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In this note we will solve two problems in combinatorial number theory using an
easy fact on �nite di¤erences.
We start with a few preliminaries:
For any assertion A, we denote by [A] the Boolean value of the assertion A (that

is, [A] =
�
1, if A is true;
0, if A is false ).

It is then clear that if B is a set, and A (X) is an assertion for every subset X of
B, then X

X�B
[A (X)] = jfX � B j A (X) holdsgj :

Also, if A1, A2, :::, Am are m assertions, then [A1 and A2 and ::: and Am] =
mQ
j=1

[Aj].

A very obvious fact:

Lemma 0. For any prime number p, and for any element x 2 Fp, we have
[x = 0] = 1� xp�1.

Proof of Lemma 0. If x = 0; then [x = 0] = 1 and 1� xp�1 = 1� 0p�1 = 1, so that
[x = 0] = 1� xp�1.
If x 6= 0, then [x = 0] = 0 and 1� xp�1 = 1� 1 = 0 because xp�1 = 1 by Fermat�s

Little Theorem, so that [x = 0] = 1� xp�1.
Hence, in both cases x = 0 and x 6= 0 we have shown that [x = 0] = 1 � xp�1.

Lemma 0 is thus proven.

Next, we will derive our lemma about �nite di¤erences. First, a trivial fact on
polynomials:
Assertion 1: If P is a polynomial of one variable X over a ring R, then there exists

a polynomial Q of the variable X over R such that P (0)� P (X) = X �Q (X).
This assertion is obvious (let P (X) =

mP
i=0

aiX
i; then,

P (0)� P (X) =
mX
i=0

ai0
i �

mX
i=0

aiX
i =

 
a00

0 +

mX
i=1

ai 0
i|{z}

=0

!
�
 
a0X

0 +

mX
i=1

aiX
i

!

= (a0 + 0)�
 
a0 +

mX
i=1

aiX
i

!
= �

mX
i=1

aiX
i = X �

 
�

mX
i=1

aiX
i�1

!
;

so that P (0)� P (X) = X �Q (X) for Q (X) = �
mP
i=1

aiX
i�1).

Now, here comes our Lemma, which generalizes this assertion:
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Lemma 1. Let n � 1 be an integer. Let P be a polynomial of n variables
X1, X2, :::, Xn over a ring R. Then, there exists a polynomial Q of the
variables X1, X2, :::, Xn over R such thatX

T�f1;2;:::;ng

(�1)jT j P ((X1; X2; :::; Xn) jT ) =
nY
i=1

Xi �Q (X1; X2; :::; Xn) :

Hereby, for any n-tuple (�1; �2; :::; �n), we denote by (�1; �2; :::; �n) jT the

n-tuple (�1; �2; :::; �n) de�ned by �i = [i 2 T ]�i =
�
�i, if i 2 T ;
0, if i =2 T for all

i 2 f1; 2; :::; ng. (Thus, (X1; X2; :::; Xn) jT= ([1 2 T ]X1; [2 2 T ]X2; :::; [n 2 T ]Xn).)

Example: For n = 3, Lemma 1 says that if P is a polynomial of three variables X1,
X2, X3, then there exists a polynomial Q of the variables X1, X2, X3 such that

P (0; 0; 0)� P (X1; 0; 0)� P (0; X2; 0)� P (0; 0; X3)
+ P (0; X2; X3) + P (X1; 0; X3) + P (X1; X2; 0)� P (X1; X2; X3)

= X1X2X3 �Q (X1; X2; X3) :

Proof of Lemma 1. We will show Lemma 1 by induction over n:
Induction basis: We start the induction with the case n = 1. If n = 1, then Lemma

