
Mathematical Reflections
Problem O111 by Titu Andreescu

Prove that, for each integer n ≥ 0, the number((
n

0

)
+ 2

(
n

2

)
+ 22

(
n

4

)
+ ...

)2 ((
n

1

)
+ 2

(
n

3

)
+ 22

(
n

5

)
+ ...

)2

is triangular.

Solution by Darij Grinberg. First, we consider a more general setting:

Theorem 1. Let q be a real. Define a sequence (f0, f1, f2, ...) by fn =∑
k∈N

(
n

2k

)
qk for every n ∈ N, and define a sequence (g0, g1, g2, ...) by gn =∑

k∈N

(
n

2k + 1

)
qk for every n ∈ N. 1 Then, for every n ∈ N, we have the

matrix equality (
fn qgn

gn fn

)
=

(
1 q
1 1

)n

(1)

and the equalities

f 2
n − qg2

n = (1− q)n ; (2)

2fngn = g2n. (3)

For any a ∈ N and b ∈ N, we have

fa+b = fafb + qgagb; (4)

ga+b = fagb + gafb. (5)

Remark. Here, N means the set {0, 1, 2, ...} .
Proof of Theorem 1. We will prove (1) by induction:
Induction base. We have

f0 =
∑
k∈N

(
0

2k

)
qk =

∑
k∈N

{
1, if k = 0;
0, if k 6= 0

· qk

(
since

(
0

2k

)
=

{
1, if 2k = 0;
0, if 2k 6= 0

=

{
1, if k = 0;
0, if k 6= 0

)
= 1 · q0 = 1 · 1 = 1

1A sum of the form
∑
k∈N

a (k) (where a : N → R is some map) only makes sense if all but finitely

many k ∈ N satisfy a (k) = 0. But this condition is easily verified for our sum
∑
k∈N

(
n

2k

)
qk (in fact,

all k ∈ N \ {0, 1, ..., n} satisfy k > n, thus 2k ≥ k > n, thus
(

n

2k

)
= 0, thus

(
n

2k

)
qk = 0; thus, all

but finitely many k ∈ N satisfy
(

n

2k

)
qk = 0) and (similarly) for our sum

∑
k∈N

(
n

2k + 1

)
qk. Similar

arguments can show that all other sums of the form
∑
k∈N

a (k) that we will encounter in our solution

will be well-defined.
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and

g0 =
∑
k∈N

(
0

2k + 1

)
qk =

∑
k∈N

0 · qk

 since

(
0

2k + 1

)
=

{
1, if 2k + 1 = 0;
0, if 2k + 1 6= 0

= 0,

because k ∈ N yields 2k + 1 6= 0


= 0,

so that (
f0 qg0

g0 f0

)
=

(
1 q · 0
0 1

)
=

(
1 0
0 1

)
=

(
1 q
1 1

)0

.

In other words, (1) holds for n = 0. This completes the induction base.
Induction step. Let N ∈ N. Assume that (1) holds for n = N. We have to show

that (1) holds for n = N + 1 as well.
Since (1) holds for n = N, we have(

fN qgN

gN fN

)
=

(
1 q
1 1

)N

.

But

fN+1 =
∑
k∈N

(
N + 1

2k

)
qk =

∑
k∈N

((
N

2k

)
+

(
N

2k − 1

))
qk

(
as

(
N + 1

2k

)
=

(
N

2k

)
+

(
N

2k − 1

)
by the recurrence of the binomial coefficients

)
=

∑
k∈N

(
N

2k

)
qk +

∑
k∈N

(
N

2k − 1

)
qk =

∑
k∈N

(
N

2k

)
qk +

∑
k∈N;
k≥1

(
N

2k − 1

)
qk


here we replaced the

∑
k∈N

sign by an
∑

k∈N;
k≥1

sign, since the addend for k = 0 is zero

(as

(
N

2k − 1

)
=

(
N

2 · 0− 1

)
=

(
N

−1

)
= 0 for k = 0)


=

∑
k∈N

(
N

2k

)
qk +

∑
k∈N

(
N

2 (k + 1)− 1

)
︸ ︷︷ ︸

=

(
N

2k + 1

) qk+1︸︷︷︸
=q·qk

(here we substituted k + 1 for k in the second sum)

