ZAﬁ(dek)Q
data bit in (5) is in the form of a correlator followed by a k=2
hard limiter ) K T
by = sen (wl'r) ©) =Af + ,;Ak(d 51.) (12)

wherew;, € R™. Next we derive expressions for two linear

multiuser detectors, namely, the decorrelating detector aihdhen follows that ford € range (U,) = range (S), ¢(d)

the linear MMSE detector, in terms of the signal subspaé minimized if and only ifd*s; = 0, for k = 2,---, K. By

parameterqU,, A;, ando). Lemma 1,d; =d. O
Proposition 1: The decorrelating detectod; in (10) is

B. Decorrelating Detector given in terms of the signal subspace parameters by

The correlation matrix of the signature waveforms is define 1 o7 N—17sT
A oT . . . 1= 7 Us(As — 0”1 )" U s1.
asR = 8°S. Sincerank (8) = K, it follows that R is (8T Us(As — 02Ik)~1U,; 8]
invertible. Henceforth let user 1 be the user of interest. The (13)

decorrelating detector [16] is designed to completely eliminate Proof: A signald € range (U,) if and only if it can be
the multiple-access interference (MAI) caused by other usevgjtten asd = U.e¢, for someec € R*. Then by Lemma 2,
at the expense of enhancing the ambient noise. It has the féh@ decorrelating detectak has the formd; = U,c;, where

of (9) with the weight vectow; = d; given by

X €L =arg mln (Us ¢ <2Aksksk> c),

-1
di kz::l [R™"|insk (10) ot (U.es =1
=arg min ¢ [UY(SAST)U e,

where[R™'];; denotes théi, j)th element of the matriR ™!, oeRz o
The weight vector in (10) is characterized by the following st e (U;8)=1
results. =arg min ¢’ (A, — o*I)e,

Lemma 1: The decorrelating detectad; in (10) is the eCR% —
unique signald € range (U,), such thatd”s;, = 1, and st e (Uss)=1  (14)

T — —
ds,=0fork=2, . K. . .
Proof: Sincerank (U,) = K, the vectord that satisfies where the second equality follows from (6) and the third

the above conditions exists and is unique. It is seen from (1®fjudlity follows from (8). The optimization problem (14) can
thatd, € range (S) = range (U,). Moreover bé solved by the method of Lagrange multipliers. Let

K K L(c) 2 (A, — o2 g )e - 2ulct (UL sy) — 1], (15)
di s = [R™]1:87 81, = [R™]1:[R]ix
. ; ; Since the matrix(A, — 02I) is positive definite,L(¢) is
1 1, k=1 a strictly convex function okt. Therefore, the unique global
=[R™" Rl = {07 k=2 K. (11)  minimum of £(c) is achieved at; whereV£(e;) = 0, or
Therefored; = d. O (As — o’I)er = pU7 1. (16)

Lemma 2: The decorrelating detectad; in (10) is the
unique signald € range (U) that minimizes

w@éE{

subject tod’s; = 1. dy =Use, = yU, (A, — o2I) " U sy, O

Thereforee; = (A, —o2Ix ) 1UTs;, wherey is determined
from the constrainU,e¢;)%s; = 1, i.e.,

¢ 2 ~
d <zl: Akbksk)] } p=1/[sTU(A, — 0?I) UL 51].
k=1

Finally, the decorrelating detector is given by
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C. Linear MMSE Detector )\i
The canonical form of the linear minimum mean-square- & — . ) p.. (22)
error (MMSE) multiuser detector [7] of user 1 has the form ! - 1 !
of (9) with the weight vectors;, = m,;, wherem; € RY o
minimizes the MSE, defined as o Ko _ _
Therefore, the projection of the linear multiuser detectors in
MSE (m;) 2 E{(A;by —mlr)?} (17) the signal subspace are obtained by projecting the signature
waveform of the user of interest onto the signal subspace,
subject tom{'s; = 1. followed by scaling theith component of this projection by a
Proposition 2: The linear MMSE detectom, is given in factor of1/(\x —o?) (decorrelating detector) dr/ A, (MMSE
terms of the signal subspace parameters by detector). Note that as — 0, the two linear detectors become
1 identical.
my = UsAs_lUfsl. (18) Remark 2: Since the autocorrelation matri¥, and there-

—1gsT
[sTUAT U 5] fore its eigencomponents, can be estimated from the received
Proof: Using (5) and (17), by the method of LagrangéignaL from the preceding discussion, we see that both the

multipliers, we obtain decprrelating detector gnd th'e Iineqr MMSE detector can be
estimated from the received signal with the prior knowledge of
L(m) 2 MSE (m) — 2N(mT31 —1) _only the signature Waveform an_d timing of the user of interest,

= mTE{r vTym — 2A,mT E{b,r) i.e., they both can be obtaindaindly.

+ A3 —2u(mTs — 1)
=mPCm —2(A? + p)ymTs; + (A2 +2p)  (19)

D. Near—Far Resistance

A commonly used performance measure for a multiuser
where we have usefi{r r7} = C and E{b; r} = 8. Since detector is the asymptotic multiuser efficiency (AME) [16],
C is positive definite(m) is a strictly convex function ofe.  defined as

Therefore, the linear MMSE detector is obtained by solvin A . VA

for my from VL(my) = 0 ’ Som2 Sup{o srskh }%Pl(a)/Q<T) - 0}

23
my = (A} +p)C s (23)

= (A2 + (U AU )8y + (A% + )0~ 2(U,UT)s, Wh_i(_:h measures the exponen?ial decay rate of the error prob-
(A2 UAUT 20 ability as the background noise approaches zero. A related
=(Ai+ U, s 81 (20) performance measure, the near—far resistance, is the infimum

where the second equality follows from the eigendecomp8f AME as the interferers’ energies are allowed to vary
sition (7) of C, and .the third equality folloyvs from the fapt 7 = inf {m}. (24)
thats; € range (U;) is orthogonal to the noise subspace, i.e., Ap 20

k#1
U's, = 0. Finally, from the constraint than?s;, = 1, we ) * )
obtain It is well known that both the decorrelating detector [16] and
the linear MMSE detector [17] achieve the optimal near—far
(A2 + ) =1/[sTU AT U 5] O resistance, given by;, = 1/[R™'];;. Although it can be

inferred that the two detectors given by (13) and (18) must

Remark 1: Since the decision (9) is invariant to positivegchieve this optimal nearfar resistance, since they are simply
scaling, the two linear multiuser detectors given by (13) anfffferent forms of the respective original detectors, in the
(18) can be interpreted as follows. First the received sigm&l  fo|lowing we compute their near—far resistance directly. Some
projected onto the signal subspace to gﬁf-asiectoryé Ufr, results in this section will be used later to derive the AME
which clearly is a sufficient statistic for demodulating the of the subspace-based linear detectors under the signature
users’ data bits. The signature wavefosm of the user of waveform mismatch.
interest is also projected onto the signal subspace to obtairRecall that theV x N diagonal matrix
P 2 U”s,. The projection of the linear multiuser detector
in the signal subspace is then a sigeale R™ such that
the data bit is demodulated as = sgn (¢f'y). According to pefine
(13) and (18), the projections of the decorrelating detector and A L 11 11
the linear MMSE detector in the signal subspace are given, Ay =diag (A —o7] 77, -+, [Ak = 07]7,0,--+,0).

