A few facts on integrality

Darij Grinberg

Version 3 (18 August 2009, a mistake fixed later)

The purpose of this note is to collect some theorems and proofs related to integrality in commutative algebra. The note is subdivided into three parts.

Part 1 (Integrality over rings) consists of known facts (Theorems 1, 4, 5) and a generalized exercise from [1] (Corollary 3) with a few minor variations (Theorem 2 and Corollary 6).

Part 2 (Integrality over ideal semifiltrations) merges integrality over rings (as considered in Part 1) and integrality over ideals (a less-known but still very useful notion; the book [2] is devoted to it) into one general notion - that of integrality over ideal semifiltrations (Definition 9). This notion is very general, yet it can be reduced to the basic notion of integrality over rings by a suitable change of base ring (Theorem 7). This reduction allows to extend some standard properties of integrality over rings to the general case (Theorems 8 and 9).

Part 3 (Generalizing to two ideal semifiltrations) continues Part 2, adding one more layer of generality. Its main result is a "relative" version of Theorem 7 (Theorem 11) and a known fact generalized one more time (Theorem 13).

This note is supposed to be self-contained (only linear algebra and basic knowledge about rings, ideals and polynomials is assumed). The proofs are constructive. However, when writing down the proofs I focussed on maximal detail (to ensure correctness) rather than on clarity, so the proofs are probably a pain to read. I think of making a short version of this note with the obvious parts of proofs left out.

Preludium

Definitions and notations:

Definition 1. In the following, "ring" will always mean "commutative ring with unity". We denote the set $\{0, 1, 2, ...\}$ by \mathbb{N} , and the set $\{1, 2, 3, ...\}$ by \mathbb{N}^+ .

Definition 2. Let A be a ring, and let $n \in \mathbb{N}$. Let M be an A-module. If $m_1, m_2, ..., m_n$ are n elements of M, then we define an A-submodule $\langle m_1, m_2, ..., m_n \rangle_A$ of M by

$$\langle m_1, m_2, ..., m_n \rangle_A = \left\{ \sum_{i=1}^n a_i m_i \mid (a_1, a_2, ..., a_n) \in A^n \right\}.$$

Also, if S is a finite set, and m_s is an element of M for every $s \in S$, then we define an A-submodule $\langle m_s \mid s \in S \rangle_A$ of M by

$$\langle m_s \mid s \in S \rangle_A = \left\{ \sum_{s \in S} a_s m_s \mid (a_s)_{s \in S} \in A^S \right\}.$$

Of course, if $m_1, m_2, ..., m_n$ are n elements of M, then $\langle m_1, m_2, ..., m_n \rangle_A = \langle m_s \mid s \in \{1, 2, ..., n\} \rangle_A$. **Definition 3.** Let A be a ring, and let $n \in \mathbb{N}$. Let M be an A-module. We say that the A-module M is n-generated if there exist n elements $m_1, m_2, ..., m_n$ of M such that $M = \langle m_1, m_2, ..., m_n \rangle_A$. In other words, the A-module M is n-generated if and only if there exists a set S and an element m_s of M for every $s \in S$ such that |S| = n and $M = \langle m_s \mid s \in S \rangle_A$.

Definition 4. Let A and B be two rings. We say that $A \subseteq B$ if and only if

(the set A is a subset of the set B) and (the inclusion map $A \to B$ is a ring homomorphism).

Now assume that $A \subseteq B$. Then, obviously, B is canonically an A-algebra (since $A \subseteq B$). If $u_1, u_2, ..., u_n$ are n elements of B, then we define an A-subalgebra $A[u_1, u_2, ..., u_n]$ of B by

$$A[u_1, u_2, ..., u_n] = \{P(u_1, u_2, ..., u_n) \mid P \in A[X_1, X_2, ..., X_n]\}.$$

In particular, if u is an element of B, then the A-subalgebra A[u] of B is defined by

$$A[u] = \{P(u) \mid P \in A[X]\}.$$

Since
$$A[X] = \left\{ \sum_{i=0}^{m} a_i X^i \mid m \in \mathbb{N} \text{ and } (a_0, a_1, ..., a_m) \in A^{m+1} \right\}$$
, this becomes

$$A\left[u\right] = \left\{ \left(\sum_{i=0}^{m} a_i X^i\right)(u) \mid m \in \mathbb{N} \text{ and } (a_0, a_1, ..., a_m) \in A^{m+1} \right\}$$

$$\left(\text{where } \left(\sum_{i=0}^{m} a_i X^i\right)(u) \text{ means the polynomial } \sum_{i=0}^{m} a_i X^i \text{ evaluated at } X = u\right)$$

$$= \left\{\sum_{i=0}^{m} a_i u^i \mid m \in \mathbb{N} \text{ and } (a_0, a_1, ..., a_m) \in A^{m+1} \right\} \qquad \left(\text{because } \left(\sum_{i=0}^{m} a_i X^i\right)(u) = \sum_{i=0}^{m} a_i u^i\right).$$

Obviously, $uA[u] \subseteq A[u]$ (since A[u] is an A-algebra and $u \in A[u]$).

1. Integrality over rings

Theorem 1. Let A and B be two rings such that $A \subseteq B$. Obviously, B is canonically an A-module (since $A \subseteq B$). Let $n \in \mathbb{N}$. Let $u \in B$. Then, the following four assertions A, B, C and D are pairwise equivalent:

Assertion A: There exists a monic polynomial $P \in A[X]$ with deg P = n and P(u) = 0.

Assertion \mathcal{B} : There exists an n-generated A-submodule U of B such that $uU \subseteq U$ and such that v = 0 for every $v \in B$ satisfying vU = 0.

Assertion C: There exists an n-generated A-submodule U of B such that $1 \in U$ and $uU \subseteq U$.

Assertion \mathcal{D} : We have $A[u] = \langle u^0, u^1, ..., u^{n-1} \rangle_A$.

Definition 5. Let A and B be two rings such that $A \subseteq B$. Let $n \in \mathbb{N}$. Let $u \in B$. We say that the element u of B is n-integral over A if it satisfies the four equivalent assertions A, B, C and D of Theorem 1.

Hence, u is n-integral over A if and only if there exists a monic polynomial $P \in A[X]$ with deg P = n and P(u) = 0.

Proof of Theorem 1. We will prove the implications $\mathcal{A} \Longrightarrow \mathcal{C}$, $\mathcal{C} \Longrightarrow \mathcal{B}$, $\mathcal{B} \Longrightarrow \mathcal{A}$, $\mathcal{A} \Longrightarrow \mathcal{D}$ and $\mathcal{D} \Longrightarrow \mathcal{C}$.

Proof of the implication $\mathcal{A} \Longrightarrow \mathcal{C}$. Assume that Assertion \mathcal{A} holds. Then, there exists a monic polynomial $P \in A[X]$ with $\deg P = n$ and P(u) = 0. Since $P \in A[X]$ is a monic polynomial with $\deg P = n$, there exist elements $a_0, a_1, ..., a_{n-1}$ of A such that $P(X) = X^n + \sum_{k=0}^{n-1} a_k X^k$. Thus, $P(u) = u^n + \sum_{k=0}^{n-1} a_k u^k$, so that P(u) = 0 becomes $u^n + \sum_{k=0}^{n-1} a_k u^k = 0$. Hence, $u^n = -\sum_{k=0}^{n-1} a_k u^k$.

Let U be the A-submodule $\langle u^0, u^1, ..., u^{n-1} \rangle_A$ of B. Then, U is an n-generated A-module (since $u^0, u^1, ..., u^{n-1}$ are n elements of U). Besides, $1 = u^0 \in U$.

Now, $u \cdot u^k \in U$ for any $k \in \{0, 1, ..., n-1\}$ (since $k \in \{0, 1, ..., n-1\}$ yields either $0 \le k < n-1$ or k = n-1, but $u \cdot u^k = u^{k+1} \in \langle u^0, u^1, ..., u^{n-1} \rangle_A = U$ if $0 \le k < n-1$, and $u \cdot u^k = u \cdot u^{n-1} = u^n = -\sum_{k=0}^{n-1} a_k u^k \in \langle u^0, u^1, ..., u^{n-1} \rangle_A = U$ if k = n-1, so that $u \cdot u^k \in U$ in both cases). Hence,

$$uU = u \left\langle u^0, u^1, ..., u^{n-1} \right\rangle_A = \left\langle u \cdot u^0, u \cdot u^1, ..., u \cdot u^{n-1} \right\rangle_A \subseteq U$$

(since $u \cdot u^k \in U$ for any $k \in \{0, 1, ..., n-1\}$).

Thus, Assertion \mathcal{C} holds. Hence, we have proved that $\mathcal{A} \Longrightarrow \mathcal{C}$.

Proof of the implication $\mathcal{C} \Longrightarrow \mathcal{B}$. Assume that Assertion \mathcal{C} holds. Then, there exists an n-generated A-submodule U of B such that $1 \in U$ and $uU \subseteq U$. We have v = 0 for every $v \in B$ satisfying vU = 0 (since $1 \in U$ and vU = 0 yield $v : \underbrace{1}_{\mathcal{C}U} \in vU = 0$

and thus $v \cdot 1 = 0$, so that v = 0). Thus, Assertion \mathcal{B} holds. Hence, we have proved that $\mathcal{C} \Longrightarrow \mathcal{B}$.

Proof of the implication $\mathcal{B} \Longrightarrow \mathcal{A}$. Assume that Assertion \mathcal{B} holds. Then, there exists an n-generated A-submodule U of B such that $uU \subseteq U$ and such that v = 0 for every $v \in B$ satisfying vU = 0. Since the A-module U is n-generated, there exist n elements $m_1, m_2, ..., m_n$ of U such that $U = \langle m_1, m_2, ..., m_n \rangle_A$. For any $k \in \{1, 2, ..., n\}$, we have

$$um_k \in uU$$
 (since $m_k \in U$)
 $\subseteq U = \langle m_1, m_2, ..., m_n \rangle_A$,

so that there exist n elements $a_{k,1}, a_{k,2}, ..., a_{k,n}$ of A such that $um_k = \sum_{i=1}^n a_{k,i}m_i$.

Define a vector $v \in B^n$ by $v_i = m_i$ for all $i \in \{1, 2, ..., n\}$. (Here, for any vector w and any integer x, we denote by w_x the entry of the vector w in the x-th row.)

