Mathematical Reflections
Problem O111 by Titu Andreescu

Prove that, for each integer n > 0, the number

N () +2)+2() =) () =) +2() )

Solution by Darij Grinberg. First, we consider a more general setting:

Theorem 1. Let ¢ be a real. Define a sequence (fo, fi1, fo,...) by fu =

n
> <2k> q* for every n € N, and define a sequence (go, g1, g2, ...) by g =
kEN

> (2/@7:— 1) ¢* for every n € N. ! Then, for every n € N, we have the
keN
( g fo ) 11 (1)

matrix equality
fa—agn=0-9"; (2)

and the equalities

For any a € N and b € N, we have

fatro = fafo + 49a9p; (4)
Ga+b = fagb + gafb- (5)

Remark. Here, N means the set {0,1,2,...}.
Proof of Theorem 1. We will prove (1) by induction:
Induction base. We have

B 0\ 4 1, itk=0; . 0\ [ 1,if2k=0; [ 1,itk=0;
fo_keZN(zk)q _%ZN{ 0,ifk#£0 1 (Smce (2k)_{ 0, if 2k # 0 _{ 0, ifk:;«é0>
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LA sum of the form > a (k) (where a : N — R is some map) only makes sense if all but finitely
kEN

many k € N satisfy a (k) = 0. But this condition is easily verified for our sum 3 (27;) ¢* (in fact,
keN
n

2k

but finitely many k£ € N satisfy " ¢® = 0) and (similarly) for our sum Y " ¢®. Similar
2k pen \2k + 1

arguments can show that all other sums of the form Y a (k) that we will encounter in our solution

keN
will be well-defined.

all k € N\ {0,1,...,n} satisfy k > n, thus 2k > k > n, thus <27;€> = 0, thus ( >q’C = 0; thus, all



0 since 0 1, it 2k+1=0; —0
go = <2k 1)(] => 0-¢ 2%k +1) 1 0, if2k+14£0
ke + keN because k € N yields 2k +1 # 0

=0,
so that

(o)-0nt)-(D)-(1)

In other words, (1) holds for n = 0. This completes the induction base.

Induction step. Let N € N. Assume that (1) holds for n = N. We have to show
that (1) holds for n = N + 1 as well.

Since (1) holds for n = N, we have

<fN quv):<1 q)N
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But
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(as ( 2}: ) = (2 k) ( > by the recurrence of the binomial Coefﬁcients>
N N N .
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here we replaced the > sign by an ) sign, since the addend for k& = 0 is zero

keN keN;
k>1

(as (2/lc]\i 1) - (z-év—_l) - (ﬁ) =0fork=0)

= @)qk +%\(2 (k +]j1> - 1) <

keN =q-g*
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(here we substituted k + 1 for k& in the second sum)
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and
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(as (2]{;1—— 1> = (Qk) + (Qk N 1) by the recurrence of the binomial coefﬁcients)
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- = 1 . 1 .
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In other words, (1) holds for n = N + 1. This completes the induction step. Thus, the
induction proof is complete, so that (1) is proven for all n € N.
Now, (2) follows from

ff—qgi—fmfn—qgn-gn—det(f" qﬁ”)—det«i 61]> ) (by (1))
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— (det(} ?))n:(l-l—q-l)":(l—q)".

For any @ € N and b € N, we have

Jatv Q9arv \ _ (1 ¢ a-+b (by (1), applied to n = a + b)
Ga+b fa—i—b - 1 1 y , applie on=a
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—— ———
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(by (1), applied (by (1), applied
to n=a) to n=b)

_ ( fa a9a ) , ( fo age > _ ( fao fo+a9a-9v fa-ags+a9a- fo )
YJa fa b fb ga'fb+fa'gb ga'ng+fa'fb
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Thus, fors = fofs + 9.9 and garp = fagp + gafp, so that (4) and (5) are proven. For
every n € N, we have

92n = Gn+4n = fngn + gnfn (by (5))
= 2fngn7



and (3) follows.
Altogether, we have now proven Theorem 1.
From now on, we set ¢ = 2. Then,

1202 = (Fagn)? = § (2fu00)” = ig (by (3)
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(since f3, — qg3, = (1 — ¢)*", what results if we substitute 2n for n in (2))
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since 2n is even
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€ Z for every n € N (since

for every n € N. Since
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), this yields that f2g? is a triangular number for every n € N. This is exactly what

the problem asked us to prove.

Remark. Theorem 1 could be proved more quickly using the binomial formula
applied to (1 + \/G)n and (1 — \/a)n However, such a proof would fail if we replace
R by a field of characteristic 2 and ¢ is a square in that field. The proof given above
works over any field and for any ¢. (Then again, from a deeper viewpoint, it is just a
straightforward elementarization of the proof using the binomial formula.)