Ao £ diag (AL =02, A —02,0,---,0).

respectively, b . - /
pectively, by Let the singular value decomposition (SVD) & 2
; [31 82 -SK] be
Mot 5=wzv?’ 25
of = p, (1) = (25)
1 1Py (o) is the probability of error of the detector

A — 02 Q) 2 (1/vm) / T R gy,

T
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where theN x K matrix X = [0;;] haso;; =0 for all ¢ # j, the scaled version of the linear detectams and d;, given,
andoyy > 092 > -+ > ogk. The numbers{o; H< , are respectively, by

the positive square roots of _the eigenvalueﬂo% Ss's, and m 2 UAT'UT s, (31)
hence are uniquely determined. The columns of Mhex NV A ) T
matrix W are the orthonormal eigenvectors %7, and d=Us;(A; —07Ix)" U 8 (32)

the columns of theK x K matrix V are the orthonormal
eigenvectors o = S¥'S. We have the following result. A
Lemma 3: The N x N diagonal matrixA(TJ is given by m(n) = U,
dn) 2 U,

and their respective estimated versions, given by
S U.(m)A, ()0, (n)7s, (33)
(m)[As(n) = 6(n)’ L] Us(n)" 81 (34)

whereU,(n), A,(n), and&(n) are the eigencomponents of
where theX' is the transpose oE in which the positive C(n), i.e.,
smgLIJDI?c:O\;?ILéeeZ (Zﬁg)séidriiplléced by their reciprocals. - O(n) =0, (A ()T ()T + 6(n)20 ()T, (n)T.  (35)
Using the above result, the following properties regarding Assume that the received signal samples are independent
the decorrelating detectak given by (13) can be verified. and identically distributed (i.i.d.). Then the sample mé}é(m)
Lemma 3: The decorrelating detectod; given by (13) converges taC' almost surely (a.s.). It then follows [36] that

A =UTwETvTA v WU (26)

satisfies the following: asn — oo, \(n) — A, as., andig(n) — u a.s., for
k=1,---,K. Therefore, we have
dis; =1 (27) x .
dl's, =0, fork=2,--- K (28) ﬁz(n):z Ai '&k(n)'&k(n)TslﬁZ " wpul s =m as.
d{dl I[R_l]ll. (29) k=1 Ak =1 'k

asn — co. (36)

Proof: See Appendix II. U Similarly, d(n) — d a.s. asn — co. Hence both the estimated

Now it follows from Lemma 4 that the near—far resistancfnear multiuser detectors (33) and (34) based on the received
of the decorrelating detecta; in (13) and that of tlhe linear signal arestrongly consistentHowever, it is in general biased
MMSE detectorm; in (18) is given byr, = 1/[R™"]11. TO  for finite number of samples. We next consider the asymptotic
see this, first note that since as— 0, the two linear detectors pound on the estimation errors.
become identical, they have the same asymptotic multiusetrirs, for all eigenvalues and th§ largest eigenvectors of
efficiency (MAE) and near—far resistance. Hence it suffices @(n)’ the following bounds hold a.s. [36], [43]:
find the near—far resistance of the decorrelating detel;tan .
(13). By Lemma 4 the output of; contains only the useful  [Ax(n) — A| = O(v/loglogn/n), fork=1,--- N
signal and the ambient Gaussian noise. The amplitude of they, (n) — uy|| = O(\/m% fork=1,---,K.
useful signal at the output iAl(lesl) = A;; the variance of

the noise iso?(d! d;) = o2[R™*]1;. The probability of error Using these bounds, we have

is then given by I — i = ||(UA;UF ~ U.A0)s |
A A—=1AT
T <SNUAS'UT -UA, U sl
_ Adys ) A —197T 7 aA—LpT
= ) i) = (U U~ AU
did - N N N
TvaS 7Vl + (U AU - UATDY)
Therefore,y, = 7, = 1/[R )11, +U(AT! —As_l)ﬁj||
| | <|lU, - U] 1A, UT)
E. Asymptotics of Detector Estimates + Hf] A_1|| U, — U I
So far we have assumed that the exact signal autocorrelation n ||ff I ||A_1 _ A_1|| ||ff I (37)

matrix C, and therefore its eigencomponents, are known. In
practice, the eigencompoments of the sample autocorrelatioote that||A; U ||, |U.A;!||, and ||U,]|| are all bounded.

matrix based om received data vectors On the other hand, it is easily seen that
n K
2 Al N - .
C(n) 2 - > i)’ 30) WU, =U.l=>" llux — |l = O(/loglogn/n) as.
=1 k=1

are used for constructing the subspace-based linear detec%‘r%
(13) and (18). In this section, we examine the consistency
and asymptotic variance of the estimates of the two linear
detectors. Since the decision rule (9) is invariant to positive
scaling on the linear detectors, for simplicity we consider = O(Vloglogn/n) a.s.

K

1 a1 . <
AT = A= 1w = Ml /Owda)

k=1
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Therefore, we obtain the asymptotic estimation error for trest function
linear MMSE detector, and similarly that for the decorrelating
detector, given, respectively, by

JW (1) = Z A Ir () = Wty (42)

|lm(n) — m|| =O(y/loglogn/n) as. (38)
ld(n) — d|| =O(y/loglogn/n) as. (39) The recursive least squares (RLS) algorithm can then be used
to solve forW (t) that minimizes the exponentially weighted
IV. BLIND ADAPTIVE MULTIUSER least squares criterion (42).
DETECTION BASED ON SUBSPACE TRACKING The PASTd algorithm for tracking the eigenvalues and

eigenvectors of the signal subspace is based on the deflation
technique and its basic idea is as follows. For= 1 by

. _ _ , minimizing J(W (t)) in (42) the most dominant eigenvector

It is seen from the previous section that the linear mulg updated. Then the projection of the current data veeftr
tiuser detectors are obtained as long as the signal subspz¢g this eigenvector is removed front) itself. Now the
components are identified. The classic approach to subSpaggqng most dominant eigenvector becomes the most dominant
estimation is through batch eigenvalue decomposition (EQ)e in the updated data vector and it can be extracted similarly.