Define a matrix $S \in A^{n \times n}$ by $S_{k,i} = a_{k,i}$ for all $k \in \{1, 2, ..., n\}$ and $i \in \{1, 2, ..., n\}$. (Here, for any matrix T and any integers x and y, we denote by $T_{x,y}$ the entry of the matrix T in the x-th row and the y-th column.) Then, for any $k \in \{1, 2, ..., n\}$, we have

$$u\underbrace{m_k}_{=v_k} = uv_k = (uv)_k$$
 and $\sum_{i=1}^n \underbrace{a_{k,i}}_{=S_{k,i}} \underbrace{m_i}_{=v_i} = \sum_{i=1}^n S_{k,i}v_i = (Sv)_k$, so that $um_k = \sum_{i=1}^n a_{k,i}m_i$

becomes $(uv)_k = (Sv)_k$. Since this holds for every $k \in \{1, 2, ..., n\}$, we conclude that uv = Sv. Thus,

$$0 = uv - Sv = uI_nv - Sv = (uI_n - S)v.$$

Now, let $P \in A[X]$ be the characteristic polynomial of the matrix $S \in A^{n \times n}$. Then, P is monic, and deg P = n. Besides, $P(X) = \det(XI_n - S)$, so that P(u) = $\det (uI_n - S)$. Thus,

$$P(u) \cdot v = \det(uI_n - S) \cdot v = \underbrace{\det(uI_n - S) I_n}_{=\operatorname{adj}(uI_n - S) \cdot (uI_n - S)} \cdot v$$
$$= \operatorname{adj}(uI_n - S) \cdot \underbrace{(uI_n - S) v}_{=0} = 0.$$

Hence, for any $k \in \{1, 2, ..., n\}$, we have

$$P(u) \cdot \underbrace{m_k}_{=v_k} = P(u) \cdot v_k = \left(\underbrace{P(u) \cdot v}_{=0}\right)_k = 0,$$

so that

$$P(u) \cdot U = P(u) \cdot \langle m_1, m_2, ..., m_n \rangle_A = \langle P(u) \cdot m_1, P(u) \cdot m_2, ..., P(u) \cdot m_n \rangle_A$$

= $\langle 0, 0, ..., 0 \rangle_A$ (since $P(u) \cdot m_k = 0$ for any $k \in \{1, 2, ..., n\}$)
= 0.

This implies P(u) = 0 (since v = 0 for every $v \in B$ satisfying vU = 0). Thus, Assertion \mathcal{A} holds. Hence, we have proved that $\mathcal{B} \Longrightarrow \mathcal{A}$.

Proof of the implication $\mathcal{A} \Longrightarrow \mathcal{D}$. Assume that Assertion \mathcal{A} holds. Then, there exists a monic polynomial $P \in A[X]$ with deg P = n and P(u) = 0. Since $P \in A[X]$ is a monic polynomial with deg P = n, there exist elements $a_0, a_1, ..., a_{n-1}$ of A such

that
$$P(X) = X^n + \sum_{k=0}^{n-1} a_k X^k$$
. Thus, $P(u) = u^n + \sum_{k=0}^{n-1} a_k u^k$, so that $P(u) = 0$ becomes

$$u^n + \sum_{k=0}^{n-1} a_k u^k = 0$$
. Hence, $u^n = -\sum_{k=0}^{n-1} a_k u^k$.

 $u^n + \sum_{k=0}^{n-1} a_k u^k = 0. \text{ Hence, } u^n = -\sum_{k=0}^{n-1} a_k u^k.$ Let U be the A-submodule $\langle u^0, u^1, ..., u^{n-1} \rangle_A$ of B. As in the Proof of the implication $\mathcal{A} \Longrightarrow \mathcal{C}$, we can show that U is an n-generated A-module, and that $1 \in U$ and $uU \subseteq U$. Now, we are going to show that

$$u^i \in U$$
 for any $i \in \mathbb{N}$. (1)

Proof of (1). We will prove (1) by induction over i:

Induction base: The assertion (1) holds for i=0 (since $u^0 \in U$). This completes the induction base.

Induction step: Let $\tau \in \mathbb{N}$. If the assertion (1) holds for $i = \tau$, then the assertion (1) holds for $i = \tau + 1$ (because if the assertion (1) holds for $i = \tau$, then $u^{\tau} \in U$, so that $u^{\tau+1} = u \cdot \underbrace{u^{\tau}}_{t} \in uU \subseteq U$, so that $u^{\tau+1} \in U$, and thus the assertion (1) holds for

 $i = \tau + 1$). This completes the induction step.

Hence, the induction is complete, and (1) is proven. Thus,

$$A[u] = \left\{ \sum_{i=0}^{m} a_i u^i \mid m \in \mathbb{N} \text{ and } (a_0, a_1, ..., a_m) \in A^{m+1} \right\} \subseteq U$$

(since $\sum_{i=0}^{m} a_i u^i \in U$ for any $m \in \mathbb{N}$ and any $(a_0, a_1, ..., a_m) \in A^{m+1}$, because $a_i \in A$ and $u^i \in U$ for any $i \in \{0, 1, ..., m\}$ (by (1)) and U is an A-module). On the other hand, $U \subseteq A[u]$, since

$$U = \left\langle u^{0}, u^{1}, ..., u^{n-1} \right\rangle_{A} = \left\{ \sum_{i=0}^{n-1} a_{i} u^{i} \mid (a_{0}, a_{1}, ..., a_{n-1}) \in A^{n} \right\}$$

$$\subseteq \left\{ \sum_{i=0}^{m} a_{i} u^{i} \mid m \in \mathbb{N} \text{ and } (a_{0}, a_{1}, ..., a_{m}) \in A^{m+1} \right\} = A [u].$$

Thus, U = A[u]. In other words, $\langle u^0, u^1, ..., u^{n-1} \rangle_A = A[u]$. Thus, Assertion \mathcal{D} holds. Hence, we have proved that $\mathcal{A} \Longrightarrow \mathcal{D}$.

Proof of the implication $\mathcal{D} \Longrightarrow \mathcal{C}$. Assume that Assertion \mathcal{D} holds. Then, $A[u] = \langle u^0, u^1, ..., u^{n-1} \rangle_A$.

Let U be the A-submodule $\langle u^0, u^1, ..., u^{n-1} \rangle_A$ of B. Then, U is an n-generated A-module (since $u^0, u^1, ..., u^{n-1}$ are n elements of U). Besides, $1 = u^0 \in U$. Also,

$$uU = u \cdot \langle u^0, u^1, ..., u^{n-1} \rangle_A = u \cdot A[u] \subseteq A[u] = \langle u^0, u^1, ..., u^{n-1} \rangle_A = U.$$

Thus, Assertion \mathcal{C} holds. Hence, we have proved that $\mathcal{D} \Longrightarrow \mathcal{C}$.

Now, we have proved the implications $\mathcal{A} \Longrightarrow \mathcal{D}$, $\mathcal{D} \Longrightarrow \mathcal{C}$, $\mathcal{C} \Longrightarrow \mathcal{B}$ and $\mathcal{B} \Longrightarrow \mathcal{A}$ above. Thus, all four assertions \mathcal{A} , \mathcal{B} , \mathcal{C} and \mathcal{D} are pairwise equivalent, and Theorem 1 is proven.

Theorem 2. Let A and B be two rings such that $A \subseteq B$. Let $n \in \mathbb{N}$. Let $v \in B$. Let $a_0, a_1, ..., a_n$ be n+1 elements of A such that $\sum_{i=0}^n a_i v^i = 0$. Let $k \in \{0, 1, ..., n\}$. Then, $\sum_{i=0}^{n-k} a_{i+k} v^i$ is n-integral over A.

Proof of Theorem 2. Let U be the A-submodule $\langle v^0, v^1, ..., v^{n-1} \rangle_A$ of B. Then, U is an n-generated A-module (since $v^0, v^1, ..., v^{n-1}$ are n elements of U). Besides, $1 = v^0 \in U$.

Let
$$u = \sum_{i=0}^{n-k} a_{i+k} v^i$$
. Then,

$$0 = \sum_{i=0}^{n} a_i v^i = \sum_{i=0}^{k-1} a_i v^i + \sum_{i=k}^{n} a_i v^i = \sum_{i=0}^{k-1} a_i v^i + \sum_{i=0}^{n-k} a_{i+k} \underbrace{v^{i+k}}_{=v^i v^k}$$

(here, we substituted i + k for i in the second sum)

$$= \sum_{i=0}^{k-1} a_i v^i + v^k \sum_{i=0}^{n-k} a_{i+k} v^i = \sum_{i=0}^{k-1} a_i v^i + v^k u,$$

so that
$$v^k u = -\sum_{i=0}^{k-1} a_i v^i$$
.

Now, we are going to show that

$$uv^t \in U$$
 for any $t \in \{0, 1, ..., n-1\}$. (2)

Proof of (2). Since $t \in \{0, 1, ..., n-1\}$, one of the following two cases must hold:

Case 1: We have $t \in \{0, 1, ..., k - 1\}$.

Case 2: We have $t \in \{k, k+1, ..., n-1\}$.

In Case 1, we have

$$uv^{t} = \sum_{i=0}^{n-k} a_{i+k} \underbrace{v^{i} \cdot v^{t}}_{=v^{i+t}} = \sum_{i=0}^{n-k} a_{i+k} v^{i+t} \in \left\langle v^{0}, v^{1}, ..., v^{n-1} \right\rangle_{A}$$

$$\left(\text{ since } t \in \{0, 1, ..., k-1\} \text{ yields } i+t \in \{0, 1, ..., n-1\} \text{ and thus } \right)$$

$$v^{i+t} \in \{v^{0}, v^{1}, ..., v^{n-1}\} \text{ for any } i \in \{0, 1, ..., n-k\}$$

$$= U.$$

In Case 2, we have $t \in \{k, k+1, ..., n-1\}$, thus $t-k \in \{0, 1, ..., n-k-1\}$ and hence

$$uv^{t} = u\underbrace{v^{k+(t-k)}}_{=v^{k}v^{t-k}} = v^{k}u \cdot v^{t-k} = -\sum_{i=0}^{k-1} a_{i}\underbrace{v^{i} \cdot v^{t-k}}_{=v^{i+(t-k)}} \qquad \left(\text{since } v^{k}u = -\sum_{i=0}^{k-1} a_{i}v^{i}\right)$$

$$= -\sum_{i=0}^{k-1} a_{i}v^{i+(t-k)} \in \left\langle v^{0}, v^{1}, ..., v^{n-1} \right\rangle_{A}$$

$$\left(\text{since } t - k \in \{0, 1, ..., n - k - 1\} \text{ yields } i + (t - k) \in \{0, 1, ..., n - 1\} \text{ and thus } \right)$$

$$v^{i+(t-k)} \in \{v^{0}, v^{1}, ..., v^{n-1}\} \text{ for any } i \in \{0, 1, ..., k - 1\}$$

$$= U.$$

Hence, in both cases, we have $uv^t \in U$. Thus, $uv^t \in U$ always holds, and (2) is proven.

