´M§ä¯À¼Æªº¦h¶µ¦¡

 

¥H©¹¼Æ¾Ç®a§Æ±æ¥i±o¨ìùÚ¥X¯À¼Æªº¤½¦¡¡A«K±q¦h¶µ¦¡ (Polynomial) ¤¤§ä´M¤½¦¡ªº¼v¸ñ¡A©Î»¡¬O§ä¥X¤@±ø¯À¼Æªº³q¦¡¡A¥i±¤¥þ¬O¥¢±Ñ¡C¦ý³o¤Ï¹L¨Ó¨Ï¤H­Ì»{ÃѤF¤£¦PºØÃþªº¯À¼Æ¡A²{¦bÅý§Ú­Ì¦^¬Ý³o¨Ç·|²£¥Í¯À¼Æªº¦h¶µ¦¡§a¡I

¦h¶µ¦¡
¥i³sÄòµ¹¥X¯À¼Æªº½d³ò
´µ¬¥®¦¼Æ¦C
¯À¼Æ­È
36n2-810n+2753
[0,44]
2753,1979,1277,.....,52253
47n2-1701n+10181
[0,42]
8527,6967,5501,.....,19447
n2+n+41
[0,39]
41,43,47,......,2797
2n2+29
[0,28]
29,31,37,......,1597
n2+n+17
[0,15]
17,19,23,......,257
4n2+4n+59
[0,13]
59,67,83,......,787
2n2+11
[0,10]
13,19,29,......,211
n3+n2+17
[0,10]
19,29,53,......,1117

¤Wªíªº¼Æ¦¡¥u¦C¨ú³sÄòµ¹¥X¯À¼Æªº³¡¥÷ n ­È¡A¦b¸Ó½d³ò¥H¥~ªº¤]¦s¦³¯À¼Æ¡C

¬O§_¦³¦h¶µ¦¡¥i¨Ï¥N¤J¥ô¦óªº x ­È³£·|µ¹¥X¯À¼Æ©O¡H

µª®×¬O¨S¦³¡A¨ä¹ê¦­¦b 1752¦~¡A´¶¾|¤h¼Æ¾Ç®a­ô¼w¤Ú»® (Christian Goldbach 1690-1764) µý©ú¤F¨S¦³¤@±ø¥H¾ã¼Æ ¬°¨t¼Æªº¦h¶µ¦¡¡A§Y¾ã¼Æ¦h¶µ¦¡ (Integer Polynomial) ¥iµ¹¥X©Ò¦³ªº­È¬Ò¬°¯À¼Æ¡C¨ä«áªk°ê¼Æ¾Ç®a°ÇÅý¼w (Adrien-Marie Legendre 1752-1833) §óµý©ú¨S¦³¦³²z¦h¶µ¦¡ (Rational Polynomial) ¥i±`µ¹¯À¼Æ¡CÅý§Ú­Ì¬Ý¬Ý¬°¤°»ò§a¡C

§Ú­Ì¥i¥H¥Î¤Ïµýªk¨Óµý©ú³o¤@ÂI¡G

­Õ­Y¯à§ä¨ì¤@±øùÚµ¹¥X¯À¼Æªº¦h¶µ¦¡¡C¨º»ò¡A·í x = m ®É«K±o¤@¯À¼Æ P¡A¦Ó¥B¡A

P = a + bm + cm2 + dm3 + ......

¦P®É¡A¨ú x = m + nP ®É¡A¤S¥i±o¥t¤@¯À¼Æ Q¡A¦Ó¥B¡A

Q = a + b ( m + nP ) + c ( m + nP )2 + d ( m + nP )3 + ......

¦ý¬O¡A­Y§â¤W¦¡®i¶}¡A§Ú­Ì±o¡G

b ( m + nP ) = bm + (§t¦³ P ªº¶µ)

c ( m + nP )2 = cm2 + (§t¦³ P ªº¶µ)

d ( m + nP )3 = dm3 + (§t¦³ P ªº¶µ)

......

¦]¦¹¡AQ = a + bm + cm2 + dm3 + .... + (§t¦³ P ªº¶µ) = P + (§t¦³ P ªº¶µ)¡A

¦ý©Ò¿×¡u§t¦³ P ªº¶µ¡v¥ç§Y¬O¡uP ªº­¿¼Æ¡v¡C¦]¦¹ Q ¬O P ªº­¿¼Æ¡A§Y¤£¬O¯À¼Æ¡C¦]¦Ó»P¡uùÚµ¹¯À¼Æ¡v¬Û¥Ù¬Þ¡A±À½¡uùÚµ¹¯À¼Æ¡vªº°²³]¡Cµý²¦¡C

Áö¤ª¦³²z¦h¶µ¦¡¤£·|ùÚµ¹¯À¼Æ¡A¦ý¨ä¥Lªº¤èµ{¤S¦p¦ó¡H¦p¦hÅܶqªº¥áµf¹Ï¤èµ{ (Diophantine Equation)¡C©Ò¿×¥áµf¹Ï¤èµ{¡A§Y¥u­n¨D¾ã¼Æ¸Ñªº¤èµ{¦¡¡C

1976¦~¡A¼Æ¾Ç®aã´µ (J. P. Jones) ¡B µØ¹F (H. Wada) ¡B ¦è¹D (D. Sato) ¤Î­³®¦´µ (D. Wiens) §ä¨ì¤F¤@²Õ¥i¡uùÚµ¹¯À¼Æ¡vªºÁp¥ß¤èµ{¡A¦@¦³ 26 ­ÓÅܼơG

wz + h + j - q = 0

(gk + 2g + k + 1) (h + j) + h - z = 0

16 (k + 1)3 (k + 2) (n + 1)2 + 1 - f2 = 0

2n + p + q + z - e = 0

e3 (e + 2) (a + 1)2 + 1 - o2 = 0

(a2 - 1) y2 + 1 - x2 = 0

16 r2 y4 (a2 - 1) + 1 - u2 = 0

n + l + v - y = 0

(a2 - 1) l2 + 1 - m2 = 0

ai + k + 1 - l - i = 0

{[a + u2 (u2 - a)]2 - 1} (n - 4dy)2 + 1 - (x + cu)2 = 0

p + l (a - n - 1) + b (2an + 2a - n2 - 2n - 2) - m = 0

q + y (a - p - 1) + s (2ap + 2a - p2 - 2p - 2) - x = 0

z + pl (a - p) + t (2ap - p2 - 1) - pm = 0

¦¡¤¤ªº a ¦Ü z ¬° 26 ­ÓÅܼơA¹ï¦L¨ê¨Ó»¡¤]¦³¨ä¦n³B¡A­è¦n¥Î¥ú 26 ­Ó­^¤å¦r¥À¡C¨º»ò©M¯À¼Æ¦³¤°»òÃö«Y¡A­ì¨Ó±oÃÒ·í¤W¤W¦¡§ä¨ì¥¿¾ã¼Æ¸Ñ (§Y 26 ­Ó­^¤å¦r¥À¥þ¬O¥¿¾ã¼Æ) ®É¡Ak + 2 «K¬O¯À¼Æ¡A¤Ï¤§¥çµM¡C¦ý­n§ä¥X¥¿¾ã¼Æ¸Ñ¤S½Í¦ó®e©ö©O¡I

 

 

1