
0.1 Binomial Sum Divisible by Primes

1

PEN E16

(MM, Problem 1392, George Andrews) Prove that for any prime p in the interval]
n,

4n

3

]
, p divides

n∑
j=0

(
n

j

)4

.

Solution by Darij Grinberg.

The problem can be vastly generalized:

Theorem 1. Let ` be a positive integer. If n1, n2, ..., n` are positive integers and p

is a prime such that (`− 1) (p− 1) <
∑̀
i=1

ni and ni < p for every i ∈ {1, 2, ..., `}, then

p |
p−1∑
j=0

(−1)`j ∏̀
i=1

(
ni

j

)
.

Before we prove this, we first show some basic facts about binomial coefficients and remainders

modulo primes. We recall how we define binomial coefficients:

Definition. The binomial coefficient
(

x

u

)
is defined for all reals x and for all integers

u as follows:
(

x

u

)
=

x · (x− 1) · ... · (x− u + 1)
u!

if u ≥ 0, and
(

x

u

)
= 0 if u < 0.

Note that the empty product evaluates to 1, and 0! = 1, so this yields
(

x

0

)
=

x · (x− 1) · ... · (x− 0 + 1)
0!

=

empty product
0!

=
1
1

= 1 for every x ∈ Z.

Theorem 2, the upper negation identity. If n is a real, and r is an integer, then(
−n

r

)
= (−1)r

(
n + r − 1

r

)
.

Proof of Theorem 2. We distinguish two cases: the case r < 0 and the case r ≥ 0.

If r < 0, then
(
−n

r

)
= 0 and

(
n + r − 1

r

)
= 0, so that

(
−n

r

)
= (−1)r

(
n + r − 1

r

)
ensues.

If r ≥ 0, then, using the definition of binomial coefficients, we have(
−n

r

)
=

(−n) · (−n− 1) · ... · (−n− r + 1)
r!

= (−1)r · n · (n + 1) · ... · (n + r − 1)
r!

= (−1)r · (n + r − 1) · ... · (n + 1) · n
r!

= (−1)r ·
(

n + r − 1
r

)
.

Hence, in both cases r < 0 and r ≥ 0, we have established
(
−n

r

)
= (−1)r

(
n + r − 1

r

)
. Thus,(

−n

r

)
= (−1)r

(
n + r − 1

r

)
always holds. This proves Theorem 2.

Theorem 3. If p is a prime, if u and v are two integers such that u ≡ v mod p, and

if k is an integer such that k < p, then
(

u

k

)
≡

(
v

k

)
mod p.
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Proof of Theorem 3. If k < 0, then
(

u

k

)
=

(
v

k

)
(because

(
u

k

)
= 0 and

(
v

k

)
= 0), so that

Theorem 3 is trivial. Thus, it remains to consider the case k ≥ 0 only. In this case, k! is coprime

with p (since k! = 1 · 2 · ... · k, and all numbers 1, 2, ..., k are coprime with p, since p is a prime

and k < p).

Now, u ≡ v mod p yields

k! ·
(

u

k

)
= k! · u · (u− 1) · ... · (u− k + 1)

k!
= u · (u− 1) · ... · (u− k + 1)

≡ v · (v − 1) · ... · (v − k + 1) = k! · v · (v − 1) · ... · (v − k + 1)
k!

= k! ·
(

v

k

)
mod p.

Since k! is coprime with p, we can divide this congruence by k!, and thus we get
(

u

k

)
≡

(
v

k

)
mod p. Hence, Theorem 3 is proven.

Finally, a basic property of binomial coefficients:

Theorem 4. For every nonnegative integer n and any integer k, we have
(

n

k

)
=(

n

n− k

)
.

This is known, but it is important not to forget the condition that n is nonnegative (Theorem

4 would not hold without it!).

Now we will reprove an important fact:

Theorem 5. If p is a prime, and f ∈ Q [X] is a polynomial of degree < p − 1 such

that f (j) ∈ Z for all j ∈ {0, 1, ..., p− 1} , then
p−1∑
j=0

f (j) ≡ 0 mod p.

Before we prove Theorem 5, we recall two lemmata:

Theorem 6. If p is a prime and i is an integer satisfying 0 ≤ i ≤ p − 1, then(
p− 1

i

)
≡ (−1)i mod p.

Theorem 7. If N is a positive integer, and f is a polynomial of degree < N, then
N∑

j=0

(−1)j

(
N

j

)
f (j) = 0.

Theorem 6 appeared as Lemma 1 in [2], post #2. Theorem 7 is a standard result from finite

differences theory.