Now.

$$uU = u \langle v^0, v^1, ..., v^{n-1} \rangle_A = \langle uv^0, uv^1, ..., uv^{n-1} \rangle_A \subseteq U$$
 (due to (2)).

Altogether, U is an n-generated A-submodule of B such that $1 \in U$ and $uU \subseteq U$. Thus, $u \in B$ satisfies Assertion C of Theorem 1. Hence, $u \in B$ satisfies the four equivalent assertions A, B, C and D of Theorem 1. Consequently, u is n-integral over A. Since $u = \sum_{i=0}^{n-k} a_{i+k}v^i$, this means that $\sum_{i=0}^{n-k} a_{i+k}v^i$ is n-integral over A. This proves Theorem 2.

Corollary 3. Let A and B be two rings such that $A \subseteq B$. Let $\alpha \in \mathbb{N}$ and $\beta \in \mathbb{N}$. Let $u \in B$ and $v \in B$. Let $s_0, s_1, ..., s_{\alpha}$ be $\alpha + 1$ elements of A such that $\sum_{i=0}^{\alpha} s_i v^i = u$. Let $t_0, t_1, ..., t_{\beta}$ be $\beta + 1$ elements of A such that $\sum_{i=0}^{\beta} t_i v^{\beta-i} = uv^{\beta}$. Then, u is $(\alpha + \beta)$ -integral over A.

(This Corollary 3 generalizes Exercise 2-5 in [1].)

Proof of Corollary 3. Let $k = \beta$ and $n = \alpha + \beta$. Then, $k \in \{0, 1, ..., n\}$. Define n+1 elements $a_0, a_1, ..., a_n$ of A by

$$a_{i} = \begin{cases} t_{\beta-i}, & \text{if } i < \beta; \\ t_{0} - s_{0}, & \text{if } i = \beta; \\ -s_{i-\beta}, & \text{if } i > \beta; \end{cases}$$
 for every $i \in \{0, 1, ..., n\}$.

Then,

$$\begin{split} \sum_{i=0}^{n} a_i v^i &= \sum_{i=0}^{\alpha+\beta} a_i v^i = \sum_{i=0}^{\beta-1} \underbrace{a_i}_{=t_{\beta-i}}, v^i + \sum_{i=\beta}^{\beta} \underbrace{a_i}_{=t_0-s_0}, v^i + \sum_{i=\beta+1}^{\alpha+\beta} \underbrace{a_i}_{=-s_{i-\beta}}, v^i \\ &= \sum_{i=0}^{\beta-1} t_{\beta-i} v^i + \sum_{i=\beta}^{\beta} \left(t_0 - s_0\right) v^i + \sum_{i=\beta+1}^{\alpha+\beta} \left(-s_{i-\beta}\right) v^i \\ &= \underbrace{\sum_{i=0}^{\beta-1} t_{\beta-i} v^i + \sum_{i=\beta}^{\beta} \left(t_0 - s_0\right) v^\beta}_{=t_0 v^\beta - s_0 v^\beta} = \underbrace{\sum_{i=\beta+1}^{\alpha+\beta} s_{i-\beta} v^i}_{=-\sum_{i=\beta+1}^{\alpha+\beta} s_{i-\beta} v^i} \\ &= \sum_{i=0}^{\beta-1} t_{\beta-i} v^i + t_0 v^\beta - s_0 v^\beta - \sum_{i=\beta+1}^{\alpha+\beta} s_{i-\beta} v^i = \sum_{i=0}^{\beta-1} t_{\beta-i} v^i + t_0 v^\beta - \left(s_0 v^\beta + \sum_{i=\beta+1}^{\alpha+\beta} s_{i-\beta} v^i\right) \\ &= \sum_{i=0}^{\beta-1} t_{\beta-i} v^i + t_0 v^\beta - \left(s_0 v^\beta + \sum_{i=1}^{\alpha} \underbrace{s_{(i+\beta)-\beta}}_{=s_i} \underbrace{v^{i+\beta}}_{=v^i v^\beta}\right) \end{split}$$
(here, we substituted $i + \beta$ for i in the second sum)

(here, we substituted $i + \beta$ for i in the second sum)

$$= \sum_{i=0}^{\beta-1} t_{\beta-i} v^{i} + t_{0} v^{\beta} - \left(s_{0} v^{\beta} + \sum_{i=1}^{\alpha} s_{i} v^{i} v^{\beta} \right)$$

$$= \sum_{i=1}^{\beta} \underbrace{t_{\beta-(\beta-i)}}_{=t_{i}} v^{\beta-i} + t_{0} \underbrace{v^{\beta}}_{=v^{\beta-0}} - \left(s_{0} \underbrace{v^{\beta}}_{=v^{0} v^{\beta}} + \sum_{i=1}^{\alpha} s_{i} v^{i} v^{\beta} \right)$$

(here, we substituted $\beta - i$ for i in the first sum)

$$= \sum_{i=1}^{\beta} t_{i} v^{\beta-i} + t_{0} v^{\beta-0} - \left(s_{0} v^{0} v^{\beta} + \sum_{i=1}^{\alpha} s_{i} v^{i} v^{\beta} \right)$$

$$= \sum_{i=1}^{\beta} t_{i} v^{\beta-i} + t_{0} v^{\beta-0} - \left(\underbrace{s_{0} v^{0} + \sum_{i=1}^{\alpha} s_{i} v^{i}}_{=\sum_{i=0}^{\beta} s_{i} v^{i} = u} \right) v^{\beta} = u v^{\beta} - u v^{\beta} = 0.$$

Thus, Theorem 2 yields that $\sum_{i=0}^{n-k} a_{i+k}v^i$ is *n*-integral over A. But

$$\sum_{i=0}^{n-k} a_{i+k} v^{i} = \sum_{i=0}^{n-\beta} a_{i+\beta} v^{i} = \sum_{i=0}^{0} \underbrace{a_{i+\beta}}_{\substack{=t_{0}-s_{0}, \\ \text{since} \\ i=0 \text{ yields}}} v^{i} + \sum_{i=1}^{n-\beta} \underbrace{a_{i+\beta}}_{\substack{=s_{i+\beta}-\beta, \\ \text{since} \\ i>0 \text{ yields}}} v^{i}$$

$$= \underbrace{\sum_{i=0}^{0} (t_{0}-s_{0}) v^{i}}_{\substack{=(t_{0}-s_{0})v^{0} \\ =t_{0}v^{0}-s_{0}v^{0} \\ =t_{0}-s_{0}v^{0}}}_{\substack{=(t_{0}-s_{0})v^{0} \\ =t_{0}-s_{0}v^{0}}} = \underbrace{t_{0}-s_{0}v^{0}}_{\substack{=(t_{0}-s_{0})v^{0} \\ =t_{0}-s_{0}v^{0}}} = t_{0}-s_{0}v^{0} - \sum_{i=1}^{n-\beta} (-s_{i}) v^{i} = t_{0}-s_{0}v^{0} - \sum_{i=1}^{n-\beta} s_{i}v^{i}$$

$$= t_{0}-s_{0}v^{0} - \sum_{i=1}^{\alpha} s_{i}v^{i} \qquad \text{(since } n=\alpha+\beta \text{ yields } n-\beta=\alpha\text{)}}$$

$$= t_{0}-\underbrace{s_{0}v^{0} + \sum_{i=1}^{\alpha} s_{i}v^{i}}_{\substack{=(t_{0}-s_{0})v^{0} \\ =t_{0}-s_{0}v^{0}}} = t_{0}-u.$$

Thus, $t_0 - u$ is *n*-integral over A. On the other hand, $-t_0$ is 1-integral over A (by Theorem 5 (a) below, applied to $a = -t_0$). Thus, $(-t_0) + (t_0 - u)$ is $n \cdot 1$ -integral over A (by Theorem 5 (b) below, applied to $x = -t_0$, $y = t_0 - u$ and m = 1). In other words, -u is *n*-integral over A (since $(-t_0) + (t_0 - u) = -u$ and $n \cdot 1 = n$). On the other hand, -1 is 1-integral over A (by Theorem 5 (a) below, applied to a = -1). Thus, $(-1) \cdot (-u)$ is $n \cdot 1$ -integral over A (by Theorem 5 (c) below, applied to x = -1, y = -u and m = 1). In other words, u is $(\alpha + \beta)$ -integral over A (since $(-1) \cdot (-u) = u$ and $n \cdot 1 = n = \alpha + \beta$). This proves Corollary 3.

Theorem 4. Let A and B be two rings such that $A \subseteq B$. Let $v \in B$ and $u \in B$. Let $m \in \mathbb{N}$ and $n \in \mathbb{N}$. Assume that v is m-integral over A, and that u is n-integral over A[v]. Then, u is n-integral over A.

Proof of Theorem 4. Since v is m-integral over A, we have $A[v] = \langle v^0, v^1, ..., v^{m-1} \rangle_A$ (this is the Assertion \mathcal{D} of Theorem 1, stated for v and m in lieu of u and n).

Since u is n-integral over A[v], we have $(A[v])[u] = \langle u^0, u^1, ..., u^{n-1} \rangle_{A[v]}$ (this is the Assertion \mathcal{D} of Theorem 1, stated for A[v] in lieu of A).

