0.1 Binomial Sum Divisible by Primes

1 (MM, Problem 1392, George Andrews) Prove that for any prime p in the interval
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Solution by Darij Grinberg.

The problem can be vastly generalized:

Theorem 1. Let £ be a positive integer. If nq, no, ..., ny are positive integers and p

¢
is a prime such that ({ —1)(p—1) < >_ n; and n; < p for every i € {1,2,...,£}, then
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Before we prove this, we first show some basic facts about binomial coefficients and remainders

modulo primes. We recall how we define binomial coefficients:

Definition. The binomial coefficient <x> is defined for all reals x and for all integers
U

u as follows: (m) :x-(m—l)-...-(x—u+1) if u >0, and (x) =0ifu <0.
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Note that the empty product evaluates to 1, and 0! = 1, so this yields ("g) S (@ ) ol
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Theorem 2, the upper negation identity. If n is a real, and r is an integer, then
-n = l)r n+r—1
r) r ’
Proof of Theorem 2. We distinguish two cases: the case r < 0 and the case r > 0.
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If » < 0, then ( n) =0 and (TH_T ) =0, so that < n) =(-1D" (n—i—r ) ensues.
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If » > 0, then, using the definition of binomial coefficients, we have

(—n) _ (=n) - (=n—=1) .- (—n—r+1) :(71)’”,”'(”+1)'~~.'(n+r_1)
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— (—1)"- m+r—1)-...-(n+1)-n 1y (n+r1>.
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Hence, in both cases r < 0 and r > 0, we have established ( n> =(-1)" (n o ) Thus,
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( rn> =(-1) <n +: ) always holds. This proves Theorem 2.

Theorem 3. If p is a prime, if u and v are two integers such that v = v mod p, and

if k£ is an integer such that k& < p, then (Z) = <Z) mod p.



Proof of Theorem 3. If k < 0, then (Z) = <Z> (because <Z) = 0 and <Z> = 0), so that
Theorem 3 is trivial. Thus, it remains to consider the case k& > 0 only. In this case, k! is coprime
with p (since k! = 1-2- ...k, and all numbers 1, 2, ..., k are coprime with p, since p is a prime

and k < p).

Now, u = v mod p yields

k;.(“):k!.“'(“_l)""'(“_k+1):u-(u—1)-...-(u—k+1)

k k!

zv.(v—1)-...-(v—k+1):k!-“'(”_1)"é!'(”_k+1):k!-@) mod p.

u v
Since k! is coprime with p, we can divide this congruence by k!, and thus we get (k:> = <k:>
mod p. Hence, Theorem 3 is proven.

Finally, a basic property of binomial coefficients:

Theorem 4. For every nonnegative integer n and any integer k, we have (Z) =

This is known, but it is important not to forget the condition that n is nonnegative (Theorem
4 would not hold without it!).

Now we will reprove an important fact:

Theorem 5. If p is a prime, and f € Q[X] is a polynomial of degree < p — 1 such
p—1

that f (j) € Z for all j € {0,1,...,p— 1}, then > f(j) =0 mod p.
j=0

Before we prove Theorem 5, we recall two lemmata:

Theorem 6. If p is a prime and 4 is an integer satisfying 0 < ¢ < p — 1, then
~1 ,

(p , ) = (-1)" mod p.
i

Theorem 7. If N is a positive integer, and f is a polynomial of degree < N, then

> -1 ()i =o.
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Theorem 6 appeared as Lemma 1 in [2], post #2. Theorem 7 is a standard result from finite
differences theory.

Proof of Theorem 5. Let N = p — 1. Then, f is a polynomial of degree < N (since f is a

N /N
polynomial of degree < p — 1). Thus, Theorem 7 yields > (—1)’ ( . >f () = 0. Hence,
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by Theorem 6 =1=1

This proves Theorem 5.
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Proof of Theorem 1. The condition ({ —1)(p—1) < > n; rewrites as L(p—1) — (p—1) <

=1
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¢
3" n;. Equivalently, £(p—1) — Y n; <p—1.
i=1 =1
For every i € {1,2,...,£}, we have p — n; — 1 > 0, since n; < p yields n; + 1 < p.

For every i € {1,2,...,£} and every integer j with 0 < j < p, we have

(Z) = <_ (;ni)> = (-1 ((_m);rj a 1) (after Theorem 2)

i (p—ni+j—1 . . .
= (-1 (p " J,rj ) (by Theorem 3, since (—n;)+j—1=p—n;+j—1 mod pand j < p)
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(by Theorem 4, since p —n; + j — 1 is nonnegative, since p—n; —1 >0 and j > 0)
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Hence, for every integer j with 0 < 7 < p, we have
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Now, define a polynomial f in one variable X by

¢ (p—m;—1)—1

Fx) =11 II -m+x-1)-u. (2)
i=1 u=0
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Then,

¢ (p—m;—1)—1 ¢ (p—m;—1)—1
deg f = deg H H (p—ni+X—1)—u) Z Z deg((p—n; +X —1) —u)

=1

(since the degree of a product of some polynomials is the sum of the degrees of these polynomials)
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In other words, f is a polynomial of degree < p — 1. Besides, obviously, f € Q[X], and we have

p—1
f(j) € Z for all j € {0,1,...,p— 1} (since f € Z[X]). Thus, Theorem 5 yields > f(j) = 0
j=0
mod p. Thus,
p—1 p—1 ¢ (p—n;—1)—1
0=> r=>1I (p—mni+j—1)—u) (by (2))
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In other words,
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For every ¢ € {1,2,...,¢}, the integer (p — n; — 1)! is coprime with p (since (p —n; — 1)! =

1-2-...-(p—mn; — 1), and all numbers 1, 2, ..., p—n; — 1 are coprime with p because p is a prime

¢
and p — n; — 1 < p). Hence, the product [] (p — n; — 1)! is also coprime with p. Thus, (3) yields
i=1
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Thus, Theorem 1 is proven.
Theorem 1 is a rather general result; we can repeatedly specialize it and still get substantial

assertions. Here is a quite strong particular case of Theorem 1:

Theorem 8. Let £ be an even positive integer. If ny, no, ..., ny are positive integers
‘

and p is a prime such that (¢ — 1) (p — 1) < >_ n; and n; < p for every i € {1,2,..., ¢},
i=1
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Proof of Theorem 8. Theorem 1 yields p | > (fl)gj I (n > But £ is even, so that £j is even
j=0 i J
for any j € Z, and thus

p—1 14 n p—1 4 n p—1 ¢ n
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(_1) g H < .Z> - 1 H ( .’L> B H < .Z>.
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=1, since

0j is even
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Hence, p | > (—1)@ II (nz) becomes p | > ] (nz> Therefore, Theorem 8 is proven.
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Specializing further, we arrive at the following result (which I proved in [1], post #2):

2k —1
Theorem 9. If n and k are positive integers and p is a prime such that p—1) <
" 2k
n
n <p,thenp| > () .
j=0 \J
Proof of Theorem 9. Let £ = 2k. Define positive integers ni, no, ..., ng by n; = n for every
1€{1,2,...,0}. Then, n; < p for every i € {1,2,...,¢} (since n; =n < p) and
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Hence, Theorem 8 yields p | > [] <nz) But ] <n1> =11 <n> = (n) = (n) , and thus
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Therefore, p | > ] <nl) becomes p | > (n) . Hence, Theorem 9 is proven.
j=0i=1 \'J j=0 \J

The problem quickly follows from Theorem 9 in the particular case k = 2.
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