of the sample autocorrelation matrix, or batch singular valyge apply this procedure repeatedly until all thiesigenvectors

decomposition (SVD) of the data matrix, which is compus.e estimated sequentially.

tationally too expensive for adaptive applications. Modern gysad on the estimated eigenvalues, using information-

subspace tracking algorithms are recursive in nature afiflyretic criteria such as the Akaike information criterion
update the subspace in a sample-by-sample fashion. Variohfc) or minimum description length (MDL) criterion [39],
subspace tracking algorithms exist in the literature, €.9., [3e rank of the signal subspace, or equivalently, the number

[51, [6], [29], [33], and [41]. In this paper, we adopt theyt active users in the channel, can be estimated adaptively as

recently proposed projection approximation subspace trackifjg| (40]. The quantities AIC and MDL are defined as follows:
(PASTd) algorithm [41] for the blind adaptive multiuser de-

tection application. The advantages of this algorithm include AIC (k) ?
almost sure global convergence to the signal eigenvectors and
eigenvalues, low computational complexity( N K)), and the MDL (k)
rank tracking capability. We next briefly review the PASTd

A. Tracking the Signal Subspace

113

(N — k)LIna(k) + k(2N — k) (43)
(N = k)Llna(k) + g (2N —k)InL  (44)

113

algorithm for tracking the signal subspace. _ ‘where L is the number of data samples used in the estima-

Letr ¢ RY bea ra_mdom vector with au_tocorrelatlon matfXjon, When an exponentially weighted window with forgetting
C = E{r r}. Consider the scalar function factor 3 is applied to the data, the equivalent number of data

samples isL = 1/(1 — ). a(k) in the above definitions is
J(W) =E{||lr - WWr|?} defined as
=tr(C) — 2tr (W CW) + tr (W CWW'W) (40) ~
(5o

with a matrix argumenW € RY*" (r < N). It is shown in _ \i=k+t1
[41] that ob)=—"7 T\ AR 45)

» W is a stationary point of (W) ifand only if W = U .Q, < H Ai)

wherelU,. ¢ RY*" contains anyr distinct eigenvectors i=k+1

of C and@ € R"*" is any unitary matrix.

* All stationary points ofJ(W) are saddle points except
whenU,. contains ther dominant eigenvectors @. In
that case J(W) attains the global minimum.

Therefore, forr = 1, the solution of minimizingJ (W) is
given by the most dominant eigenvector@f In applications,
only sample vectors(i) are available. Replacing (40) with
the exponentially weighted sums yields

The estimate of rank is given by the valéethat minimizes
the the quantity (43) or (44). Finally, the algorithm for
both rank and signal subspace tracking is summarized in
Table I. The computational complexity of this algorithm is
(4K + 3)N 4+ O(K) = O(NK). The convergence dynamics
of the PASTd algorithm are studied in [42]. It is shown there
that with the forgetting factog = 1 under mild conditions,
this algorithm globally converges almost surely to the signal
\ eigenvectors and eigenvalues.
t—4 ||\ _ T, /12

JW ()] ;/3 (D) =WEOW@RrOIF. @) o o ion Examples

In this section we provide two simulation examples to
The key issue of the PASTd approach is to approximailkustrate the performance of the subspace-based blind adaptive
W()Tr(i) in (41), the unknown projection af(i) onto the linear MMSE detector.
columns of W(t), by y(i) = W(i — 1)Tr(i), which can be = Example 1: This example compares the performance of the
calculated forl < ¢ < t at timet. This results in a modified subspace-based blind MMSE detector with the performance
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TABLE |
THE PASTd (FROJECTION APPROXIMATION SUBSPACE TRACKING WITH DEFLATION) ALGORITHM [40], [41]
FOR TRACKING BOTH THE RANK AND SIGNAL SUBSPACE COMPONENTS OF THERECEIVED SIGNAL F(t).
THE RANK ESTIMATION |s BASED ON THE AKAIKE INFORMATION CRITERION (AIC)

Updating the eigenvalues and eigenvectors of signal subspace {), uk}f:1

xi(t) = r(t)
FOR k=1K,; DO
w(t) = uf(t—1x()
Ak(2) = Bt — 1)+ lyx(t)]?
ur(t) = we(t— 1)+ [xa(t) — we(t — Dye(t)] ye(t)*/2e(t)
xer1(t) = xk(t) — uwr(t)ya(?)
END
o®(t) = Bo(t—1)+lxk,_,11(B)|I?/ (N — Ki1)

Updating the rank of signal subspace K,
FOR k= 1:Kt—l DO
L
ak) = [EEea ME)/N — k] /(T M) ™

AIC(k) = (N —E)n[a(k)]/(1 —B)+ k(2N — k)
END

K, = argminoceen—1 AIC(k) + 1
IF Ke < K,y THEN

remove {Me(t), ue()} 5,4

ELSEIF K, > K,y THEN
wel®) = Xeen1 (8 Xrn (@l
Malt) = o)

END

of the minimum-output-energy (MOE) blind adaptive detect&IR* /(1 + d + d - SIR*), where SIR" is the optimal SIR
proposed in [7]. It assumes a synchronous CDMA systeyalue, andd a (1 - 3/28)N (0<p<1 is the forgetting
with processing gainV = 31 and six user{K = 6). The factor). Hence the performance of this algorithm is upper-
desired user is user 1. There are four 10-dB multiple-accessunded by1/d when1/d < SIR*, as is seen in Fig. 1.
interferers (MAI's) and one 20-dB MAI, i.e43 /A7 = 10, for  Although an analytical expression for the steady-state SIR
k=2,...,5 and A} /A} = 100, for k = 6. The performance of the subspace-based blind adaptive detector is very dif-
measure is the output signal-to-interference ratio (SIR), definggult to obtain, as the dynamics of the PASTd algorithm
as SIR 2 E?{mTr}/Var{mTr}, where the expectation isare fairly complicated, it is seen from Fig. 1 that with the
with respect to the data bits of MAI's and the noise. Isame forgetting factors, this new blind adaptive detector
the simulation, the expectation operation is replaced by thell outperforms the RLS MOE detector. Moreover, the RLS
time averaging operation. For the PASTd subspace trackiMDE detector has a computational complexity@fN?) per
algorithm, we found that with a random initialization, theteration, whereas the complexity per iteration of the proposed
convergence is fairly slow. Therefore, in the simulations, thgetector isO(N K).

