Mathematical Reflections Problem O114 by Gabriel Dospinescu

Prove that for all real numbers x, y, z, the following inequality holds:

$$(y^2 + yz + z^2)(z^2 + zx + x^2)(x^2 + xy + y^2) \ge 3(x^2y + y^2z + z^2x)(xy^2 + yz^2 + zx^2).$$

Solution by Darij Grinberg.

The inequality in question immediately follows from the identity

$$(y^{2} + yz + z^{2}) (z^{2} + zx + x^{2}) (x^{2} + xy + y^{2})$$

$$= 3 (x^{2}y + y^{2}z + z^{2}x) (xy^{2} + yz^{2} + zx^{2}) + ((x - y) (y - z) (z - x))^{2}.$$

What remains is to prove this identity. Of course, we can prove it by expanding, but here is a more conceptual proof:

Denote $a = x^2y + y^2z + z^2x$ and $b = xy^2 + yz^2 + zx^2$.

We work in \mathbb{C} . Let $\zeta = \frac{1 + \sqrt{3}i}{2}$. Then, $\zeta^3 = -1$ and thus

$$(x + \zeta y) (y + \zeta z) (z + \zeta x)$$

$$= \left(\underbrace{\zeta^3 + 1}_{=-1+1=0}\right) xyz + \zeta \left(\underbrace{x^2 y + y^2 z + z^2 x}_{=a}\right) + \zeta^2 \underbrace{\left(xy^2 + yz^2 + zx^2\right)}_{=b} = \zeta a + \zeta^2 b$$

$$= \zeta (a + \zeta b).$$

The same computation with ζ replaced by $\frac{1}{\zeta}$ everywhere (and using $\left(\frac{1}{\zeta}\right)^3 = -1$ instead of $\zeta^3 = -1$) proves

$$\left(x + \frac{1}{\zeta}y\right)\left(y + \frac{1}{\zeta}z\right)\left(z + \frac{1}{\zeta}x\right) = \frac{1}{\zeta}\left(a + \frac{1}{\zeta}b\right).$$

But any two complex numbers u and v satisfy

$$(u+\zeta v)\left(u+\frac{1}{\zeta}v\right) = u^2 + uv + v^2 \tag{1}$$

(since
$$(u + \zeta v) \left(u + \frac{1}{\zeta} v \right) = u^2 + \left(\zeta + \frac{1}{\zeta} \right) uv + v^2$$
 and $\zeta + \frac{1}{\zeta} = 1$ as we can easily see).

Hence,

$$(y^2 + yz + z^2) \left(z^2 + zx + x^2\right) \left(x^2 + xy + y^2\right)$$

$$= (y + \zeta z) \left(y + \frac{1}{\zeta}z\right) (z + \zeta x) \left(z + \frac{1}{\zeta}x\right) (x + \zeta y) \left(x + \frac{1}{\zeta}y\right)$$

$$\left(\text{ since (2) yields } (y + \zeta z) \left(y + \frac{1}{\zeta}z\right) = y^2 + yz + z^2,$$

$$\left(z + \zeta x\right) \left(z + \frac{1}{\zeta}x\right) = z^2 + zx + x^2 \text{ and } (x + \zeta y) \left(x + \frac{1}{\zeta}y\right) = x^2 + xy + y^2 \right)$$

$$= (x + \zeta y) \left(y + \zeta z\right) (z + \zeta x) \cdot \left(x + \frac{1}{\zeta}y\right) \left(y + \frac{1}{\zeta}z\right) \left(z + \frac{1}{\zeta}x\right)$$

$$= \zeta \left(a + \zeta b\right) \cdot \frac{1}{\zeta} \left(a + \frac{1}{\zeta}b\right) = (a + \zeta b) \left(a + \frac{1}{\zeta}b\right) = a^2 + ab + b^2 \qquad \text{(by (2))}$$

$$= 3ab + (b - a)^2$$

$$= 3 \left(x^2y + y^2z + z^2x\right) \left(xy^2 + yz^2 + zx^2\right) + \left((x - y) \left(y - z\right) (z - x)\right)^2$$

$$(\text{since } a = x^2y + y^2z + z^2x, \ b = xy^2 + yz^2 + zx^2, \ \text{and a quick computation shows that }$$

$$b - a = \left(xy^2 + yz^2 + zx^2\right) - \left(x^2y + y^2z + z^2x\right) = (x - y) \left(y - z\right) (z - x)$$

$$), \text{ qed.}$$