Problem 049, Mathematical Reflections 3/2007
Cezar Lupu and Dariyy Grinberg

Problem. Let A;, By, C; be points on the sides BC, CA, AB of a triangle ABC.
The lines AA;, BB, C'C} intersect the circumcircle of triangle ABC' at the points As,
By, Cs, apart from A, B, C| respectively. Show that
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where s = ———— is the semiperimeter, r is the inradius, and R is the circumradius

of triangle ABC' (See Fig. 1.)
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Solution. Using the well-known identity 4R + r = r, + r, + 7. (which is more



well-known in the form 4R = r, + r, + 1. — r), we have

r(AR+71) =71 (ra+1mp+7e) =170 + 77 + 17
=(s=b(s—c)+(s—c)(s—a)+(s—a)(s—b)

(where we use the simple and known formulas 77, = (s —b) (s —¢) , 11, = (s — ¢) (s — a)
and rr. = (s — a) (s — b)). Hence, the inequality in question,
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Thus, in order to solve the problem, it remains to prove the inequality (1).

Fig. 2



(See Fig. 2.) Since the point A, lies on the circumcircle of triangle ABC, we
have £ A3 BC = £A5AC, or, equivalently, £ AyBAs = £CAA;. Also, since the point
A, lies on the circumcircle of triangle ABC, we get L BAsA = L BC' A, what rewrites

as £ BA;A; = C. Now, by the Sine Law in triangles ABA; and A3 BA;, we have
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Now, £ BAA; + £LC'AA; = A, so that
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(by the half-angle formulas)
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and similarly B B12 > i (22 ) and c 012 > i (802 C). Hence, in order to prove the

inequality (1), it is enough to show that
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This simplifies to
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Hence, in order to solve the problem, it is enough to prove this inequality (2).
Now, denote * = s —a, y = s — b, z = s — c¢. Then, it is known that z, y, z are
positive reals, and we have

r+y+z=(s—a)+(s—b)+(s—c)=3s—(a+b+c)=3s—2s=3s

3



and thus y+2 = (r+y+2)—x = s—(s — a) = a and similarly z+x =band x+y = c.
Hence, the inequality (2) is equivalent to
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Now, this inequality can be proven as follows: It rewrites as
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But the Cauchy-Schwarz inequality in Engel form yields
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so that it only remains to prove that

(z+y+2)° L Byt
vly+2) +y(z+a) +z@+y)’ ~ 4(yz+aw+ay)
4(x—|—y+z)(yz+zx+xy)23(x(y—l—z)2+y(z—|—x)2+z(m—|—y)2).

what is equivalent to

But this follows from

4(J:+y+z)(yz+zx+xy)—3(x(y+z)2+y(z+x)2+z(a:—|—y)2)
=z(y—2) +yz—a)’+z(x—y)?*>0 (since squares are > 0).

Thus, the inequality (2) is proven, and the problem is solved.