initial estimates of the eigencomponents of the signal subspac&xample 2: This example illustrates the performance of the
are obtained by applying an SVD to the first 50 data vectoqsroposed blind adaptive detector in a dynamic multiple-access
The PASTd algorithm is then employed for tracking the signahannel where interferers may enter or exit the channel. The
subspace. The time averaged output SIR versus numbersipfiulation starts with six 10-dB MAI's in the channel; at
iterations is plotted in Fig. 1. t = 2000, a 20-dB MAI enters the channel; at= 4000,

As a comparison, the simulated performance of the recursibee 20-dB MAI and three of the 10-dB MAI's exit the
least squared (RLS) version of the MOE blind adaptive detechannel. The performance of the proposed detector is plotted in
tor is also shown in Fig. 1. It has been shown in [26] thdtig. 2. It is seen that this subspace-based blind adaptive mul-
the steady-state SIR of this algorithm is given 8lR™ = tiuser detector can adapt rapidly to the dynamic channel traffic.
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20 : . , . ; . — 4] € range (U,) and 8] € range (U,,). The signal subspace
o Subspace-based blind adaptive multiuser detectdr . component&i can then be written as

3] = 181+ 282 + -+ axskg = Sa

for somea € RX.
il Proposition 3: The asymptotic multiuser efficiency of the
l\" ) 15,| | **:”'J \ . i ;
“!h}'f‘fvh«‘.ﬂ;;,, ,;?;W decorrelating detectat; in (13) and that of the linear MMSE
SR

| Lo
‘ Lo M’w"" T
c bl bt s 1 ANEA 'vq
i ~'*¢"0’%‘#ﬂ"ﬂ?$“% R . . _
Y ‘“'%i _\n,._»;‘g{*fwi. T R ot detectorm; in (18) under the signature waveform mismatch
WAFE I SEIRSY !
1]

Loy
" RLS minimum-output-energy blind adaptive multiuser detector IS g|Ven by

"[l

Time Averaged SIR (dB)
>

=

—=Tn

K
max? § 0, | = 7 Jag| 22

m= 1 k=12 1 ¢ . (46)
AaTA TR A

1 A 1 1 L ul 1 1 I
o] 100 200 300 400 500 600 700 800 900 1000
Number of Iterations

Proof: Sinced; andm; have the same asymptotic mul-
Fig. 1. Performance comparison between the subspace-based blind linggser efficiency (AME), we only need to compute the AME

MMSE multiuser detector and the RLS MOE blind adaptive detector. T . .
processing gaidv' = 31. There are four 10-dB MAI's and one 20-dB MAI in %r dl' Because a positive scallng on the detector does not

the channel, all relative to the desired user’s signal. The signature sequencaffect its AME, we consider the AME of the following scaled

the desired user is an-sequence, while the signature sequences of the MAlgarsion ofd; under the signature waveform mismatch:
are randomly generated. The signal-to-ambient-noise ratio after despreading

is 20 dB. The forgetting factor used in both algorithmssis= 0.995. The -
data plotted are the average over 100 simulations. d 2 Us(A, - gQIK)—lUZ§1

=U,(A, — o2 Ix)*UY S
=UAU"Sa (47)

20

where the second equality follows from the fact that the noise
subspace compone@t is orthogonal to the signal subspace
U;; and the third equality follows from (8). Now following
the same lines of derivation as in (67) and in (69), we obtain

JTSk IQTA_lek = A’:2C¥k (48)
dfd=aTAT'R A q. (49)

Time Averaged SIR (dB)
o

Using (5) and (48), the output af is then

K
dfr =d* ZAkkak +on

] 1 i 1 L
0 1000 2000 3000 4000 5000 6000 k=1

Number of Iterations K
Fig. 2. Performance of the subspace-based blind linear MMSE multiuser = Z Aty + adTn (50)

detector in a dynamic multiple-access channel where interferers may enter or
exit the channel. At = 0, there are six 10-dB MAI's in the channel; at

t = 2000, a 20-dB MAI enters the channel; at= 4000, the 20-dB MAI 5 o
and three of the 10-dB MAI’s exit the channel. The processing gair 31.  \where Var (dT'n,) — d¥d. The probability of error for user 1
The signal-to-noise ratio after despreading is 20 dB. The forgetting factori'gs then aiven b
5 = 0.995. The data plotted are the average over 100 simulations. 9 y

k=1

1
V. MISMATCH AND BLIND ADAPTIVE Pi(o) = 9K—1 Z

ba,br)E{—1,1} K1
MULTIPATH CHANNEL ESTIMATION (b, br)€{=L,1}

K
Ay
A. Asymptotic Multiuser Efficiency Under Mismatch a1 — Z by, A
We now consider the effect of signature waveform mismatch -Q =L k=2 (51)
on the performance of the subspace-based linear multiuser 7 \/A?QTA_IR_IA_IQ
detectors. Lets; with ||$1]] = 1 be the assumed signature

waveform of the user of interest, asd be the true signature
waveform.s; can then be decomposed into components of thethen follows that the asymptotic multiuser efficiency is given
signal subspace and noise subspace,d,e= &, + &/, where by (46). O
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Remark 3: 1t is seen from (51) that signature waveformoise vector with meaf and covariance matrik; &, = Sy.hy,
mismatch causes MAI leakage at the detector output. Stroggthe received composite signature waveform ofitreuser,
interferers( Ay, > A;) are suppressed at the output, whereaghere
weak interferers(A4; <« A;) may lead to performance

A
degradation. If the mismatch is not significant, with power Sk = [8k,1 8,27 8k,L]
control, so that the open eye condition is satisfied (i.eand

|| > 2K, || 52), then the performance loss is negligible; hy 2 [t bz Poo ]

otherwise, the effective signature waveform should be

estimated first, as will be discussed in the following section. Suppose that the signal subspace is identified/as=
Moreover, since the mismatched signature wavefaimis [u; 4, - - -@x]. Sinced; € range (f]S), there existsf, € C¥
first projected onto the signal subspace, its noise subspageh thats; = ﬁsfl- On the other hand, we also have
components? is nulled out and does not cause performanGg = S h,. Therefore 3 is given by one solution to the linear
degradation; whereas for the blind adaptive MOE detect@guation systen$;h; = ﬁsfl. And obviouslys, is uniquely
such a noise subspace component may lead to complgégermined if and only ifank [range (S;)Nrange (U,)] = 1.
cancellation of both the signal and MAI without energyn the following, we assume that this uniqueness condition
constraint on the detector [7]. We note that adaptive MOE satisfied and develop a recursive method for estimating
filtering in the signal subspace has been proposed recentlyitipath channel respondg based onS; and U..

