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Abstract:
In this paper, a spoken language 
recognition system using ergodic Hidden 
Markov Models as reference patterns is 
studied. The HMM’s considered are 
continuous valued and have multivariate 
Gaussian Mixture Distribution. The system 
is tested against 3 language utterances for 
its robustness. 
 
I Introduction: 
Spoken language recognition is an 
interesting research problem and has been 
around for the last decade with many 
optimistic solutions [5], [4]. The earliest 
works in language recognition by House 
and Neuberg [3] was based on the hidden 
Markov model (HMM) where the potential of 
the discrete ergodic HMM to model 
sequential characteristics of broad phonetic 
labels derived from texts of different 
languages is exploited. Following this, there 
have been a few more ideas to use HMMs 
for language recognition [2], [1]. 
 
II Linear Prediction Front End Analysis: 
 
The feature vectors corresponding to the 
input speech necessary for Language 
Recognition are derived from LPC Front end 
analysis. The LPC order and the cepstrum 
order used for the front end analysis are 10 
and 12 respectively. The block diagram in 
the next page shows how the LPC Front 
End Analysis is implemented for obtaining 
feature vectors corresponding to the input 
speech. Detailed description of each block 
is given below  
 
2.1 Premphasis: 
The input speech signal s[n] is passed 
through a premphasis block to account for 
the attenuation of high frequency 
components in the vocal tract. The 
premphasis filter used is a digital FIR High 

Pass Filter with transfer function H (z) = 1 - 
0.95z-1. 
           sp[n] = s[n] - 0.95s[n-1] 
 
2.2 Frame Blocking: 
 The premphasised speech signals sp[n] is 
segmented into frames. A frame contains 
300 samples. Adjacent frames are distinct 
by 100 samples. 
    SF[i, n] = sp[(i-1)*100+n]; 1<=n<=300 
 
2.3 Hamming Windowing: 
Each speech frame is windowed by a 
Hamming window of length 300.Each 
speech frame is windowed to taper the 
speech frame at the edges to zero. 
Hamming Window    
w[n] = 0.54 - 0.46cos(2πn/299);        

0<=n<=299  
SF[i,n] = w[n-1]SF[i,n]; 1<=n<=300 
 
2.4 Autocorrelation Analysis: 
The autocorrelation analysis leads to an 
autocorrelation vector given by 

AC[m] = ∑ ; 0<= m <=p +
300

1
][][ mnFnF

where F[n] is the nth sample in the speech 
frame, p is the LPC order. 
 
2.5 LPC Coefficients: 
LPC Coefficients are derived recursively 
from autocorrelation coefficients using the 
standard Levinson-Durbin Algorithm. 

k[i] = (AC[i] - ) / E[i - 1] ∑
1-i

1
j] - AC[i j] 1,- AL[i

AL[i , i] = k[i] 
AL[i , j] = AL[i-1,j] - k[i]AL[i-1,i - j];    
1<= j <= (i - 1) 
 
E[i] = (1 - k[i]2)E[i - 1] 
 
The algorithm is repeated for the range  
1<= i<= p and then, the LPC coefficients are  
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                                          Diagram 1: LPC Front end Analysis 
 
AL[i , j]  for 1<= j <=p. 
 
2.6 Cepstral Coefficients: 
The cepstral coefficients are derived from 
the LPC Coefficients using the following 
relations 
c[0] = log(G) where G is the gain term of the 
LPC model. 

c[m] = LPC[m] + ; ∑
1-m

1
k]/m - kc[k]LPC[m

1<= m <=p.  

c[m] = ; m>p ∑
−

−
1

1
/][][

m

mkmLPCkkc

2.7 Cepstral Windowing: 
The weighted cepstral coefficients are 
obtained from the cepstral coefficients using 
a cepstral Window of length Q.        
Cepstral Window  
w[n] = 1+ Q sin(πn/Q)/2 
WC[m] = c[m]w[m] ; 1<= m <=Q 
 
2.8 Delta Cepstrum & Energy: 
The delta cepstrum & delta energy for each 
frame are derived using the following 
relations 

DC[t , m] = G1 ;1<= m <=Q  

where G1 = 0.375 

∑
−

+
2

2
],[ mktkc

DE[t] = G2 ; G2=0.0375   ∑
−

+
2

2
][ ktkE

2.9 Delta-Delta Cepstrum & Energy: 
The delta-delta cepstrum & delta-delta 
energy of each frame are derived using the  
following relations.  
 