Proof of Theorem 5. Let N = p − 1. Then, f is a polynomial of degree < N (since f is a

polynomial of degree < p− 1). Thus, Theorem 7 yields
N∑

j=0

(−1)j

(
N

j

)
f (j) = 0. Hence,

0 =
N∑

j=0

(−1)j

(
N

j

)
f (j) =

p−1∑
j=0

(−1)j

(
p− 1

j

)
︸ ︷︷ ︸

≡(−1)j mod p
by Theorem 6

f (j) ≡
p−1∑
j=0

(−1)j (−1)j︸ ︷︷ ︸
=((−1)j)2

=((−1)2)j

=1j=1

f (j) =
p−1∑
j=0

f (j) mod p.

This proves Theorem 5.
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Proof of Theorem 1. The condition (`− 1) (p− 1) <
∑̀
i=1

ni rewrites as ` (p− 1) − (p− 1) <∑̀
i=1

ni. Equivalently, ` (p− 1)−
∑̀
i=1

ni < p− 1.

For every i ∈ {1, 2, ..., `} , we have p− ni − 1 ≥ 0, since ni < p yields ni + 1 ≤ p.

For every i ∈ {1, 2, ..., `} and every integer j with 0 ≤ j < p, we have

(
ni

j

)
=

(
− (−ni)

j

)
= (−1)j

(
(−ni) + j − 1

j

)
(after Theorem 2)

≡ (−1)j

(
p− ni + j − 1

j

)
(by Theorem 3, since (−ni) + j − 1 ≡ p− ni + j − 1 mod p and j < p)

= (−1)j

(
p− ni + j − 1

(p− ni + j − 1)− j

)
(by Theorem 4, since p− ni + j − 1 is nonnegative, since p− ni − 1 ≥ 0 and j ≥ 0)

= (−1)j

(
p− ni + j − 1

p− ni − 1

)
= (−1)j

(p−ni−1)−1∏
u=0

((p− ni + j − 1)− u)

(p− ni − 1)!
mod p.

Hence, for every integer j with 0 ≤ j < p, we have

∏̀
i=1

(
ni

j

)
≡

∏̀
i=1

(−1)j

(p−ni−1)−1∏
u=0

((p− ni + j − 1)− u)

(p− ni − 1)!
=

(
(−1)j

)` ∏̀
i=1

(p−ni−1)−1∏
u=0

((p− ni + j − 1)− u)

(p− ni − 1)!

=
(
(−1)j

)`

∏̀
i=1

(p−ni−1)−1∏
u=0

((p− ni + j − 1)− u)

∏̀
i=1

(p− ni − 1)!
mod p,

so that ∏̀
i=1

(p− ni − 1)! · (−1)`j
∏̀
i=1

(
ni

j

)

≡
∏̀
i=1

(p− ni − 1)! · (−1)`j ·
(
(−1)j

)`

︸ ︷︷ ︸
=(−1)`j ·(−1)`j

=(−1)2`j=1, since
2`j is even

∏̀
i=1

(p−ni−1)−1∏
u=0

((p− ni + j − 1)− u)

∏̀
i=1

(p− ni − 1)!

=
∏̀
i=1

(p− ni − 1)! ·

∏̀
i=1

(p−ni−1)−1∏
u=0

((p− ni + j − 1)− u)

∏̀
i=1

(p− ni − 1)!

=
∏̀
i=1

(p−ni−1)−1∏
u=0

((p− ni + j − 1)− u) mod p. (1)

Now, define a polynomial f in one variable X by

f (X) =
∏̀
i=1

(p−ni−1)−1∏
u=0

((p− ni + X − 1)− u) . (2)
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Then,

deg f = deg

∏̀
i=1

(p−ni−1)−1∏
u=0

((p− ni + X − 1)− u)

 =
∑̀
i=1

(p−ni−1)−1∑
u=0

deg ((p− ni + X − 1)− u)︸ ︷︷ ︸
=1

(since the degree of a product of some polynomials is the sum of the degrees of these polynomials)

=
∑̀
i=1

(p−ni−1)−1∑
u=0

1︸ ︷︷ ︸
=(p−ni−1)·1

=p−ni−1
=p−1−ni

=
∑̀
i=1

(p− 1− ni) =
∑̀
i=1

(p− 1)︸ ︷︷ ︸
=`(p−1)

−
∑̀
i=1

ni = ` (p− 1)−
∑̀
i=1

ni < p− 1.