[9] and [10]. The result in this paper indicates, however, that Since in practicd/, is always a noisy estimate of the true
adaptive filtering in the signal subspace is not needed if IBQJnaJ subspace, we need to solgh; = fjsfl in the least
signal subspace parametéls;, A,, o) are identified, because uares sense. Defidp 2 [fjs 1] andz A [flT _th]T, then

: _ - S
the linear multiuser detectors can be expressed in closed fo’il is contained in the solutios to the following optimization
by these parameters. problem

nin || Dz|]?> =2 D" Dz, st |z||?=1. (54)

I
(DECK"’L

B. Blind Adaptive Estimation of Multipath Channel Response

When the signal is transmitted over a multipath channel,

at the receiver end, the effective signature waveform is the'S Well known that the solution to (54) is given by the

multipath channel response to the original signature waveforflinimum eigenvector of the matrib™ D. Using the penalty

Subspace-based batch methods have been proposed for B‘HH(?“O” method [15], the constrained optimization problem

multipath channel estimation [2], [14]. In this section, w&o4) can be tra_nsformed into an unconstrained optimization

develop a blind adaptive method for channel estimation, WhigﬁOblem by defining the function

can be combined with the subspace tracking algorithm for joint Al gy c ., 1 9

channel estimation and multiuser detection. oz,c) = 52" D" Dr+ - (z7z-1) (55)
Suppose thaK users are transmitting synchronously over . - :

a multipath channel. The number of resolvable paths for ea\(/:vﬁlerec is some positive constant. The key to developing a

user isL = [WT,] [27], where W is the signal bandwidth recursive procedure for §ol\{|ng (54) is the following result,
and7,,, is the channel multipath spread. The impulse respon\évhose re_a_l numbe_r version 1s founql in [19]. .
™ X eProposmon 4: z is a stationary point of(z, ¢) if and only

of such a multipath cha'nnel for ttigh user can be representedIf z is a scaled version of an eigenvector of the mab¥ D,
by a tapped delayed line

with norm

L
hi(t) = hrad(t = (1 = D)T2) (52) 2| = /1 %
=1

(v is the corresponding eigenvalue). Moreover, all stationary
\Agints of g(z, ¢) are saddle points except whenis a scaled
version of the minimum eigenvector d“ D. In that case,
x,c) attains the global minimum.
Proof: See Appendix Ill. O

al BY the above result, any algorithm of gradient descent type
for minimizing ¢(z, ¢) in (55) is guaranteed to converge to the
minimum eigenvector ofB. The constant is required to be

whereT. = 1/W is the chip period and the coefficients ,
are complex channel gains. For the data signaling inter
much longer than the multipath delay spread, iE., >
T, = L/W, any intersymbol interference (ISI) due to channeq(
dispersion can be neglected [27]. Therefore, the complex
vector of chip-matched filter output within a symbol interv
is

K L greater than the minimum eigenvalue Bf which is close to
r= ZAkbk th:lsk:l Ton 0. Choosing a large will force the norm of the solutione
k=1 =1 be close tol.

K

= Axbidy + on (53)
k=1

Based on the above discussion, an adaptive algorithm for
joint channel estimation and multiuser detection is readily
obtained as follows. At time, suppose that the signal subspace
where s;,; is the vector representation of the delayed usebtained by the subspace tracking algorithmlUs(t). We
signature waveformy (¢t — (I—1)T.); n is a complex Gaussian form the matrixD(¢) = [U,(¢t) S1] and compute the matrix
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B(t) = D(t)2D(t). We then apply one step of update on os ; : ‘ ‘ . ; ;
the estimated minimum eigenvecta(t) of B(t), according | |
to the method of steepest descent ' -

z(t) ==zt -1)
— uB(®)a(t - 1) + c(lla(t = V|2 - a(t - 1)]. (56)

The estimated channel gain vectbr(¢) is a subvector of
z(t). Upon normalization, the effective signature wavefor
,(t) is found, which together with the estimated sign
subspace component$,(t) and A,(t), is used to form the
estimated linear MMSE detectan, (¢). The adaptive channel &
estimator proposed here differs from previous nonadaptive®”
ones in that it performs on-line channel estimation. Moreover,..3
this channel estimator is integrated with the linear mult|user } . i ’ . i
detector and incurs little attendant computational overhead " 50 100 150 200 280 300 350 400 450 500
compared with the computationally expensive SVD-based

batch methods for channel estimation [2], [14]. Note that @

the estimated channel gain vecthi(¢), and therefore the o4 : . . . . . . . .

0.3n 4

021 4

tlmategMLapath Channel Gains
S

estimated signature wavefor® (¢), has an arbitrary phase ST T T T T T T T T T T T T
. . . . . . 0.3+ s N

ambiguity, which can be easily resolved by differentially K

encoding the transmitted data. ool 7 y

Example 3: This example is to demonstrate the perform 4 -
mance of the proposed blind adaptive algorithm for Jomg 01 J ’ SO N
multipath channel estimation and multiuser detection. Tl*g
number of resolvable path& = 3. There are four 10-dB ¢
MAI's and one 20-dB MAI in the channel, as in Example 1£ .o.1
Fig. 3 shows the convergence behavior of the blind adapti\%e
channel estimator. Fig. 4 shows the time-averaged SIR versgi§?[
the number of iterations. It is seen that by employing th@_o_s_
proposed algorithm, little performance degradation is incurred

when the signal is distorted by the multipath channel. -0.4 8
05 . . . . . | : 7 .
0 50 100 150 200 250 300 350 400 450 500
VI. SPATIAL PROCESSING ANDBLIND Number of Iterations
ADAPTIVE ARRAY RESPONSEESTIMATION (b)
Fig. 3. Convergence of the blind adaptive multipath channel estimator. The
A. Spatial processing and Diversity Combining number of resolvable paths = 3. There are four 10-dB MAI's and one

_ ) 20-dB MAI in the channel, relative to the desired user’s signal. Shown in the
One approach that shows promise for substantial capadityres are the real (a) and imaginary (b) components of the three estimated

enhancement for CDMA systems is the use of spatial pr@uitipath gains versus the number of iterations.

cessing with multiple-sensor antenna arrays [23]. Combined

multiuser detection and array processing has been considqBdA). The received signal at tHéh sensor is then given by
previously, e.g., [12], [18], and [32]. However, one of the
challenges in this area is to develop an efficient technique for
estimating the array response to the desired user’s signal. In = ZAkaklkak + ony,
this section, we consider a blind adaptive multiuser detector k=1

that employs spatial diversity in the form of an antenna arrayhere n; is a complex Gaussian random vector with mean
Suppose that an array of sensors is employed at theg and covariance matrixIN Suppose that a bank of

receiver. Leta, be the J-vector of array response to thegecorrelating detectord], - --,d] are employed at the array
kth user. For a linear array, théh component of this array gytput, one for each sensor. Let

response is given by

K
l=1,---,J (58)