Let $S = \{0, 1, ..., n - 1\} \times \{0, 1, ..., m - 1\}.$

Let $x \in (A[v])[u]$. Then, there exist n elements $b_0, b_1, ..., b_{n-1}$ of A[v] such that $x = \sum_{i=0}^{n-1} b_i u^i$ (since $x \in (A[v])[u] = \langle u^0, u^1, ..., u^{n-1} \rangle_{A[v]}$). But for each $i \in \{0, 1, ..., n-1\}$,

there exist m elements $a_{i,0}, a_{i,1}, ..., a_{i,m-1}$ of A such that $b_i = \sum_{j=0}^{m-1} a_{i,j} v^j$ (because $b_i \in A[v] = \langle v^0, v^1, ..., v^{m-1} \rangle_A$). Thus,

$$x = \sum_{i=0}^{n-1} \underbrace{b_i}_{\substack{m-1 \\ = \sum_{j=0}^{m-1} a_{i,j}v^j}} u^i = \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} a_{i,j}v^j u^i = \sum_{(i,j)\in\{0,1,\dots,n-1\}\times\{0,1,\dots,m-1\}} a_{i,j}v^j u^i = \sum_{(i,j)\in S} a_{i,j}v^j u^i$$

$$\in \langle v^j u^i \mid (i,j) \in S \rangle_A$$
 (since $a_{i,j} \in A$ for every $(i,j) \in S$)

So we have proved that $x \in \langle v^j u^i \mid (i,j) \in S \rangle_A$ for every $x \in (A[v])[u]$. Thus, $(A[v])[u] \subseteq \langle v^j u^i \mid (i,j) \in S \rangle_A$. Conversely, $\langle v^j u^i \mid (i,j) \in S \rangle_A \subseteq (A[v])[u]$ (since $v^j \in A[v]$ for every $(i,j) \in S$, and thus $\underbrace{v^j}_{\in A[v]} u^i \in (A[v])[u]$ for every $(i,j) \in S$, and

therefore

$$\langle v^{j}u^{i} \mid (i,j) \in S \rangle_{A} = \left\{ \underbrace{\sum_{\substack{(i,j) \in S \\ \in (A[v])[u], \text{ since} \\ v^{j}u^{i} \in (A[v])[u] \text{ for all } (i,j) \in S \\ \text{and } (A[v])[u] \text{ is an } A\text{-module}} \right\} \subseteq (A[v])[u]$$

). Hence, $(A[v])[u] = \langle v^j u^i \mid (i,j) \in S \rangle_A$. Thus, the A-module (A[v])[u] is nm-generated (since

$$|S| = |\{0,1,...,n-1\} \times \{0,1,...,m-1\}| = \underbrace{|\{0,1,...,n-1\}|}_{=n} \cdot \underbrace{|\{0,1,...,m-1\}|}_{=m} = nm$$

). Let U = (A[v])[u]. Then, the A-module U is nm-generated. Besides, U is an A-submodule of B, and we have $1 = u^0 \in (A[v])[u] = U$ and

$$\begin{aligned} uU &= u\left(A\left[v\right]\right)\left[u\right] \subseteq \left(A\left[v\right]\right)\left[u\right] & \text{ (since } \left(A\left[v\right]\right)\left[u\right] \text{ is an } A\left[v\right]\text{-algebra and } u \in \left(A\left[v\right]\right)\left[u\right] \\ &= U. \end{aligned}$$

Altogether, we now know that the A-submodule U of B is nm-generated and satisfies $1 \in U$ and $uU \subseteq U$.

Thus, the element u of B satisfies the Assertion C of Theorem 1 with n replaced by nm. Hence, $u \in B$ satisfies the four equivalent assertions A, B, C and D of Theorem 1, all with n replaced by nm. Thus, u is nm-integral over A. This proves Theorem 4.

Theorem 5. Let A and B be two rings such that $A \subseteq B$.

- (a) Let $a \in A$. Then, a is 1-integral over A.
- (b) Let $x \in B$ and $y \in B$. Let $m \in \mathbb{N}$ and $n \in \mathbb{N}$. Assume that x is m-integral over A, and that y is n-integral over A. Then, x + y is nm-integral over A.

(c) Let $x \in B$ and $y \in B$. Let $m \in \mathbb{N}$ and $n \in \mathbb{N}$. Assume that x is m-integral over A, and that y is n-integral over A. Then, xy is nm-integral over A.

Proof of Theorem 5. (a) There exists a monic polynomial $P \in A[X]$ with deg P = 1 and P(a) = 0 (namely, the polynomial $P \in A[X]$ defined by P(X) = X - a). Thus, a is 1-integral over A. This proves Theorem 5 (a).

(b) Since y is n-integral over A, there exists a monic polynomial $P \in A[X]$ with $\deg P = n$ and P(y) = 0. Since $P \in A[X]$ is a monic polynomial with $\deg P = n$, there exists a polynomial $\widetilde{P} \in A[X]$ with $\deg \widetilde{P} < n$ and $P(X) = X^n + \widetilde{P}(X)$.

Now, define a polynomial $Q \in (A[x])[X]$ by Q(X) = P(X - x). Then,

 $\deg Q = \deg P$ (since shifting the polynomial P by the constant x does not change its degree) = n

and Q(x + y) = P((x + y) - x) = P(y) = 0.

Define a polynomial $\widetilde{Q} \in (A[x])[X]$ by $\widetilde{Q}(X) = ((X-x)^n - X^n) + \widetilde{P}(X-x)$. Then, $\deg \widetilde{Q} < n$ (since

$$\deg\left(\widetilde{P}\left(X-x\right)\right) = \deg\left(\widetilde{P}\left(X\right)\right)$$

(since shifting the polynomial \widetilde{P} by the constant x does not change its degree) $= \deg \widetilde{P} < n$

and

$$\deg((X-x)^{n} - X^{n}) = \deg\left(((X-x) - X) \cdot \sum_{k=0}^{n-1} (X-x)^{k} X^{n-1-k}\right)$$

$$\leq \underbrace{\deg((X-x) - X)}_{=\deg(-x)=0} + \underbrace{\deg\left(\sum_{k=0}^{n-1} (X-x)^{k} X^{n-1-k}\right)}_{\leq n-1, \text{ since } \atop \deg((X-x)^{k} X^{n-1-k}) \leq n-1 \atop \text{ for any } k \in \{0,1,\dots,n-1\}}$$

$$\leq 0 + (n-1) = n-1 < n$$

yield

$$\deg \widetilde{Q} = \deg \left(\widetilde{Q}(X) \right) = \deg \left(((X - x)^n - X^n) + \widetilde{P}(X - x) \right)$$

$$\leq \max \left\{ \underbrace{\deg \left((X - x)^n - X^n \right)}_{\leq n}, \underbrace{\deg \left(\widetilde{P}(X - x) \right)}_{\leq n} \right\} < \max \left\{ n, n \right\} = n$$

). Thus, the polynomial Q is monic (since

$$Q(X) = P(X - x) = (X - x)^{n} + \widetilde{P}(X - x) \qquad \left(\text{since } P(X) = X^{n} + \widetilde{P}(X)\right)$$
$$= X^{n} + \underbrace{((X - x)^{n} - X^{n}) + \widetilde{P}(X - x)}_{=\widetilde{Q}(X)} = X^{n} + \widetilde{Q}(X)$$

and $\deg \widetilde{Q} < n$).

Hence, there exists a monic polynomial $Q \in (A[x])[X]$ with $\deg Q = n$ and Q(x+y) = 0. Thus, x+y is *n*-integral over A[x]. Thus, Theorem 4 (applied to v = x and u = x+y) yields that x+y is *nm*-integral over A. This proves Theorem 5 (b).

(c) Since y is n-integral over A, there exists a monic polynomial $P \in A[X]$ with $\deg P = n$ and P(y) = 0. Since $P \in A[X]$ is a monic polynomial with $\deg P = n$, there exist elements $a_0, a_1, ..., a_{n-1}$ of A such that $P(X) = X^n + \sum_{k=0}^{n-1} a_k X^k$. Thus, $P(y) = y^n + \sum_{k=0}^{n-1} a_k y^k$.

Now, define a polynomial $Q \in (A[x])[X]$ by $Q(X) = X^n + \sum_{k=0}^{n-1} x^{n-k} a_k X^k$. Then,

$$Q(xy) = \underbrace{(xy)^n}_{=x^n y^n} + \sum_{k=0}^{n-1} x^{n-k} \underbrace{a_k (xy)^k}_{=a_k x^k y^k} = x^n y^n + \sum_{k=0}^{n-1} \underbrace{x^{n-k} x^k}_{=x^n} a_k y^k$$

$$= x^{n}y^{n} + \sum_{k=0}^{n-1} x^{n}a_{k}y^{k} = x^{n} \left(\underbrace{y^{n} + \sum_{k=0}^{n-1} a_{k}y^{k}}_{=P(y)=0}\right) = 0.$$

Also, the polynomial $Q \in (A[x])[X]$ is monic and $\deg Q = n$ (since $Q(X) = X^n + \sum_{k=0}^{n-1} x^{n-k} a_k X^k$). Thus, there exists a monic polynomial $Q \in (A[x])[X]$ with $\deg Q = n$ and Q(xy) = 0. Thus, xy is n-integral over A[x]. Hence, Theorem 4 (applied to v = x and u = xy) yields that xy is nm-integral over A. This proves Theorem 5 (c).

Corollary 6. Let A and B be two rings such that $A \subseteq B$. Let $n \in \mathbb{N}^+$ and $m \in \mathbb{N}$. Let $v \in B$. Let $b_0, b_1, ..., b_{n-1}$ be n elements of A, and let $u = \sum_{i=0}^{n-1} b_i v^i$. Assume that vu is m-integral over A. Then, u is nm-integral over A.

Proof of Corollary 6. Define n+1 elements $a_0, a_1, ..., a_n$ of A[vu] by

$$a_i = \begin{cases} -vu, & \text{if } i = 0; \\ b_{i-1}, & \text{if } i > 0 \end{cases}$$
 for every $i \in \{0, 1, ..., n\}$.

Then, $a_0 = -vu$. Let k = 1. Then,

$$\sum_{i=0}^{n} a_i v^i = \underbrace{a_0}_{=-vu} \underbrace{v^0}_{=1} + \sum_{i=1}^{n} \underbrace{a_i}_{\substack{=b_{i-1}, \\ \text{since} \\ i>0}} \underbrace{v^i}_{=v^{i-1}v} = -vu + \sum_{i=1}^{n} b_{i-1} v^{i-1}v = -vu + \sum_{i=1}^{n-1} b_i v^i v$$

(here, we substituted i for i-1 in the sum)

$$= -vu + uv = 0.$$

Now, A[vu] and B are two rings such that $A[vu] \subseteq B$. The n+1 elements $a_0, a_1, ..., a_n$ of A[vu] satisfy $\sum_{i=0}^n a_i v^i = 0$. We have $k = 1 \in \{0, 1, ..., n\}$.