DDC[t , m] = G (DC[t+1, m] - DC[t-1, m])    
1<= m <=Q  & G = 0.375 
 
DDE[t] = G (DE[t+1] - DE[t-1]) 
 
Therefore the feature vector of a speech 
frame = Weighted cepstrum + Delta 
cepstrum + Delta-Delta cepstrum + Delta 
energy + Delta-Delta energy. 
The parameters defining the LPC Front end 
analysis are 
Sampling rate Fs: 10000 Hz 
Number of samples in a speech frame 
N: 300 
Number of distinct samples in a speech 
frame M:100 
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LPC Order p:10 
Cepstrum Order Q:12 
G1:0.375 
G2:0.0375 
G:0.375 
If the speech utterance contained T frames, 
the observation sequence contains T 
frames & is given by O = {O1,O2,O3......OT} 
where Oi is the observation frame 
corresponding to the ith  speech frame. 
 
III Language Recognition: 
    
Hidden Markov Model is a statistical model 
in which the state sequence is hidden & 
output sequence is observable. Each 
language to be recognized is statistically 
modeled by a Hidden Markov Model. HMM 
is a widely used statistical model used in 
speech recognition, Language recognition, 
bioinformatics, weather forecasting & ISI 
Channel modeling in wireless 
communication etc. 
The HMM’s used for language modeling 
were ergodic. Ergodic HMM is a HMM in 
which transition from any state ' i ‘ to other 
N-1 states is possible. The output of the 
HMM’s used were continuous valued 
vectors with multivariate Gaussian mixture 
densities. A HMM is characterized by 3 
parameters namely 
 
1.) Transition Probability Matrix A: 
A is a square matrix of order N, where N is 
the number of states in the HMM. The 
elements are A[i , j] with 1<=i , j <=N .The 
element gives the probability of HMM 
transiting from state ' i ' to state ' j '. 
2.) Initial Probability Vector PI: 
PI is a vector with N elements, where PI[i] 
represents the probability of HMM initially 
being in state ' i '. 
3.) State Observation Density B: 
Discrete HMM: B is a matrix of dimension 
N*M, where M is the number of discrete 
observation symbols. An element B[i , j] 
represents the probability of symbol S[j] 
being produced by state ' i '. 
Continuous HMM: B is a vector with N 
elements, where B[i] represents the state ' i ' 
observation probability. 

 
In continuous HMM case, the observation 
vector Oi produced by state ' i ‘ is modeled 
by a Multivariate Gaussian Mixture Density. 
So each state has Gaussian mixture 
components. 
b[j , o] =  W[j , k] * N( o, M[j , k], V[j , k] )  
where 
j = State of Continuous HMM 
o = Observation frame. 
W[j , k] = Weight of state j & mixture k 
M[j , k] =  Mean vector of state j & mixture k 
V[j , k]  =  Covariance matrix of state j & 
mixture  k 
L = Length of multivariate Observation 
vector. 
MG = Number of mixture components in a 
HMM state. 
and                      
N( o, M[j , k], V[j , k] ) = ((2π)L |V[j , k]| 
exp((o - M[j , k])(V[ j ,k])-1(o - M[j , k])H)) -0.5

                              
In our implementation, each language is 
modeled by a 5 state HMM & each state 
having 5 Gaussian mixture components. 
 
Training the HMM’s: 
Segmental K-Means algorithm training was 
used to train the HMM’s for specific 
languages. From a random initial HMM for 
each language, the optimum HMM is 
obtained using Segmental K-Means 
training. 
The block diagram of Segmental K-Means 
training is shown in the next page. 
 