1 states that if P is a polynomial of one variable X1 over a ring R, then there exists a
polynomial Q of the variable X1 over R such that P (0)� P (X1) = X1 �Q (X1). This
is exactly the statement of Assertion 1 (with X renamed as X1), and hence correct.
Thus, Lemma 1 is proven for n = 1.
Now to the induction step: Given some integer n > 1, and assume that we have

proved Lemma 1 for n�1 instead of n. That is, we have shown the following assertion:
Assertion 2: Let S be a polynomial of n� 1 variables X1, X2, :::, Xn�1 over a ring

R0. Then, there exists a polynomial Q of the variables X1, X2, :::, Xn�1 over R0 such
that

X
T�f1;2;:::;n�1g

(�1)jT j S ((X1; X2; :::; Xn�1) jT ) =
n�1Y
i=1

Xi �Q (X1; X2; :::; Xn�1) :

Now we want to prove Lemma 1 for n; that is, we are given a polynomial P of
n variables X1, X2, :::, Xn over a ring R, and we have to show that there exists a
polynomial Q of the variables X1, X2, :::, Xn over R such thatX

T�f1;2;:::;ng

(�1)jT j P ((X1; X2; :::; Xn) jT ) =
nY
i=1

Xi �Q (X1; X2; :::; Xn) :
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In fact,X
T�f1;2;:::;ng

(�1)jT j P ((X1; X2; :::; Xn) jT )

=
X

T�f1;2;:::;ng;
n=2T

(�1)jT j P ((X1; X2; :::; Xn) jT ) +
X

T�f1;2;:::;ng;
n2T

(�1)jT j P ((X1; X2; :::; Xn) jT )

=
X

T�f1;2;:::;ng;
n=2T

(�1)jT j P ((X1; X2; :::; Xn) jT ) +
X

T 0�f1;2;:::;ng;
n=2T 0

(�1)jT
0[fngj P

�
(X1; X2; :::; Xn) jT 0[fng

�
0@ here we have set T 0 = T n fng in the second sum, and now we are
summing over T 0 instead of summing over T , what obviously does not

change the sum (note that T = T 0 [ fng because n 2 T )

1A
=

X
T�f1;2;:::;ng;

n=2T

(�1)jT j P ((X1; X2; :::; Xn) jT ) +
X

T�f1;2;:::;ng;
n=2T

(�1)jT[fngj P
�
(X1; X2; :::; Xn) jT[fng

�
(here we have renamed T 0 into T in the second sum)

=
X

T�f1;2;:::;ng;
n=2T

�
(�1)jT j P ((X1; X2; :::; Xn) jT ) + (�1)jT[fngj P

�
(X1; X2; :::; Xn) jT[fng

��

=
X

T�f1;2;:::;n�1g

�
(�1)jT j P ((X1; X2; :::; Xn�1) jT ; 0) + (�1)jT j+1 P ((X1; X2; :::; Xn�1) jT ; Xn)

�
=

X
T�f1;2;:::;n�1g

�
(�1)jT j P ((X1; X2; :::; Xn�1) jT ; 0)� (�1)jT j P ((X1; X2; :::; Xn�1) jT ; Xn)

�
=

X
T�f1;2;:::;n�1g

(�1)jT j (P ((X1; X2; :::; Xn�1) jT ; 0)� P ((X1; X2; :::; Xn�1) jT ; Xn)) :

(1)

Now, we can consider the polynomial P 2 R [X1; X2; :::; Xn] as a polynomial of one
variable Xn over the ring R [X1; X2; :::; Xn�1]. Applying Assertion 1 to this poly-
nomial, we see that there exists a polynomial S of the variable Xn over the ring
R [X1; X2; :::; Xn�1] such that P (0) � P (Xn) = Xn � S (Xn) (this polynomial S was
called Q in Assertion 1, but we need the letter Q for something else now). Hereby, both
P and S are viewed as polynomials of the variableXn over the ring R [X1; X2; :::; Xn�1].
If we consider P and S as polynomials of the n variables X1, X2, :::, Xn over the ring
R, then this equality becomes