Hence, Theorem 2 (applied to the ring A[vu] in lieu of A) yields that $\sum_{i=0}^{n-k} a_{i+k}v^i$ is n-integral over A[vu]. But

$$\sum_{i=0}^{n-k} a_{i+k} v^i = \sum_{i=0}^{n-1} \underbrace{a_{i+1}}_{\substack{=b_{(i+1)-1}, \\ \text{since } i+1 > 0}} v^i = \sum_{i=0}^{n-1} b_{(i+1)-1} v^i = \sum_{i=0}^{n-1} b_i v^i = u.$$

Hence, u is n-integral over A[vu]. But vu is m-integral over A. Thus, Theorem 4 (applied to vu in lieu of v) yields that u is nm-integral over A. This proves Corollary 6.

2. Integrality over ideal semifiltrations

Definitions:

Definition 6. Let A be a ring, and let $(I_{\rho})_{\rho \in \mathbb{N}}$ be a sequence of ideals of A. Then, $(I_{\rho})_{\rho \in \mathbb{N}}$ is called an *ideal semifiltration* of A if and only if it satisfies the two conditions

$$I_0 = A;$$

$$I_a I_b \subseteq I_{a+b} \qquad \text{for every } a \in \mathbb{N} \text{ and } b \in \mathbb{N}.$$

Definition 7. Let A and B be two rings such that $A \subseteq B$. Then, we identify the polynomial ring A[Y] with a subring of the polynomial ring B[Y] (in fact, every element of A[Y] has the form $\sum_{i=0}^{m} a_i Y^i$ for some $m \in \mathbb{N}$ and $(a_0, a_1, ..., a_m) \in A^{m+1}$, and thus can be seen as an element of B[Y] by regarding a_i as an element of B for every $i \in \{0, 1, ..., m\}$).

Definition 8. Let A be a ring, and let $(I_{\rho})_{\rho \in \mathbb{N}}$ be an ideal semifiltration of A. Consider the polynomial ring A[Y]. Let $A\left[(I_{\rho})_{\rho \in \mathbb{N}} * Y\right]$ denote the A-submodule $\sum_{i \in \mathbb{N}} I_i Y^i$ of the A-algebra A[Y]. Then,

$$A\left[\left(I_{\rho}\right)_{\rho\in\mathbb{N}}*Y\right] = \sum_{i\in\mathbb{N}} I_{i}Y^{i}$$

$$= \left\{ \sum_{i \in \mathbb{N}} a_i Y^i \mid (a_i \in I_i \text{ for all } i \in \mathbb{N}), \text{ and (only finitely many } i \in \mathbb{N} \text{ satisfy } a_i \neq 0) \right\}$$

 $= \{ P \in A[Y] \mid \text{ the } i\text{-th coefficient of the polynomial } P \text{ lies in } I_i \text{ for every } i \in \mathbb{N} \}.$

Now,
$$1 \in A\left[(I_{\rho})_{\rho \in \mathbb{N}} * Y \right]$$
 (because $1 = \underbrace{1}_{\in A = I_0} \cdot Y^0 \in I_0 Y^0 \subseteq \sum_{i \in \mathbb{N}} I_i Y^i = A\left[(I_{\rho})_{\rho \in \mathbb{N}} * Y \right] \right)$.

Also, the A-submodule $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$ of $A\left[Y\right]$ is closed under multiplication (since

$$A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]\cdot A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right] = \sum_{i\in\mathbb{N}}I_{i}Y^{i}\cdot\sum_{i\in\mathbb{N}}I_{i}Y^{i} = \sum_{i\in\mathbb{N}}I_{i}Y^{i}\cdot\sum_{j\in\mathbb{N}}I_{j}Y^{j}$$
 (here we renamed i as j in the second sum)
$$=\sum_{i\in\mathbb{N}}\sum_{j\in\mathbb{N}}I_{i}Y^{i}I_{j}Y^{j} = \sum_{i\in\mathbb{N}}\sum_{j\in\mathbb{N}}I_{i}I_{j}\underbrace{Y^{i}Y^{j}}_{\subseteq I_{i+j},}\underbrace{Y^{i}Y^{j}}_{=Y^{i+j}}$$
 since $(I_{\rho})_{\rho\in\mathbb{N}}$ is an ideal semifiltration
$$\subseteq\sum_{i\in\mathbb{N}}\sum_{j\in\mathbb{N}}I_{i+j}Y^{i+j}\subseteq\sum_{k\in\mathbb{N}}I_{k}Y^{k} = \sum_{i\in\mathbb{N}}I_{i}Y^{i}$$
 (here we renamed k as i in the sum)
$$=A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$$

). Hence, $A\left[\left(I_{\rho}\right)_{\rho\in\mathbb{N}}*Y\right]$ is an A-subalgebra of the A-algebra $A\left[Y\right]$. This A-subalgebra $A\left[\left(I_{\rho}\right)_{\rho\in\mathbb{N}}*Y\right]$ is called the Rees algebra of the ideal semifiltration $\left(I_{\rho}\right)_{\rho\in\mathbb{N}}$. Clearly, $A\subseteq A\left[\left(I_{\rho}\right)_{\rho\in\mathbb{N}}*Y\right]$, since $A\left[\left(I_{\rho}\right)_{\rho\in\mathbb{N}}*Y\right]=\sum_{i\in\mathbb{N}}I_{i}Y^{i}\supseteq\underbrace{I_{0}}_{=A}\underbrace{Y^{0}}_{=1}=A\cdot 1=A$

A.

Definition 9. Let A and B be two rings such that $A \subseteq B$. Let $(I_{\rho})_{\rho \in \mathbb{N}}$ be an ideal semifiltration of A. Let $n \in \mathbb{N}$. Let $u \in B$.

We say that the element u of B is n-integral over $\left(A, (I_{\rho})_{\rho \in \mathbb{N}}\right)$ if there exists some $(a_0, a_1, ..., a_n) \in A^{n+1}$ such that

$$\sum_{k=0}^{n} a_k u^k = 0, \qquad a_n = 1, \qquad \text{and} \qquad a_i \in I_{n-i} \text{ for every } i \in \{0, 1, ..., n\}.$$

We start with a theorem which reduces the question of n-integrality over $\left(A, (I_{\rho})_{\rho \in \mathbb{N}}\right)$ to that of n-integrality over a ring¹:

Theorem 7. Let A and B be two rings such that $A \subseteq B$. Let $(I_{\rho})_{\rho \in \mathbb{N}}$ be an ideal semifiltration of A. Let $n \in \mathbb{N}$. Let $u \in B$.

Consider the polynomial ring A[Y] and its A-subalgebra $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$ defined in Definition 8.

Then, the element u of B is n-integral over $\left(A, (I_{\rho})_{\rho \in \mathbb{N}}\right)$ if and only if the element uY of the polynomial ring B[Y] is n-integral over the ring $A\left[(I_{\rho})_{\rho \in \mathbb{N}} * Y\right]$. (Here, $A\left[(I_{\rho})_{\rho \in \mathbb{N}} * Y\right] \subseteq B[Y]$ because $A\left[(I_{\rho})_{\rho \in \mathbb{N}} * Y\right] \subseteq A[Y]$ and we consider A[Y] as a subring of B[Y] as explained in Definition 7).

¹Theorem 7 is inspired by Proposition 5.2.1 in [2].

Proof of Theorem 7. In order to verify Theorem 7, we have to prove the following two lemmata:

Lemma \mathcal{E} : If u is n-integral over $\left(A, (I_{\rho})_{\rho \in \mathbb{N}}\right)$, then uY is n-integral over $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$. Lemma \mathcal{F} : If uY is n-integral over $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$, then u is n-integral over $\left(A, (I_{\rho})_{\rho \in \mathbb{N}}\right)$.

Proof of Lemma \mathcal{E} : Assume that u is n-integral over $\left(A, (I_{\rho})_{\rho \in \mathbb{N}}\right)$. Then, by Definition 9, there exists some $(a_0, a_1, ..., a_n) \in A^{n+1}$ such that

$$\sum_{k=0}^{n} a_k u^k = 0, \qquad a_n = 1, \qquad \text{and} \qquad a_i \in I_{n-i} \text{ for every } i \in \{0, 1, ..., n\}.$$

Note that $a_kY^{n-k}\in A\left[(I_\rho)_{\rho\in\mathbb{N}}*Y\right]$ for every $k\in\{0,1,...,n\}$ (because $\underbrace{a_k}Y^{n-k}\in I_{n-k}Y^{n-k}\subseteq \sum_{i\in\mathbb{N}}I_iY^i=A\left[(I_\rho)_{\rho\in\mathbb{N}}*Y\right]$). Thus, we can define a polynomial $P\in \left(A\left[(I_\rho)_{\rho\in\mathbb{N}}*Y\right]\right)[X]$ by $P(X)=\sum_{k=0}^n a_kY^{n-k}X^k$. This polynomial P satisfies $\deg P\le n$, and its coefficient before X^n is $\underbrace{a_n}_{=1}\underbrace{Y^{n-n}}_{=Y^0=1}=1$. Hence, this polynomial P is monic and satisfies $\deg P=n$. Also, $P(X)=\sum_{k=0}^n a_kY^{n-k}X^k$ yields

$$P(uY) = \sum_{k=0}^{n} a_k Y^{n-k} (uY)^k = \sum_{k=0}^{n} a_k Y^{n-k} u^k Y^k = \sum_{k=0}^{n} a_k u^k \underbrace{Y^{n-k} Y^k}_{=Y^n} = Y^n \cdot \underbrace{\sum_{k=0}^{n} a_k u^k}_{=0} = 0.$$

Thus, there exists a monic polynomial $P \in \left(A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]\right)[X]$ with $\deg P = n$ and $P\left(uY\right) = 0$. Hence, uY is n-integral over $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$. This proves Lemma \mathcal{E} .