2 /_ ['rl dl J]T
akl = [ak]l = exp(jPr1)
27d J+1\ . be the output vector of the bank of decorrelators. Assuming
= Xp {JT <l_ —> Sm(ek)} 57 that the noise{n;};_, is spatially uncorrelated, then it is
easily seen that the complex-vector z; has a Gaussian
where d is the inter-sensor spacing, is the wavelength of distribution, i.e.,z; ~ N.(A1b1a4, [R_l]llUQIJ). Therefore,

the carrier, and;, is the kth user signal’s direction of arrival the maximume-likelihood decision rule fdr, based onz; is
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20 T T B T T T T T TABLE I

: o B BLIND ADAPTIVE ALGORITHM FOR ESTIMATING THE ANTENNA ARRAY
ResPoNsEa(t) TO THE DESIRED USER'S SIGNAL, BASED ON THE
""" OuTPUT 2(t) OF A BANK OF LINEAR MULTIUSER DETECTORS

y(t) = a"(t-1)z()
At) = BMt—1)+y(H)P
a(t) = a(t—1)+[=(t) —al - Dy()]y(t)" /()

1 } ‘H B TR R SRS SRR T Wherey(i) é al(i _ 1)Hz1(i), is the approximation of the

‘ unknown projectiona; (t)% z; (i) of z1(i) onto a;(¢). Then
by minimizing E[al(t)] in (62) recursively, a blind adaptive
algorithm for array response estimation is obtained. This

algorithm is listed in Table II.
T e s d mon e T oo 90 1000 Example 4: This example illustrates the performance of the
Number of iterations blind adaptive array response estimation algorithm. Consider

Fig. 4. Performance of the blind adaptive algorithm for joint effectivédN array ofJ = 3 sensors, with half-wavelength spacing,
signature waveform estimation and linear MMSE multiuser detection. Thee, d = )\/2' The DOA of the signal of interest varies
processing gainV = 31. There are four 10-dB MAI's and one 20-dB MA'Tﬁgcording tofy = (r/3) - (t/1000) — (x/6), for 0 < ¢t <

in the channel. The signal-to-noise ratio after despreading is 20 dB. . -
number of resolvable paths = 3. The data plotted are the average overl000. Then by (57) the phases of the first and third sensor

Time Averaged SIR (dB)
=
T
Il

10

100 simulations. response satisfyp;; = —¢13 = (7/1000) - ¢ — (7/2), for
0 < t <€ 1000. Shown in Fig. 5 are plots of the estimated
given by [25] phases of the array response, based on the output of the bank
by = sgn [Re (a{{zl]' (59) of (exact) decorrelators (Fig. 5(a)) and the output of the bank

of subspace-based adaptive MMSE detectors (Fig 5(b)). It is
If insteadz; is the output vector of the bank of linear MMSEseen that the proposed algorithm can closely track the array
detectors, its distribution is then approximately Gaussian [2ddsponse to the signal of interest.

and hence the same decision rule can still be used. Therefore,
the key issue here is to determine the array response wector
Once the array response (i.e., spatial signature) is accuratelh this paper, we have developed a new blind adaptive
estimated, it is also possible to use joint space—time multiugaultiuser detection technique based on signal subspace esti-

VIl. CONCLUSION

detection to achieve better performance. mation. Compared with the previous minimum-output-energy
blind adaptive multiuser detection algorithm, it is seen that
B. Blind Adaptive Estimation of Array Response the proposed method has lower computational complexity and

Since in general the number of users in the CDMA channdl§tter performance, and it is robust against signature waveform
far exceeds the number of antennas, the conventional subspaignatch. Within the framework of signal subspace estima-
techniques for DOA estimation such as MUSIC, ESPRIT, etdion, we have also developed a blind adaptive algorithm for
are not applicable. However, based on the output vegtaf estimating the effective signature waveform in the multipath
the bank of linear multiuser detectors, a simple blind adaptig@annel, and a blind adaptive algorithm for estimating the array
method for estimating the array respomsecan be developed response when an antenna array is employed. It is seen that

as follows. Notice that the autocorrelation matrixzgfis given under the proposed subspace approach, blind adaptive channel
by estimation and blind adaptive array response estimation can be

A . o n 1 o integrated with blind adaptive multiuser detection, with little

Q, = E{z 21"} = Ajaay” +[R” |ui071,. (60) attendant increase in complexity. Finally, we note from the
It is seen from (60) tha, is the principal eigenvector @, . s_imulation examples that the PASTd subspace Fracking algo-
Now as in the PASTd algorithm for subspace trackiag,is rithm has a relatively slow convergence rate, which may pose

oo o tracking is a very active research field in signal processing
L(a) = B{[|lz1 — aa”™z|"}. (61) and itis anticipated that with the emergence of more powerful
Consider the exponentially weighted version of the cost funtast subspace trackers (e.g., [30]), the performance of the
tion (61) subspace-based adaptive multiuser detectors will be improved.
. i , APPENDIX |
’C’[a’l(t)] = Zﬁt_znzl(i) - al(t)a’l(t)H‘zl(i)HQ PROOF OFLEMMA 3
=1 / /
' Denote H 2 SAST and G £ WEITvTA lvsiw?,
R~ Zﬁt_illzl(i) —a; (Hy (D)2 (62) From (8), the eigenvalue decomposition Hf is given by
i=1 H 2 SAST = UAUT. Then the Moore—Penrose generalized
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1000

Fig. 5. Performance of the blind adaptive algorithm for array response
estimation. The number of sensafs = 3, with half-wavelength spacing,
i.e.,d = A/2. The DOA of the signal of interest; varies with time such

that the phases of the sensor responsevaries linearly from—(x/2) to

7/2, and ¢3 varies linearly fromn/2 to —(x/2). Shown are the plots of
the estimated phases of the array response. In (a) the estimation is basel/

where the second equality follows from the facts et w =
Iy and27s = vV = vV7 = I. Since theN x N
diagonal matrixEX" = diag (I1,0), it follows from (64) that
HG@G is symmetric. SimilarlyGH is also symmetric. Next we
verify condition b).