In other words, f is a polynomial of degree < p − 1. Besides, obviously, f ∈ Q [X] , and we have

f (j) ∈ Z for all j ∈ {0, 1, ..., p− 1} (since f ∈ Z [X]). Thus, Theorem 5 yields
p−1∑
j=0

f (j) ≡ 0

mod p. Thus,

0 ≡
p−1∑
j=0

f (j) =
p−1∑
j=0

∏̀
i=1

(p−ni−1)−1∏
u=0

((p− ni + j − 1)− u) (by (2))

=
p−1∑
j=0

∏̀
i=1

(p− ni − 1)! · (−1)`j
∏̀
i=1

(
ni

j

)
since

∏̀
i=1

(p−ni−1)−1∏
u=0

((p− ni + j − 1)− u) =
∏̀
i=1

(p− ni − 1)! · (−1)`j
∏̀
i=1

(
ni

j

)
by (1)


=

∏̀
i=1

(p− ni − 1)! ·
p−1∑
j=0

(−1)`j
∏̀
i=1

(
ni

j

)
mod p.

In other words,

p |
∏̀
i=1

(p− ni − 1)! ·
p−1∑
j=0

(−1)`j
∏̀
i=1

(
ni

j

)
. (3)

For every i ∈ {1, 2, ..., `} , the integer (p− ni − 1)! is coprime with p (since (p− ni − 1)! =

1 · 2 · ... · (p− ni − 1), and all numbers 1, 2, ..., p− ni − 1 are coprime with p because p is a prime

and p− ni − 1 < p). Hence, the product
∏̀
i=1

(p− ni − 1)! is also coprime with p. Thus, (3) yields

p |
p−1∑
j=0

(−1)`j
∏̀
i=1

(
ni

j

)
.

Thus, Theorem 1 is proven.

Theorem 1 is a rather general result; we can repeatedly specialize it and still get substantial

assertions. Here is a quite strong particular case of Theorem 1:

Theorem 8. Let ` be an even positive integer. If n1, n2, ..., n` are positive integers

and p is a prime such that (`− 1) (p− 1) <
∑̀
i=1

ni and ni < p for every i ∈ {1, 2, ..., `},

then p |
p−1∑
j=0

∏̀
i=1

(
ni

j

)
.
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Proof of Theorem 8. Theorem 1 yields p |
p−1∑
j=0

(−1)`j ∏̀
i=1

(
ni

j

)
. But ` is even, so that `j is even

for any j ∈ Z, and thus

p−1∑
j=0

(−1)`j︸ ︷︷ ︸
=1, since
`j is even

∏̀
i=1

(
ni

j

)
=

p−1∑
j=0

1
∏̀
i=1

(
ni

j

)
=

p−1∑
j=0

∏̀
i=1

(
ni

j

)
.

Hence, p |
p−1∑
j=0

(−1)`j ∏̀
i=1

(
ni

j

)
becomes p |

p−1∑
j=0

∏̀
i=1

(
ni

j

)
. Therefore, Theorem 8 is proven.

Specializing further, we arrive at the following result (which I proved in [1], post #2):

Theorem 9. If n and k are positive integers and p is a prime such that
2k − 1

2k
(p− 1) <

n < p, then p |
n∑

j=0

(
n

j

)2k

.

Proof of Theorem 9. Let ` = 2k. Define positive integers n1, n2, ..., n` by ni = n for every

i ∈ {1, 2, ..., `} . Then, ni < p for every i ∈ {1, 2, ..., `} (since ni = n < p) and

(`− 1) (p− 1) = (2k − 1) (p− 1) = 2k · 2k − 1
2k

(p− 1)︸ ︷︷ ︸
<n

< 2kn = `n =
∑̀
i=1

n =
∑̀
i=1

ni.

Hence, Theorem 8 yields p |
p−1∑
j=0

∏̀
i=1

(
ni

j

)
. But

∏̀
i=1

(
ni

j

)
=

∏̀
i=1

(
n

j

)
=

(
n

j

)`

=
(

n

j

)2k

, and thus

p−1∑
j=0

∏̀
i=1

(
ni

j

)
=

p−1∑
j=0

(
n

j

)2k

=
n∑

j=0

(
n

j

)2k

+
p−1∑

j=n+1

(
n

j

)2k

︸ ︷︷ ︸
=0, since n≥0 and

j>n yield

(
n

j

)
=0

(since n < p)

=
n∑

j=0

(
n

j

)2k

+
p−1∑

j=n+1

0︸ ︷︷ ︸
=0

=
n∑

j=0

(
n

j

)2k

.

Therefore, p |
p−1∑
j=0

∏̀
i=1

(
ni

j

)
becomes p |

n∑
j=0

(
n

j

)2k

. Hence, Theorem 9 is proven.

The problem quickly follows from Theorem 9 in the particular case k = 2.
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