Proof of Lemma \mathcal{F} : Assume that uY is n-integral over $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$. Then, there exists a monic polynomial $P\in\left(A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]\right)[X]$ with $\deg P=n$ and $P\left(uY\right)=0$. Since $P\in\left(A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]\right)[X]$ satisfies $\deg P=n$, there exists $(p_0,p_1,...,p_n)\in\left(A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]\right)^{n+1}$ such that $P\left(X\right)=\sum_{k=0}^{n}p_kX^k$. Besides, $p_n=1$, since P is monic and $\deg P=n$.

For every $k \in \{0, 1, ..., n\}$, we have $p_k \in A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right] = \sum_{i \in \mathbb{N}} I_i Y^i$, and thus, there exists a sequence $(p_{k,i})_{i \in \mathbb{N}} \in A^{\mathbb{N}}$ such that $p_k = \sum_{i \in \mathbb{N}} p_{k,i} Y^i$, such that $p_{k,i} \in I_i$ for every $i \in \mathbb{N}$, and such that only finitely many $i \in \mathbb{N}$ satisfy $p_{k,i} \neq 0$. Thus, $P(X) = \sum_{k=0}^{n} p_k X^k$

becomes
$$P(X) = \sum_{k=0}^{n} \sum_{i \in \mathbb{N}} p_{k,i} Y^{i} X^{k}$$
 (since $p_{k} = \sum_{i \in \mathbb{N}} p_{k,i} Y^{i}$). Hence,

$$P(uY) = \sum_{k=0}^{n} \sum_{i \in \mathbb{N}} p_{k,i} Y^{i} \underbrace{(uY)^{k}}_{=u^{k}Y^{k}} = \sum_{k=0}^{n} \sum_{i \in \mathbb{N}} p_{k,i} \underbrace{Y^{i}Y^{k}}_{=Y^{i+k}} u^{k}$$

$$= \sum_{k=0}^{n} \sum_{i \in \mathbb{N}} p_{k,i} Y^{i+k} u^{k} = \sum_{k \in \{0,1,\dots,n\}} \sum_{i \in \mathbb{N}} p_{k,i} Y^{i+k} u^{k}$$

$$= \sum_{(k,i) \in \{0,1,\dots,n\} \times \mathbb{N}} p_{k,i} Y^{i+k} u^{k} = \sum_{\ell \in \mathbb{N}} \sum_{(k,i) \in \{0,1,\dots,n\} \times \mathbb{N}; \atop i+k=\ell} p_{k,i} \underbrace{Y^{i+k}}_{i+k-\ell} u^{k}$$

$$= \sum_{\ell \in \mathbb{N}} \sum_{(k,i) \in \{0,1,\dots,n\} \times \mathbb{N}; \atop i+k-\ell} p_{k,i} Y^{\ell} u^{k} = \sum_{\ell \in \mathbb{N}} \sum_{(k,i) \in \{0,1,\dots,n\} \times \mathbb{N}; \atop i+k-\ell} p_{k,i} u^{k} Y^{\ell}.$$

Hence, P(uY) = 0 becomes $\sum_{\substack{\ell \in \mathbb{N} \ (k,i) \in \{0,1,\ldots,n\} \times \mathbb{N}; \\ i+k=\ell}} \sum_{\substack{k,i \in \mathbb{N} \ (k,i) \in \{0,1,\ldots,n\} \times \mathbb{N}; \\ i+k=\ell}} p_{k,i} u^k Y^\ell = 0$. In other words, the

polynomial $\sum_{\ell \in \mathbb{N}} \underbrace{\sum_{\substack{(k,i) \in \{0,1,\dots,n\} \times \mathbb{N}; \\ i+k=\ell}} p_{k,i} u^k Y^\ell \in B[Y]$ equals 0. Hence, its coefficient before

 Y^n equals 0 as well. But its coefficient before Y^n is $\sum_{\substack{(k,i)\in\{0,1,\ldots,n\}\times\mathbb{N};\\i+k=n}} p_{k,i}u^k$. Hence,

$$\sum_{\substack{(k,i)\in\{0,1,\dots,n\}\times\mathbb{N};\\i+k=n\\\text{Thus,}}}p_{k,i}u^k \text{ equals } 0.$$

$$0 = \sum_{\substack{(k,i) \in \{0,1,\dots,n\} \times \mathbb{N}; \\ i+k=n}} p_{k,i}u^k = \sum_{\substack{k \in \{0,1,\dots,n\} \\ i+k=n}} p_{k,i}u^k = \sum_{\substack{k \in \{0,1,\dots,n\} \\ i+k=n}} p_{k,n-k}u^k$$

$$\left(\begin{array}{c} \text{since } \{i \in \mathbb{N} \mid i+k=n\} = \{i \in \mathbb{N} \mid i=n-k\} = \{n-k\} \text{ (because } n-k \in \mathbb{N}, \\ \text{since } k \in \{0,1,\dots,n\} \text{) yields } \sum_{\substack{i \in \mathbb{N}; \\ i+k=n}} p_{k,i}u^k = \sum_{i \in \{n-k\}} p_{k,i}u^k = p_{k,n-k}u^k \end{array}\right)$$

Note that

$$\sum_{i \in \mathbb{N}} p_{n,i} Y^i = p_n \qquad \left(\text{since } \sum_{i \in \mathbb{N}} p_{k,i} Y^i = p_k \text{ for every } k \in \{0, 1, ..., n\} \right)$$
$$= 1 = 1 \cdot Y^0$$

in A[Y], and thus the coefficient of the polynomial $\sum_{i\in\mathbb{N}}p_{n,i}Y^i\in A[Y]$ before Y^0 is 1; but the coefficient of the polynomial $\sum_{i\in\mathbb{N}}p_{n,i}Y^i\in A[Y]$ before Y^0 is $p_{n,0}$; hence, $p_{n,0}=1$.

Define an (n+1)-tuple $(a_0, a_1, ..., a_n) \in A^{n+1}$ by $a_k = p_{k,n-k}$ for every $k \in \{0, 1, ..., n\}$. Then, $a_n = p_{n,n-n} = p_{n,0} = 1$. Besides,

$$\sum_{k=0}^{n} a_k u^k = \sum_{k=0}^{n} p_{k,n-k} u^k = \sum_{k \in \{0,1,\dots,n\}} p_{k,n-k} u^k = 0.$$

Finally, $a_k = p_{k,n-k} \in I_{n-k}$ (since $p_{k,i} \in I_i$ for every $i \in \mathbb{N}$) for every $k \in \{0, 1, ..., n\}$. In other words, $a_i \in I_{n-i}$ for every $i \in \{0, 1, ..., n\}$.

Altogether, we now know that

$$\sum_{k=0}^{n} a_k u^k = 0, \qquad a_n = 1, \qquad \text{and} \qquad a_i \in I_{n-i} \text{ for every } i \in \{0, 1, ..., n\}.$$

Thus, by Definition 9, the element u is n-integral over $\left(A, (I_{\rho})_{\rho \in \mathbb{N}}\right)$. This proves Lemma \mathcal{F} .

Combining Lemmata \mathcal{E} and \mathcal{F} , we obtain that u is n-integral over $\left(A, (I_{\rho})_{\rho \in \mathbb{N}}\right)$ if and only if uY is n-integral over $A\left[(I_{\rho})_{\rho \in \mathbb{N}} * Y\right]$. This proves Theorem 7.

The next theorem is an analogue of Theorem 5 for integrality over ideal semifiltrations:

Theorem 8. Let A and B be two rings such that $A \subseteq B$. Let $(I_{\rho})_{\rho \in \mathbb{N}}$ be an ideal semifiltration of A.

- (a) Let $u \in A$. Then, u is 1-integral over $\left(A, (I_{\rho})_{\rho \in \mathbb{N}}\right)$ if and only if $u \in I_1$.
- (b) Let $x \in B$ and $y \in B$. Let $m \in \mathbb{N}$ and $n \in \mathbb{N}$. Assume that x is m-integral over $\left(A, (I_{\rho})_{\rho \in \mathbb{N}}\right)$, and that y is n-integral over $\left(A, (I_{\rho})_{\rho \in \mathbb{N}}\right)$. Then, x + y is nm-integral over $\left(A, (I_{\rho})_{\rho \in \mathbb{N}}\right)$.
- (c) Let $x \in B$ and $y \in B$. Let $m \in \mathbb{N}$ and $n \in \mathbb{N}$. Assume that x is m-integral over $\left(A, (I_{\rho})_{\rho \in \mathbb{N}}\right)$, and that y is n-integral over A. Then, xy is nm-integral over $\left(A, (I_{\rho})_{\rho \in \mathbb{N}}\right)$.

Proof of Theorem 8. (a) In order to verify Theorem 8 (a), we have to prove the following two lemmata:

Lemma \mathcal{G} : If u is 1-integral over $(A, (I_{\rho})_{\rho \in \mathbb{N}})$, then $u \in I_1$.

Lemma \mathcal{H} : If $u \in I_1$, then u is 1-integral over $\left(A, (I_{\rho})_{\rho \in \mathbb{N}}\right)$.

Proof of Lemma \mathcal{G} : Assume that u is 1-integral over $(A, (I_{\rho})_{\rho \in \mathbb{N}})$. Then, by Definition 9 (applied to n = 1), there exists some $(a_0, a_1) \in A^2$ such that

$$\sum_{k=0}^{1} a_k u^k = 0, a_1 = 1, and a_i \in I_{1-i} \text{ for every } i \in \{0, 1\}.$$

Thus, $a_0 \in I_{1-0}$ (since $a_i \in I_{1-i}$ for every $i \in \{0, 1\}$). Also,

$$0 = \sum_{k=0}^{1} a_k u^k = a_0 \underbrace{u^0}_{=1} + \underbrace{a_1}_{=1} \underbrace{u^1}_{=u} = a_0 + u,$$

so that $u = -\underbrace{a_0}_{\in I_{1-0} = I_1} \in I_1$ (since I_1 is an ideal). This proves Lemma \mathcal{G} .