P (X1; X2; :::; Xn�1; 0)� P (X1; X2; :::; Xn�1; Xn) = Xn � S (X1; X2; :::; Xn�1; Xn) :

Now this is an identity of polynomials over R, with X1, X2, :::, Xn being free vari-
ables; thus we can substitute anything we want for the variablesX1, X2, :::, Xn. In par-
ticular, if T is any subset of f1; 2; :::; n� 1g, then we can substitute (X1; X2; :::; Xn�1) jT
for (X1; X2; :::; Xn�1), and we obtain

P ((X1; X2; :::; Xn�1) jT ; 0)�P ((X1; X2; :::; Xn�1) jT ; Xn) = Xn�S ((X1; X2; :::; Xn�1) jT ; Xn) :
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Hence, using (1), we haveX
T�f1;2;:::;ng

(�1)jT j P ((X1; X2; :::; Xn) jT )

=
X

T�f1;2;:::;n�1g

(�1)jT j (P ((X1; X2; :::; Xn�1) jT ; 0)� P ((X1; X2; :::; Xn�1) jT ; Xn))

=
X

T�f1;2;:::;n�1g

(�1)jT jXn � S ((X1; X2; :::; Xn�1) jT ; Xn)

= Xn �
X

T�f1;2;:::;n�1g

(�1)jT j S ((X1; X2; :::; Xn�1) jT ; Xn) : (2)

Now we can consider the polynomial S 2 R [X1; X2; :::; Xn] as a polynomial of the
n � 1 variables X1, X2, :::, Xn�1 over the ring R [Xn]. Applying Assertion 2 to this
polynomial S (with R [Xn] as R0), we see that there exists a polynomial Q of the
variables X1, X2, :::, Xn�1 over R [Xn] such that

X
T�f1;2;:::;n�1g

(�1)jT j S ((X1; X2; :::; Xn�1) jT ) =
n�1Y
i=1

Xi �Q (X1; X2; :::; Xn�1) :

This identity makes sense if both S and Q are viewed as polynomials of the n � 1
variables X1, X2, :::, Xn�1 over the ring R [Xn]. If we view S and Q as polynomials of
the n variables X1, X2, :::, Xn over the ring R, then this identity becomes

X
T�f1;2;:::;n�1g

(�1)jT j S ((X1; X2; :::; Xn�1) jT ; Xn) =
n�1Y
i=1

Xi �Q (X1; X2; :::; Xn�1; Xn) .

Thus, (2) becomesX
T�f1;2;:::;ng

(�1)jT j P ((X1; X2; :::; Xn) jT )

= Xn �
X

T�f1;2;:::;n�1g

(�1)jT j S ((X1; X2; :::; Xn�1) jT ; Xn)

= Xn �
n�1Y
i=1

Xi �Q (X1; X2; :::; Xn�1; Xn) =

nY
i=1

Xi �Q (X1; X2; :::; Xn�1; Xn) :

Thus, Lemma 1 is proved for n. This completes the induction step, and thus the proof
of Lemma 1 is completed.
We can make Lemma 1 a bit stronger using the notion of the total degree:
If P is a polynomial of n variables X1, X2, :::, Xn over the ring R, then the

total degree degP of the polynomial P is de�ned as the maximal integer � such that
the polynomial P contains a term a�1;�2;:::;�nX

�1
1 X

�2
2 :::X

�n
n with a�1;�2;:::;�n 6= 0 and

�1 + �2 + :::+ �n = �. Now we have:

Lemma 2. Let n � 1 be an integer. Let P be a polynomial of n variables
X1, X2, :::, Xn over a ring R. Then, there exists a polynomial Q of the
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variables X1, X2, :::, Xn over R such thatX
T�f1;2;:::;ng

(�1)jT j P ((X1; X2; :::; Xn) jT ) =
nY
i=1

Xi �Q (X1; X2; :::; Xn)

and degQ � degP � n.