1.) Viterbi Segmentation: 
Given an observation sequence & HMM [A, 
PI, B]; the Viterbi segmentation is done as 
follows. 
 
Define the maximum joint probability 
variable 
d(t,i) =  max  P(q1 q2 ....qt-1, qt= i,O1O2 .....Ot) 
           q1q2...qt-1  
Initialization: d(1,i) = PI[i] b[i,O1] ;1<= i <=N 
Recursion:  
d(t, j) =   max { d(t-1, i) A[i, j] } * b[j, Ot] ;          
            1<=i<=N 
2<=t<=T & 1<=j<=N 
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Diagram 2: Segmental K-Means 
Reestimation 

 
 

 
Diagram 3: Segmental K-Means Clustering 
  
PH(t, j) = arg max  { d(t-1, i) A[i, j] } 
                    1<=i<=N 
 
Path Backtracking:     
Q[T] = arg  max  { d(T,i) } 
                1<=i<=N 
Q[t] = PH( t+1, Q[t+1] ); t = [T-1,1] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.) Segmental k-means clustering: 
Observation frames belonging to each state 
are clustered into M clusters, each cluster 
represents a Gaussian mixture component 
of that state. Observation frames in a state  
are clustered into M clusters using M 
centroids corresponding to M mixtures & 
Euclidean Distortion Metric. 
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3.) Update HMM: 
          
A [i, j] = Nij / Ni
Nij = number of times HMM transists from 
state ' i ' to state ' j '. 
Ni = number of times HMM transists from 
state ' i '. 
            
W [j , k] = Hjk / Nj
Hjk = number of observation frames in state  
‘ j ’ & mixture ' k '. 
 
V[j , k] = sample covariance matrix  of 
observation frames in state  j & mixture k . 
 
M[j , k] = sample mean of observation 
frames in state ' j ' & mixture ' k '. 
 
4.) Convergence: 
Viterbi Likelihoods of HMM's with respect to 
the observation sequence are used to test 
for convergence. If V(r) & V(r-1) represent 
the Viterbi likelihoods of HMM's at the 
iterations ' r ' & ' r-1 ' respectively, then if 
V(r) - V(r-1)<10 -4,convergence is achieved. 
 
Algorithm for Language Recognition: 
The diagram in the next page shows the 
algorithm used for language recognition. For 
a given test utterance, the language 
corresponding to the HMM which produces 
the maximum Viterbi likelihood of 
observation is hypothesized as the spoken 
language. 
 
Viterbi Likelihood:  
For a given HMM [A, PI, B] and Observation 
sequence {O1,O2,......OT}, the Viterbi 
Likelihood V is calculated as follows 
V[i] = PLM * PA 
where PLM = Language Model Likelihood 
and PA = Acoustic Likelihood 
PLM = P(Qi1Qi2......QiT) 
and 
PA = P(O1O2.....OT/Qi1Qi2 .....QiT) 
where the state sequence used is the 
Maximum Likelihood Viterbi state sequence 
obtained by Viterbi segmentation. 

IV Simulation Results: 
The system was tested against speech 
utterances across 3 languages (English, 
German & Hindi) and the performance was 
satisfactory. Improvements to the current 
system can be done by employing Baum 
Welch/Forward Backward algorithm for 
HMM generation and training. 
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Observation Sequence {O1 O2 …….OT} 
 
 

 
                    Maximum Likelihood                             Observation 
                     State Sequence                                   Likelihood V[i] 
                                                                                  of Observation 
                     Q[i] for HMM[i]                                      sequence {O1 O2
                                                                                    ……OT} w.r.t 
                        1<= i <=8                                             HMM[i]. 
                
                       Q[i] = {Qi1 Qi2 ……QiT}                      1<= i <=8 
                                                                                          
 
 
 

 
 
Diagram 4: Algorithm for language recognition. 
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