Proof of Lemma \mathcal{H} : Assume that $u \in I_1$. Then, $-u \in I_1$ (since I_1 is an ideal). Set $a_0 = -u$ and $a_1 = 1$. Then, $\sum_{k=0}^{1} a_k u^k = \underbrace{a_0}_{=-u} \underbrace{u^0}_{=1} + \underbrace{a_1}_{=1} \underbrace{u^1}_{=u} = -u + u = 0$. Also, $a_i \in I_{1-i}$ for every $i \in \{0,1\}$ (since $a_0 = -u \in I_1 = I_{1-0}$ and $a_1 = 1 \in A = I_0 = I_{1-1}$). Altogether, we now know that $(a_0, a_1) \in A^2$ and

$$\sum_{k=0}^{1} a_k u^k = 0, \qquad a_1 = 1, \qquad \text{and} \qquad a_i \in I_{1-i} \text{ for every } i \in \{0, 1\}.$$

Thus, by Definition 9 (applied to n = 1), the element u is 1-integral over $\left(A, (I_{\rho})_{\rho \in \mathbb{N}}\right)$. This proves Lemma \mathcal{H} .

Combining Lemmata \mathcal{G} and \mathcal{H} , we obtain that u is 1-integral over $\left(A, (I_{\rho})_{\rho \in \mathbb{N}}\right)$ if and only if $u \in I_1$. This proves Theorem 8 (a).

(b) Consider the polynomial ring A[Y] and its A-subalgebra $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$. Theorem 7 (applied to x and m instead of u and n) yields that xY is m-integral over $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$ (since x is m-integral over $\left(A,(I_{\rho})_{\rho\in\mathbb{N}}\right)$). Also, Theorem 7 (applied to y instead of u) yields that yY is n-integral over $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$ (since y is n-integral over $\left(A,(I_{\rho})_{\rho\in\mathbb{N}}\right)$). Hence, Theorem 5 (b) (applied to $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$, B[Y], xY and yY instead of A, B, x and y, respectively) yields that xY + yY is nm-integral over $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$. Since xY + yY = (x+y)Y, this means that (x+y)Y is nm-integral over $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$. Hence, Theorem 7 (applied to x+y and nm instead of u and u0 yields that u0. This proves Theorem 8 (b).

(c) First, a trivial observation:

Lemma \mathcal{I} : Let A, A' and B' be three rings such that $A \subseteq A' \subseteq B'$. Let $v \in B'$. Let $n \in \mathbb{N}$. If v is n-integral over A, then v is n-integral over A'.

Proof of Lemma \mathcal{I} : Assume that v is n-integral over A. Then, there exists a monic polynomial $P \in A[X]$ with $\deg P = n$ and P(v) = 0. Since $A \subseteq A'$, we can identify the polynomial ring A[X] with a subring of the polynomial ring A'[X] (as explained in Definition 7). Thus, $P \in A[X]$ yields $P \in A'[X]$. Hence, there exists a monic polynomial $P \in A'[X]$ with $\deg P = n$ and P(v) = 0. Thus, v is n-integral over A'. This proves Lemma \mathcal{I} .

Now let us prove Theorem 8 (c).

Consider the polynomial ring A[Y] and its A-subalgebra $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$. Theorem 7 (applied to x and m instead of u and n) yields that xY is m-integral over $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$ (since x is m-integral over $\left(A,(I_{\rho})_{\rho\in\mathbb{N}}\right)$). On the other hand, Lemma \mathcal{I} (applied to $A'=A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$, B'=B[Y] and v=y) yields that y is n-integral over $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$ (since y is n-integral over A, and $A\subseteq A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]\subseteq B[Y]$). Hence, Theorem 5 (c) (applied to $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$, B[Y] and xY instead of A, B and x, respectively) yields that $xY\cdot y$ is nm-integral over $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$. Since $xY\cdot y=xyY$,

this means that xyY is nm-integral over $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$. Hence, Theorem 7 (applied to xy and nm instead of u and n) yields that xy is nm-integral over $(A, (I_\rho)_{\rho \in \mathbb{N}})$. This proves Theorem 8 (c).

The next theorem imitates Theorem 4 for integrality over ideal semifiltrations:

Theorem 9. Let A and B be two rings such that $A \subseteq B$. Let $(I_{\rho})_{\rho \in \mathbb{N}}$ be an ideal semifiltration of A.

Let $v \in B$ and $u \in B$. Let $m \in \mathbb{N}$ and $n \in \mathbb{N}$.

- (a) Then, $(I_{\rho}A[v])_{\rho\in\mathbb{N}}$ is an ideal semifiltration of A[v].
- (b) Assume that v is m-integral over A, and that u is n-integral over $\left(A\left[v\right],\left(I_{\rho}A\left[v\right]\right)_{\rho\in\mathbb{N}}\right)$. Then, u is nm-integral over $\left(A,\left(I_{\rho}\right)_{\rho\in\mathbb{N}}\right)$.

Proof of Theorem 9. (a) More generally:

Lemma \mathcal{J} : Let A and A' be two rings such that $A \subseteq A'$. Let $(I_{\rho})_{{\rho} \in \mathbb{N}}$ be an ideal

semifiltration of A. Then, $(I_{\rho}A')_{\rho\in\mathbb{N}}$ is an ideal semifiltration of A'.

Proof of Lemma \mathcal{J} : Since $(I_{\rho})_{\rho\in\mathbb{N}}$ is an ideal semifiltration of A, the set I_{ρ} is an ideal of A for every $\rho \in \mathbb{N}$, and we have

$$I_0 = A;$$

 $I_a I_b \subseteq I_{a+b}$ for every $a \in \mathbb{N}$ and $b \in \mathbb{N}$.

Now, the set $I_{\rho}A'$ is an ideal of A' for every $\rho \in \mathbb{N}$ (since I_{ρ} is an ideal of A), and we have

$$I_0A' = AA' = A';$$

 $I_aA' \cdot I_bA' = I_aI_bA' \subseteq I_{a+b}A' \text{ (since } I_aI_b \subseteq I_{a+b})$ for every $a \in \mathbb{N}$ and $b \in \mathbb{N}$.

Thus, $(I_{\rho}A')_{\rho\in\mathbb{N}}$ is an ideal semifiltration of A'. This proves Lemma \mathcal{J} .

Now let us prove Theorem 9 (a). In fact, Lemma \mathcal{J} (applied to A' = A[v]) yields that $(I_{\rho}A[v])_{\rho\in\mathbb{N}}$ is an ideal semifiltration of A[v]. This proves Theorem 9 (a).

(b) First, we will show a simple fact:

Lemma K: Let A, A' and B' be three rings such that $A \subseteq A' \subseteq B'$. Let $v \in B'$. Then, $A' \cdot A[v] = A'[v]$.

Proof of Lemma K: We have
$$\underbrace{A'}_{\subseteq A'[v]} \cdot \underbrace{A[v]}_{\subseteq A'[v], \text{ since } A \subseteq A'} \subseteq A'[v] \cdot A'[v] = A'[v]$$
 (since $A'[v]$

is a ring). On the other hand, let x be an element of A'[v]. Then, there exists some $n \in \mathbb{N}$ and some $(a_0, a_1, ..., a_n) \in (A')^{n+1}$ such that $x = \sum_{k=0}^n a_k v^k$. Thus,

$$x = \sum_{k=0}^{n} \underbrace{a_k}_{\in A'} \underbrace{v^k}_{\in A[v]} \in \sum_{k=0}^{n} A' \cdot A[v] \subseteq A' \cdot A[v] \quad \text{(since } A' \cdot A[v] \text{ is an additive group)}.$$

Thus, we have proved that $x \in A' \cdot A[v]$ for every $x \in A'[v]$. Therefore, $A'[v] \subseteq A' \cdot A[v]$. Combined with $A' \cdot A[v] \subseteq A'[v]$, this yields $A' \cdot A[v] = A'[v]$. Hence, we have established Lemma \mathcal{K} .

Now let us prove Theorem 9 (b). In fact, consider the polynomial ring A[Y] and its A-subalgebra $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$. We have $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]\subseteq A[Y]$, and (as explained in Definition 7) we can identify the polynomial ring A[Y] with a subring of (A[v])[Y] (since $A\subseteq A[v]$). Hence, $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]\subseteq (A[v])[Y]$. On the other hand, $(A[v])\left[(I_{\rho}A[v])_{\rho\in\mathbb{N}}*Y\right]\subseteq (A[v])[Y]$.

Now, we will show that $(A[v]) \left[(I_{\rho}A[v])_{\rho \in \mathbb{N}} * Y \right] = \left(A \left[(I_{\rho})_{\rho \in \mathbb{N}} * Y \right] \right) [v]$. In fact, Definition 8 yields

$$(A[v])\left[\left(I_{\rho}A[v]\right)_{\rho\in\mathbb{N}}*Y\right] = \sum_{i\in\mathbb{N}} I_{i}A[v] \cdot Y^{i} = \sum_{i\in\mathbb{N}} I_{i}Y^{i} \cdot A[v] = A\left[\left(I_{\rho}\right)_{\rho\in\mathbb{N}}*Y\right] \cdot A[v]$$

$$\left(\operatorname{since}\sum_{i\in\mathbb{N}} I_{i}Y^{i} = A\left[\left(I_{\rho}\right)_{\rho\in\mathbb{N}}*Y\right]\right)$$

$$= \left(A\left[\left(I_{\rho}\right)_{\rho\in\mathbb{N}}*Y\right]\right)[v]$$

(by Lemma \mathcal{K} (applied to $A' = A\left[(I_{\rho})_{\rho \in \mathbb{N}} * Y \right]$ and B' = (A[v])[Y])).

Note that (as explained in Definition 7) we can identify the polynomial ring (A[v])[Y] with a subring of B[Y] (since $A[v] \subseteq B$). Thus, $A[(I_{\rho})_{\rho \in \mathbb{N}} * Y] \subseteq (A[v])[Y]$ yields $A[(I_{\rho})_{\rho \in \mathbb{N}} * Y] \subseteq B[Y]$.

Besides, Lemma \mathcal{I} (applied to $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$, $B\left[Y\right]$ and m instead of A', B' and n) yields that v is m-integral over $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$ (since v is m-integral over A, and $A\subseteq A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]\subseteq B\left[Y\right]$).