Proof of Lemma 2. According to Lemma 1, there exists a polynomial Q of the
variables X1, X2, :::, Xn over R such thatX

T�f1;2;:::;ng

(�1)jT j P ((X1; X2; :::; Xn) jT ) =
nY
i=1

Xi �Q (X1; X2; :::; Xn) :

Remains to show that degQ � degP � n. In fact,

deg

0@ X
T�f1;2;:::;ng

(�1)jT j P ((X1; X2; :::; Xn) jT )

1A � degP

(because degP ((X1; X2; :::; Xn) jT ) � degP for every T � f1; 2; :::; ng, and the total
degree of a sum of polynomials is not larger than the greatest of their total degrees),
so that

degP � deg

0@ X
T�f1;2;:::;ng

(�1)jT j P ((X1; X2; :::; Xn) jT )

1A = deg

 
nY
i=1

Xi �Q (X1; X2; :::; Xn)

!

= deg

 
nY
i=1

Xi �Q
!
= n+ degQ;

and thus degQ � degP � n. Hereby, we have deg
�

nQ
i=1

Xi �Q
�
= n + degQ be-

cause multiplying a polynomial by
nQ
i=1

Xi means replacing each coe¢ cient a�1;�2;:::;�n by

a�1�1;�2�1;:::;�n�1 (and this obviously increases the total degree by n). Thus, Lemma 2
is proven.
As a consequence of Lemma 2, we have:

Lemma 3. Let n � 1 be an integer. Let P be a polynomial of n variables
X1, X2, :::, Xn over a ring R such that degP < n. Then,X

T�f1;2;:::;ng

(�1)jT j P ((X1; X2; :::; Xn) jT ) = 0:

Example: For n = 3, Lemma 3 says that if P is a polynomial of three variables X1,
X2, X3 such that degP < 3, then

P (0; 0; 0)� P (X1; 0; 0)� P (0; X2; 0)� P (0; 0; X3)
+ P (0; X2; X3) + P (X1; 0; X3) + P (X1; X2; 0)� P (X1; X2; X3) = 0:

5



Proof of Lemma 3. After Lemma 2, there exists a polynomial Q of the variables
X1, X2, :::, Xn over R such thatX

T�f1;2;:::;ng

(�1)jT j P ((X1; X2; :::; Xn) jT ) =
nY
i=1

Xi �Q (X1; X2; :::; Xn)

and degQ � degP � n. Since degP < n, this yields
degQ � degP � n < n� n = 0;

so that Q = 0; and thusX
T�f1;2;:::;ng

(�1)jT j P ((X1; X2; :::; Xn) jT ) =
nY
i=1

Xi �Q (X1; X2; :::; Xn) =
nY
i=1

Xi � 0 = 0:

This proves Lemma 3.

Now comes the �rst application of Lemma 3 - a problem from the Saint Petersburg
Mathematical Olympiad 2003 1:

Problem 1. Let p be a prime number, and n an integer with n � p. Let
a1, a2, :::, an be n integers. Prove that

p j
nX
k=0

(�1)k
�����
(
T � f1; 2; :::; ng j jT j = k and p j

X
t2T

at

)����� :
Solution of Problem 1. For every k 2 f0; 1; :::; ng, we have�����
(
T � f1; 2; :::; ng j jT j = k and p j

X
t2T

at

)����� = X
T�f1;2;:::;ng

"
jT j = k and p j

X
t2T

at

#
:

Thus,
nX
k=0

(�1)k
�����
(
T � f1; 2; :::; ng j jT j = k and p j

X
t2T

at

)�����
=

nX
k=0

(�1)k
X

T�f1;2;:::;ng

"
jT j = k and p j

X
t2T

at

#

=
X

T�f1;2;:::;ng

nX
k=0

(�1)k
"
jT j = k and p j

X
t2T

at

#

=
X

T�f1;2;:::;ng

nX
k=0

(�1)k [jT j = k]| {z }
=(�1)jT j

�
"
p j
X
t2T

at

#

=
X

T�f1;2;:::;ng

(�1)jT j
"
p j
X
t2T

at

#
: (3)

1posted on MathLinks in the topic
http://www.mathlinks.ro/Forum/viewtopic.php?t=188350
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If we denote by b1, b2, :::, bn the residue classes of the integers a1, a2, :::, an modulo
the prime p (these b1, b2, :::, bn are elements of the �eld Fp), then p j

