Mathematical Reflections
Problem U111 by Titu Andreescu

Let n be a positive integer. For every k € {0,1,...,n — 1}, let a = 2cos
Prove that
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Solution by Darij Grinberg.
Lemma 1. For every t € R, we have

(2cost — 1) (2cost + 1) = 2cos (2t) + 1.
Proof. We have

(2cost — 1) (2cost +1) = 4cos’t —1 =2 (2cos’t — 1) +1 = 2cos (2t) + 1,
————
=cos(2t)

and Lemma, 1 is proven.
Lemma 2. For every k € {0,1,...,n — 1}, we have

e — 1 = ag+1 +1
k - a + 1 )
where we set a,, = —2 (so that ay = 2 cos Qlk holds for all k& € {0,1,...,n}).
Proof. We have aj, + 1 # 0 (since aj = 2 cos % > () and
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so that ay — 1 = M. Lemma 2 is proven.
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