HGH =(WvTAavs"whHiws"TviAlvew?)
-wzviavsTwh)
=wrrizviAveTw?’
=wzviavs'w?t

=SAS"=H (65)

where in the second equality, the following facts are used:
WIW = Iy, 5757 = I, andVIV = VVT = I; the
third equality follows from the fact th&X'E = £. Condition

c) can be similarly verified, i.e GHG = G. Therefore, we
have

UANUT =H =G =wz"VvTA'vEiw?.  (66)

Now (26) follows immediately from (66) and the fact that
U'v =UU" =1y. O

APPENDIX Il
PROOF OF LEMMA 4

Define
d2U,(A, — 21 ) U sy = UNU" s,

Then from (13) we havel, = d/(d"s,). Let ¢, be thekth
unit basis of R%, i.e., all entries ofe;, are zeros except the
kth entry, which isl. Sinces; = Se;, we have

d"s, =sTUAUT Sef
=el'ST(SAS) Sef
=l (VEIWh(WETvT A lvEw T (wzvT)e,

—2 _
:elTA_lek:{Al . k=1

0, k=2, K 7

here the second equality follows from (63); the third equality

the outputs of the exact decorrelating detectors. In (b) the estimation is bafellows from (25) and (66); and the fourth equality follows
on the outputs of the subspace-based blind adaptive MMSE detectors. Fhem the facts tha¥ W = Iy, STiT _ iy I,

forgetting factor used in the array response estimation algorithord& and
that in the subspace tracking algorithm0i®95. It is seen that in both plots

the array response is closely tracked.

inverse [11] of matrixH is given by

H' = (SAST)" = UA[U".

andVV? = Iy. Therefored' s, = 1, andd] 8, = 0, for
k=2-.,K
To prove (29), using (67), we notice that

did, = (d¥d)/(d"s,)? = Atd"d (68)

(63)  where

On the other hand, the Moore-Penrose generalized inversg’q — sTUAIUTUAU” 87

H' of a matrix H is the unique matrix that satisfies [11]
a) HH' andH'H are symmetric; b)HHTH = H; and c)
H'HH" = H'. Next we show that@ = H' by verifying
these three conditions. We first verify condition a). Using (25),

we have
HG =weviavs™whHwsTvTA~lvsiw?)
=wesw’

(64)

=l (VETWHUMNAUT (WEVT e,

= (vErwhHuwtweTvi A lvstwTr)
A(UTWETVTATIVEWTUT WEVT e,

=l ATV EIETVTA e,

= ATV (ETD) "V e,

=AT%eF (878) ey = ATHR 1, (69)
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where the second equality follows from the facts thatith equality achieved if and only & is a scaled version of

UTU = Iy, 8, = Sey, and (25); the third equality follows the

minimum eigenvector with norfie|| = /1 — (Vmin/c)-

from (26); the fourth equality follows from the facts thafTherefore, the local minimum is the global minimum. O

UUT = WIW = Iy and27S/T = £y = vv7 = Iy
the sixth equality follows from (25); and the last equality
follows from the fact thatR = S*'S. O
(1]
APPENDIX Il
PROOF OF PROPOSITION 6

Define B 2 D D. The proof in [19] is only for a real
symmetric matrixB. In the following we give a proof for a [3]
Hermitian matrixB. SinceB is Hermitian we haveB%, = By 4
and B? = —Bj, where the subscript and ; represent the
real and imaginary parts of the complex matrix, respectively

, / / _ (5]
Now definex 2 2% z7]7 andB £ |B= _Bf] Then it can

(2]

B;r Bpgr

be readily verified that(z, ¢) in (55) can be written as [6]

q(z,c) = % x"Bx+ g (x'z— 1) (70) M

The gradient and Hessian matrix @fz, ¢) are given, respec- (8]
tively, by

Vg(z,c) =Bx+c(x'x— 1)x (71) @

V2q(z,c) =B+ c(x"x — 1)I + 2cxx”. (72) o

Let 11, -+, v+ andwy, .-+, v+ be the eigenvalues and[i1]
corresponding eigenvectors of the mat# It can be ver-

ified that eachy; is an eigenvalue oB of multiplicity 2, 2]
with the corresponding eigenvectors, = [vl, +}]" and
v, 2 [—v] vl ]7. Itis then seen from (71) th&Tq(z,c) =0 [13]

if and only if x is a scaled version of an eigenvector of matrix

B, or equivalently,x is a scaled version of matriB3, i.e., [14]
& = ||z||vx. The norm||z|| is determined from

0 = Vq(||zllvx, ¢) =B|lz|lv), + c(2]* = 1)llz]lvs [15]
= villzlluy, + e(ll2]? - Dllellvy.  (73) [16]

Solving for ||z|| we obtain|jz|| = /1 — (/c). Now the
. . . A . [17]

Hessian matrix at any stationary point= /1 — (v /c)vy, IS
V2q<1 /11— Yk Vi, c) =B—wl+2(c— l/k)yky:,f (18]

C

=vev’ (74)

N N [19]
where V. = [v; v} vp,p Vi ] and @ = diag (v —
Vi, VI = Voo y Vel — Vi Vel — Vs 2(e — ), 2(c — o0
Vk )y Vkbl — Vhs Vil — Viy "y VKL — Vio VK+L — Vi ). 1L S

seen from (74) that the Hessian is semipositive definite if arﬂg]
only if »; is the smallest eigenvalue of the matdX then

the corresponding stationary point is the only local minimun?2]
otherwise, the Hessian is indefinite at the stationary poi%g]
which is a saddle point. On the other hand,

1
Q(xv C) Z 5 Vmianx + g (.’L'H.’L' - 1)2 [24]
. 2
— E |:1'H.T _ (1 _ me):| [25]
4 c
mj 1/2 : [26]
m _ Ymin 75
+ < 2 4c ) (75)

REFERENCES

A. Abdulrahman, D. D. Falconer, and A. U. Sheikh, “Decision feedback
equalization for CDMA in indoor wireless communication$£EE J.
Select. Areas Commuyrvol. 12, pp. 698-706, May 1994.

S. E. Bensley and B. Aazhang, “Subspace-based channel estimation
for code-division multiple-access communication systetisE Trans.
Commun, vol. 44, pp. 1009-1020, Aug. 1996.

C. H. Bischof and G. M. Shroff, “On updating signal subspac&SEE
Trans. Signal Processingol. 40, pp. 96-105, Jan. 1992.

D.-S. Chen and S. Roy, “An adaptive multiuser receiver for CDMA
systems,”IEEE J. Select. Areas Commuwol. 12, pp. 808-816, June
1994.

P. Comon and G. H. Golub, “Tracking a few extreme singular values
and vectors in signal processingtoc. IEEE vol. 78, pp. 1327-1343,
Aug. 1990.

R. D. DeGroat, “Noniterative subspace trackindEZEE Trans. Signal
Processing vol. 40, pp. 571-577, Mar. 1992.

M. Honig, U. Madhow, and S. Verd “Blind multiuser detection,TEEE
Trans. Inform. Theoryvol. 41, pp. 944-960, July 1995.

M. Honig and H. V. Poor, “Adaptive interference suppression in wireless
communication systems,” in H. V. Poor and G. W. Wornell, Euire-
less Communications: Signal Processing Perspectivelpper Saddle
River, NJ: Prentice Hall, 1998.