P
t2T
at is equivalent

to
P
t2T
bt = 0 (as an equation in Fp). Thus,

�
p j
P
t2T
at

�
=

�P
t2T
bt = 0

�
: Hence, (3)

becomes

nX
k=0

(�1)k
�����
(
T � f1; 2; :::; ng j jT j = k and p j

X
t2T

at

)����� = X
T�f1;2;:::;ng

(�1)jT j
"X
t2T

bt = 0

#
:

Thus, in order to prove that

p j
nX
k=0

(�1)k
�����
(
T � f1; 2; :::; ng j jT j = k and p j

X
t2T

at

)�����
(this is what the problem 1 wants us to show), it is enough to prove that

p j
X

T�f1;2;:::;ng

(�1)jT j
"X
t2T

bt = 0

#
;

i. e., to prove that X
T�f1;2;:::;ng

(�1)jT j
"X
t2T

bt = 0

#
= 0 (4)

as an equality in the �eld Fp.

Lemma 0 (applied to x =
P
t2T
bt) yields

�P
t2T
bt = 0

�
= 1 �

�P
t2T
bt

�p�1
. Hence, (4)

is equivalent to X
T�f1;2;:::;ng

(�1)jT j
0@1� X

t2T
bt

!p�11A = 0 (5)

as an equality in the �eld Fp.
In order to solve the problem 1, it thus remains to verify this equality (5). We do

this as follows: We de�ne a polynomial P of the n variables X1, X2, :::, Xn over the

ring Fp by setting P (X1; X2; :::; Xn) = 1�
�

nP
t=1

Xt

�p�1
. Then, degP � p� 1; so that

degP < n (since p� 1 < n because n � p), and thus Lemma 3 yieldsX
T�f1;2;:::;ng

(�1)jT j P ((X1; X2; :::; Xn) jT ) = 0:

Since for any T � f1; 2; :::; ng, we have

P ((X1; X2; :::; Xn) jT ) = P ([1 2 T ]X1; [2 2 T ]X2; :::; [n 2 T ]Xn)

= 1�
 

nX
t=1

[t 2 T ]Xt

!p�1
= 1�

 X
t2T

Xt

!p�1
;
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this becomes X
T�f1;2;:::;ng

(�1)jT j
0@1� X

t2T
Xt

!p�11A = 0:

This is a polynomial identity; substituting X1 = b1, X2 = b2, :::, Xn = bn, we thus get

X
T�f1;2;:::;ng

(�1)jT j
0@1� X

t2T
bt

!p�11A = 0;

so that (5) is proven. Since (5) is equivalent to (4), and (4) yields the assertion of the
problem 1, we have thus solved the problem 1.

Using the same technique, we can solve a question posed by Lzw75 in

http://www.mathlinks.ro/Forum/viewtopic.php?t=193724

namely the following one:

Problem 2. Let p be a prime, let m be an integer, and let n > (p� 1)m
be an integer. Let a1, a2, ..., an be n elements of the vector space Fmp . Prove
that there exists a non-empty subset T � f1; 2; :::; ng such that

P
t2T
at = 0.