=
∑
k∈N

(
N

2k

)
qk

︸ ︷︷ ︸
=fN

+q
∑
k∈N

(
N

2k + 1

)
qk

︸ ︷︷ ︸
=gN

= 1 · fN + q · gN
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and

gN+1 =
∑
k∈N

(
N + 1

2k + 1

)
qk =

∑
k∈N

((
N

2k

)
+

(
N

2k + 1

))
qk

(
as

(
N + 1

2k + 1

)
=

(
N

2k

)
+

(
N

2k + 1

)
by the recurrence of the binomial coefficients

)
=

∑
k∈N

(
N

2k

)
qk

︸ ︷︷ ︸
=fN

+
∑
k∈N

(
N

2k + 1

)
qk

︸ ︷︷ ︸
=gN

= 1 · fN + 1 · gN ,

so that(
fN+1 qgN+1

gN+1 fN+1

)
=

(
1 · fN + q · gN q (1 · fN + 1 · gN)
1 · fN + 1 · gN 1 · fN + q · gN

)
=

(
1 · fN + q · gN 1 · qgN + q · fN

1 · fN + 1 · gN 1 · qgN + 1 · fN

)
=

(
1 q
1 1

) (
fN qgN

gN fN

)
=

(
1 q
1 1

) (
1 q
1 1

)N

=

(
1 q
1 1

)N+1

.

In other words, (1) holds for n = N + 1. This completes the induction step. Thus, the
induction proof is complete, so that (1) is proven for all n ∈ N.

Now, (2) follows from

f 2
n − qg2

n = fn · fn − qgn · gn = det

(
fn qgn

gn fn

)
= det

((
1 q
1 1

)n)
(by (1))

=

(
det

(
1 q
1 1

))n

= (1 · 1− q · 1)n = (1− q)n .

For any a ∈ N and b ∈ N, we have(
fa+b qga+b

ga+b fa+b

)
=

(
1 q
1 1

)a+b

(by (1), applied to n = a + b)

=

(
1 q
1 1

)a

︸ ︷︷ ︸
=

0@ fa qga

ga fa

1A
(by (1), applied

to n=a)

·
(

1 q
1 1

)b

︸ ︷︷ ︸
=

0@ fb qgb

gb fb

1A
(by (1), applied

to n=b)

=

(
fa qga

ga fa

)
·
(

fb qgb

gb fb

)
=

(
fa · fb + qga · gb fa · qgb + qga · fb

ga · fb + fa · gb ga · qgb + fa · fb

)
=

(
fafb + qgagb q (fagb + gafb)
fagb + gafb fafb + qgagb

)
.

Thus, fa+b = fafb + qgagb and ga+b = fagb + gafb, so that (4) and (5) are proven. For
every n ∈ N, we have

g2n = gn+n = fngn + gnfn (by (5))

= 2fngn,
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and (3) follows.
Altogether, we have now proven Theorem 1.
From now on, we set q = 2. Then,

f 2
ng2

n = (fngn)2 =
1

4
(2fngn)2 =

1

4
g2
2n (by (3))

=
1

4
· 1

q
· qg2

2n =
1

4
· 1

q
·
(
f 2

2n −
(
f 2

2n − qg2
2n

))
=

1

4
· 1

q
·
(
f 2

2n − (1− q)2n)(
since f 2

2n − qg2
2n = (1− q)2n , what results if we substitute 2n for n in (2)

)
=

1

4
· 1

2
·

f 2
2n − (1− 2)2n︸ ︷︷ ︸

=(−1)2n=1,
since 2n is even

 =
1

8

(
f 2

2n − 1
)

=
1

8
(f2n − 1) (f2n + 1)

=
1

2
· f2n − 1

2
· f2n + 1

2
=

1

2
· f2n − 1

2
·
(

f2n − 1

2
+ 1

)

for every n ∈ N. Since
f2n − 1

2
∈ Z for every n ∈ N (since

f2n − 1

2
=

∑
k∈N

(
2n

2k

)
qk − 1

2
=

∑
k∈N

(
2n

2k

)
2k − 1

2
=

(
2n

2 · 0

)
20 +

∑
k∈N;
k≥1

(
2n

2k

)
2k

− 1

2

=

1 +
∑

k∈N;
k≥1

(
2n

2k

)
2k

− 1

2

(
since

(
2n

2 · 0

)
20 =

(
2n

0

)
20 = 1 · 1 = 1

)

=

∑
k∈N;
k≥1

(
2n

2k

)
2k

2
=

∑
k∈N;
k≥1

(
2n

2k

)
2k−1 ∈ Z

), this yields that f 2
ng2

n is a triangular number for every n ∈ N. This is exactly what
the problem asked us to prove.

Remark. Theorem 1 could be proved more quickly using the binomial formula
applied to

(
1 +

√
q
)n

and
(
1−√

q
)n

. However, such a proof would fail if we replace
R by a field of characteristic 2 and q is a square in that field. The proof given above
works over any field and for any q. (Then again, from a deeper viewpoint, it is just a
straightforward elementarization of the proof using the binomial formula.)
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