M. L. Honig, “Adaptive linear interference suppression for packet DS-
CDMA,” European Trans. TelecomrtSpecial Issue on CDMA), 1997.
., “A comparison of subspace adaptive filtering techniques for
DS-CDMA interference suppression,” Proc. 1997 Milcom 1997.

R. A. Horn and C. R. Johnsonyatrix Analysis London, U.K.:
Cambridge Univ. Press, 1985.

H. C. Huang, S. Schwartz, and S. Vard‘Combined multipath and
spatial resolution for multiuser detecion: Potentials and problems,”
in Proc. 1995 IEEE Int. Symp. on Information Thedyhistler, BC,
Canada, Sept. 1995), p. 205.

R. Kohno, R. Meidan, and L. Milstein, “Spread spectrum access method
for wireless communications[EEE Commun. Mag pp. 58-67, Jan.
1995.

H. Liu and G. Xu, “A subspace method for signal waveform estimation
in synchronous CDMA systems|EEE Trans. Communvol. 44, pp.
1346-1354, Oct. 1996.

D. G. Luenbergerlinear and Nonlinear Programmin@nd ed. Read-
ing, MA: Addision-Wesley, 1989.

R. Lupas and S. Verd “Linear multi-user detectors for synchronous
code-division multiple-access channel$£EE Trans. Inform. Theory
vol. 35, pp. 123-136, Jan. 1989.

U. Madhow and M. Honig, “MMSE interference suppression for direct-
sequence spread-spectrum CDMAEEE Trans. Communvol. 42, pp.
3178-3188, Dec. 1994.

R. K. Madyastha and B. Aazhang, “Multiuser receivers for cdma
communication systems using antenna arrays,’Pioc. 32th Annu.
Allerton Conf. on Communications, Computing and Contkébnticello,

IL, Oct. 1994).

G. Mathew and V. U. Reddy, “Development and analysis of a neural
network approach to Pisarenko’s harmonic retrieval methd8EE
Trans. Signal Processingol. 42, pp. 663-667, Mar. 1994.

S. L. Miller, “An adaptive direct-sequence code-division multiple-access
receiver for multiuser interference rejectiodEEE Trans. Commun
vol. 43, pp. 1556-1565, Feb./Mar./Apr. 1995.

U. Mitra and H. V. Poor, “Adaptive receiver algorithms for near-far
resistant CDMA,"IEEE Trans. Communvol. 43, pp. 1713-1724, 1995.
__,“Analysis of an adaptive decorrelating detector for synchronous
CDMA channels,”IEEE Trans. Communvol. 44, Feb. 1996.

A. F. Naguib, A. Paulraj, and T. Kailath, “Capacity improvement
with base-station antenna arrays in cellular COMAEEE Trans. Veh.
Technol, vol. 43, pp. 691-698, Mar. 1994.

H. V. Poor and S. Verd, “Probability of error in MMSE multiuser
detection,” IEEE Trans. Inform. Theoryvol. 43, pp. 858-871, May
1997.

H. V. Poor,An Introduction to Signal Detection and Estimati@nd ed.
New York: Springer-Verlag, 1994.

H. V. Poor and X. Wang, “Code-aided interference suppression in
DS/CDMA communications—Part II: Parallel blind adaptive implemen-
tations,” |IEEE Trans. Communvol. 45, pp. 1112-1122, Sept. 1997.



690

[27]

(28]

[29]
(30]

(31]

[32]

(33]

(34]

(35]

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 2, MARCH 1998

J. G. ProakisDigital Communications3rd ed. New York: McGraw-
Hill, 1995.

P. B. Rapajic and B. S. Vucetic, “Adaptive receiver structures for
asynchronous CDMA systems|EEE J. Select. Areas Commurvol.
12, pp. 685-697, May 1994.

G. W. Stewart, “An updating algorithm for subspace tracking,EE
Trans. Signal Processingol. 40, pp. 1535-1541, June 1992.

P. Strobach, “Low-rank adaptive filterdEEE Trans. Signal Processing
vol. 44, pp. 2932-2947, Dec. 1996.

E. G. Strom, S. Parkvall, S. L. Miller, and B. E. Ottersten, “Propagatio
delay estimation in asynchronous direct-sequence code-division multi
access systems|EEE Trans. Communvol. 44, pp. 84-93, Jan. 1996.
V. G. Subramanian and U. Madhow, “Blind demodulation of direct-
sequence CDMA signals using an antenna arrayPiioc. 1996 Conf.
on Information Science and Systeri996.

D. W. Tufts and C. D. Melissinos, “Simple, effective computation of

principle eignevectors and their eigenvalues and application to hiéﬂl

[42]

resolution estimation of frequencies|EEE Trans. Acoust. Speech.
Signal Processingvol. 34, pp. 1046-1053, Oct. 1986.

A. van der Veen, E. Deprettere, and A. Swindlehurst, “Subspace-based
signal analysis using singular value decompositidPrdc. IEEE vol.
81, pp. 1277-1308, Sept. 1993.

S. Verdi, Multiuser Detection Cambridge, UK: Cambridge Univ.
Press, 1998.

9
e

[37]

(38]

]

[40]

]

[43]

[36] M. Viberg and B. Ottersten, “Sensor array processing based on subspace

fitting,” IEEE Trans. Signal Processingol. 39, pp. 1110-1120, May
1991.

A. J. Viterbi, “The orthogonal-random wave form dichotomy for digital
mobile personal communicationdEEE Personal Commun. Magvol.

1, pp. 18-24, Feb. 1994.

X. Wang and H. V. Poor, “Blind equalization and multiuser detection for
cdma communications in dispersive channelgEEE Trans. Commun
vol. 46, pp. 91-103, Jan. 1998.

M. Wax and T. Kailath, “Detection of signals by information theoretic
criteria,” IEEE Trans. Acoust. Speech. Signal Processwoj ASSP-33,
pp. 387-392, Apr. 1985.

B. Yang, “An extension of the PASTd algorithm to both rank and
subspace tracking,IEEE Signal Processing Letvol. 2, pp. 179-182,
Sept. 1995.

__, “Projection approximation subspace trackindBEE Trans.
Signal Processingvol. 44, pp. 95-107, Jan. 1995.

, “Asymptotic convergence analysis of the projection approxi-
mation subspace tracking algorithmsignal Processingvol. 50, pp.
123-136, 1996.

L. C. Zhao, P. R. Krishnaiah, and Z. D. Bai, “On detection of the number
of signals in the presence of white nosid,”Multivar. Anal, pp. 1-25,
1986.