Solution of Problem 2. In the following, all our computations will be in the �eld
Fp.
For every t 2 f1; 2; :::; ng and every j 2 f1; 2; :::;mg ; let at;j be the j-th coordinate

of the vector at 2 Fmp : Then, at = (at;1; at;2; :::; at;m)
T for every t 2 f1; 2; :::; ng :

We de�ne a polynomial P of the n variables X1, X2, :::, Xn over the ring Fp by
setting

P (X1; X2; :::; Xn) =
mY
j=1

0@1� nX
t=1

at;jXt

!p�11A :
Then, degP � (p� 1)m (because P is the product of them polynomials 1�

�
nP
t=1

at;jXt

�p�1
,

each of whom has degree � p� 1), so that degP < n (since n > (p� 1)m), and thus
Lemma 3 yields X

T�f1;2;:::;ng

(�1)jT j P ((X1; X2; :::; Xn) jT ) = 0:

Since for any T � f1; 2; :::; ng, we have

P ((X1; X2; :::; Xn) jT ) = P ([1 2 T ]X1; [2 2 T ]X2; :::; [n 2 T ]Xn)

=
mY
j=1

0@1� nX
t=1

at;j [t 2 T ]Xt

!p�11A
=

mY
j=1

0@1� X
t2T

at;jXt

!p�11A ;
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this becomes X
T�f1;2;:::;ng

(�1)jT j
mY
j=1

0@1� X
t2T

at;jXt

!p�11A = 0:

This is a polynomial identity; substituting X1 = 1, X2 = 1, :::, Xn = 1, we thus get

X
T�f1;2;:::;ng

(�1)jT j
mY
j=1

0@1� X
t2T

at;j � 1
!p�11A = 0: (6)

For every T � f1; 2; :::; ng, we have2"X
t2T

at = 0

#
=

"X
t2T

(at;1; at;2; :::; at;m)
T = 0

#

=

24 X
t2T

at;1;
X
t2T

at;2; :::;
X
t2T

at;m

!T
= 0

35
=

"X
t2T

at;1 = 0 and
X
t2T

at;2 = 0 and ::: and
X
t2T

at;m = 0

#

=
mY
j=1

"X
t2T

at;j = 0

#
=

mY
j=1

0@1� X
t2T

at;j

!p�11A
(since for every j 2 f1; 2; :::;mg ; we have

�P
t2T
at;j = 0

�
= 1�

�P
t2T
at;j

�p�1
by Lemma

0, applied to x =
P
t2T
at;j). Hence,

X
T�f1;2;:::;ng

(�1)jT j �
"X
t2T

at = 0

#

=
X

T�f1;2;:::;ng

(�1)jT j �
mY
j=1

0@1� X
t2T

at;j

!p�11A
=

X
T�f1;2;:::;ng

(�1)jT j
mY
j=1

0@1� X
t2T

at;j � 1
!p�11A = 0 (7)

by (6).
Now, assume that there is no non-empty subset T � f1; 2; :::; ng such that

P
t2T
at = 0.

This means that for every non-empty subset T � f1; 2; :::; ng, the assertion
P
t2T
at = 0

is wrong, i. e. we have
�P
t2T
at = 0

�
= 0: On the other hand, the empty subset ?

2Remember that we are working in the �eld Fp, not in Z.
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obviously satis�es
P
t2?
at = 0, so that

�P
t2?
at = 0

�
= 1. Thus,

X
T�f1;2;:::;ng

(�1)jT j �
"X
t2T

at = 0

#

= (�1)j?j �
"X
t2?

at = 0

#
| {z }

=1

+
X

non-empty
T�f1;2;:::;ng

(�1)jT j �
"X
t2T

at = 0

#
| {z }

=0

= (�1)j?j � 1 +
X

non-empty
T�f1;2;:::;ng

(�1)jT j � 0 = (�1)0 � 1 +
X

non-empty
T�f1;2;:::;ng

0 = 1 � 1 + 0 = 1;

contradicting (7) (since 0 6= 1 in the �eld Fp).
This contradiction shows that our assumption (that there is no non-empty subset

T � f1; 2; :::; ng such that
P
t2T
at = 0) was wrong. Hence, there exists a non-empty

subset T � f1; 2; :::; ng such that
P
t2T
at = 0. Problem 2 is solved.
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