Now, Theorem 7 (applied to A[v] and $(I_{\rho}A[v])_{\rho\in\mathbb{N}}$ instead of A and $(I_{\rho})_{\rho\in\mathbb{N}}$) yields that uY is n-integral over $(A[v])\left[(I_{\rho}A[v])_{\rho\in\mathbb{N}}*Y\right]$ (since u is n-integral over $\left(A[v],(I_{\rho}A[v])_{\rho\in\mathbb{N}}\right)$). Since $(A[v])\left[(I_{\rho}A[v])_{\rho\in\mathbb{N}}*Y\right]=\left(A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]\right)[v]$, this means that uY is n-integral over $\left(A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]\right)[v]$. Now, Theorem 4 (applied to $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$, B[Y] and uY instead of A, B and u) yields that uY is n-integral over $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$ (since v is m-integral over $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$, and uY is n-integral over $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$) [v]). Thus, Theorem 7 (applied to nm instead of n) yields that u is nm-integral over $\left(A,(I_{\rho})_{\rho\in\mathbb{N}}\right)$. This proves Theorem 9 (b).

3. Generalizing to two ideal semifiltrations

Theorem 10. Let A be a ring.

- (a) Then, $(A)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A.
- (b) Let $(I_{\rho})_{\rho \in \mathbb{N}}$ and $(J_{\rho})_{\rho \in \mathbb{N}}$ be two ideal semifiltrations of A. Then, $(I_{\rho}J_{\rho})_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A.

Proof of Theorem 10. (a) Clearly, $(A)_{\rho \in \mathbb{N}}$ is a sequence of ideals of A. Hence, in order to prove that $(A)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A, it is enough to verify that it satisfies the two conditions

$$A = A;$$

 $AA \subseteq A$ for every $a \in \mathbb{N}$ and $b \in \mathbb{N}.$

But these two conditions are obviously satisfied. Hence, $(A)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A. This proves Theorem 10 (a).

(b) Since $(I_{\rho})_{{\rho}\in\mathbb{N}}$ is an ideal semifiltration of A, it is a sequence of ideals of A, and it satisfies the two conditions

$$I_0 = A;$$

 $I_a I_b \subseteq I_{a+b}$ for every $a \in \mathbb{N}$ and $b \in \mathbb{N}$.

Since $(J_{\rho})_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A, it is a sequence of ideals of A, and it satisfies the two conditions

$$J_0 = A;$$

 $J_a J_b \subseteq J_{a+b}$ for every $a \in \mathbb{N}$ and $b \in \mathbb{N}$.

Now, $I_{\rho}J_{\rho}$ is an ideal of A for every $\rho \in \mathbb{N}$ (since I_{ρ} and J_{ρ} are ideals of A for every $\rho \in \mathbb{N}$, and the product of any two ideals of A is an ideal of A). Hence, $(I_{\rho}J_{\rho})_{\rho \in \mathbb{N}}$ is a sequence of ideals of A. Thus, in order to prove that $(I_{\rho}J_{\rho})_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A, it is enough to verify that it satisfies the two conditions

$$I_0J_0=A;$$

$$I_aJ_a\cdot I_bJ_b\subseteq I_{a+b}J_{a+b}\qquad \text{for every }a\in\mathbb{N}\text{ and }b\in\mathbb{N}.$$

But these two conditions are satisfied, since

$$\underbrace{I_0}_{=A}\underbrace{J_0}_{=A} = AA = A;$$

$$I_a J_a \cdot I_b J_b = \underbrace{I_a I_b}_{\subseteq I_{a+b}} \underbrace{J_a J_b}_{\subseteq J_{a+b}} \subseteq I_{a+b} J_{a+b} \qquad \text{for every } a \in \mathbb{N} \text{ and } b \in \mathbb{N}.$$

Hence, $(I_{\rho}J_{\rho})_{\rho\in\mathbb{N}}$ is an ideal semifiltration of A. This proves Theorem 10 (b). Now let us generalize Theorem 7:

Theorem 11. Let A and B be two rings such that $A \subseteq B$. Let $(I_{\rho})_{\rho \in \mathbb{N}}$ and $(J_{\rho})_{\rho \in \mathbb{N}}$ be two ideal semifiltrations of A. Let $n \in \mathbb{N}$. Let $u \in B$.

We know that $(I_{\rho}J_{\rho})_{\rho\in\mathbb{N}}$ is an ideal semifiltration of A (according to Theorem 10 **(b)**).

Consider the polynomial ring A[Y] and its A-subalgebra $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$.

We will abbreviate the ring $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$ by $A_{[I]}$.

By Lemma \mathcal{J} (applied to $A_{[I]}$ and $(J_{\tau})_{\tau \in \mathbb{N}}$ instead of A' and $(I_{\rho})_{\rho \in \mathbb{N}}$), the sequence $(J_{\tau}A_{[I]})_{\tau \in \mathbb{N}}$ is an ideal semifiltration of $A_{[I]}$ (since $A \subseteq A_{[I]}$ and since $(J_{\tau})_{\tau \in \mathbb{N}} = (J_{\rho})_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A).

Then, the element u of B is n-integral over $\left(A, (I_{\rho}J_{\rho})_{\rho\in\mathbb{N}}\right)$ if and only if the element uY of the polynomial ring B[Y] is n-integral over $\left(A_{[I]}, \left(J_{\tau}A_{[I]}\right)_{\tau\in\mathbb{N}}\right)$ (Here, $A_{[I]}\subseteq B[Y]$ because $A_{[I]}=A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]\subseteq A[Y]$ and we consider A[Y] as a subring of B[Y] as explained in Definition 7.)

Proof of Theorem 11. First, note that

$$\sum_{\ell \in \mathbb{N}} I_{\ell} Y^{\ell} = \sum_{i \in \mathbb{N}} I_{i} Y^{i} \qquad \text{(here we renamed } \ell \text{ as } i \text{ in the sum)}$$
$$= A \left[(I_{\rho})_{\rho \in \mathbb{N}} * Y \right] = A_{[I]}.$$

In order to verify Theorem 11, we have to prove the following two lemmata: $I_{\text{comma}} \in \mathcal{C}' \quad \text{if } x_{\text{in}} \text{ is an integral even} \left(A_{\text{c}}(I, I) \right) \quad \text{then } x_{\text{c}} V \text{ is an integral}$

Lemma \mathcal{E}' : If u is n-integral over $\left(A, (I_{\rho}J_{\rho})_{\rho\in\mathbb{N}}\right)$, then uY is n-integral over $\left(A_{[I]}, \left(J_{\tau}A_{[I]}\right)_{\tau\in\mathbb{N}}\right)$.

Lemma \mathcal{F}' : If uY is n-integral over $\left(A_{[I]}, \left(J_{\tau}A_{[I]}\right)_{\tau \in \mathbb{N}}\right)$, then u is n-integral over $\left(A, (I_{\rho}J_{\rho})_{\rho \in \mathbb{N}}\right)$.

Proof of Lemma \mathcal{E}' : Assume that u is n-integral over $\left(A, (I_{\rho}J_{\rho})_{\rho\in\mathbb{N}}\right)$. Then, by Definition 9 (applied to $(I_{\rho}J_{\rho})_{\rho\in\mathbb{N}}$ instead of $(I_{\rho})_{\rho\in\mathbb{N}}$), there exists some $(a_0, a_1, ..., a_n) \in A^{n+1}$ such that

$$\sum_{k=0}^{n} a_k u^k = 0, \qquad a_n = 1, \qquad \text{and} \qquad a_i \in I_{n-i} J_{n-i} \text{ for every } i \in \{0, 1, ..., n\}.$$

Note that $a_k Y^{n-k} \in A_{[I]}$ for every $k \in \{0, 1, ..., n\}$ (because $a_k \in I_{n-k} J_{n-k} \subseteq I_{n-k}$ (since I_{n-k} is an ideal of A) and thus $a_k Y^{n-k} \in I_{n-k} Y^{n-k} \subseteq \sum_{i \in \mathbb{N}} I_i Y^i = A_{[I]}$). Thus, we can define an (n+1)-tuple $(b_0, b_1, ..., b_n) \in (A_{[I]})^{n+1}$ by $b_k = a_k Y^{n-k}$ for every $k \in \{0, 1, ..., n\}$. Then,

$$\sum_{k=0}^{n} b_k \cdot (uY)^k = \sum_{k=0}^{n} a_k Y^{n-k} \cdot (uY)^k = \sum_{k=0}^{n} a_k Y^{n-k} u^k Y^k = \sum_{k=0}^{n} a_k u^k \underbrace{Y^{n-k} Y^k}_{=Y^n} = Y^n \cdot \underbrace{\sum_{k=0}^{n} a_k u^k}_{=0} = 0;$$

$$b_n = a_n Y^{n-n} = 1$$

$$b_n = \underbrace{a_n}_{=1} \underbrace{Y^{n-n}}_{=Y^0=1} = 1,$$

and

$$b_i = \underbrace{a_i}_{\substack{\in I_{n-i}J_{n-i} \\ = J_{n-i}I_{n-i}}} Y^{n-i} \in J_{n-i} \underbrace{I_{n-i}Y^{n-i}}_{\substack{\subseteq \sum_{\ell \in \mathbb{N}} I_{\ell}Y^{\ell} \\ =A_{[I]}}} \subseteq J_{n-i}A_{[I]}$$

for every $i \in \{0, 1, ..., n\}$.

Altogether, we now know that $(b_0, b_1, ..., b_n) \in (A_{[I]})^{n+1}$ and

$$\sum_{k=0}^{n} b_k \cdot (uY)^k = 0, \qquad b_n = 1, \qquad \text{and} \qquad b_i \in J_{n-i}A_{[I]} \text{ for every } i \in \{0, 1, ..., n\}.$$

Hence, by Definition 9 (applied to $A_{[I]}$, B[Y], $(J_{\tau}A_{[I]})_{\tau\in\mathbb{N}}$, uY and $(b_0, b_1, ..., b_n)$ instead of A, B, $(I_{\rho})_{\rho\in\mathbb{N}}$, u and $(a_0, a_1, ..., a_n)$), the element uY is n-integral over $(A_{[I]}, (J_{\tau}A_{[I]})_{\tau\in\mathbb{N}})$. This proves Lemma \mathcal{E}' .

Proof of Lemma \mathcal{F}' : Assume that uY is n-integral over $\left(A_{[I]}, \left(J_{\tau}A_{[I]}\right)_{\tau \in \mathbb{N}}\right)$. Then, by Definition 9 (applied to $A_{[I]}, B[Y], \left(J_{\tau}A_{[I]}\right)_{\tau \in \mathbb{N}}, uY$ and $(p_0, p_1, ..., p_n)$ instead of $A, B, (I_{\rho})_{\rho \in \mathbb{N}}, u$ and $(a_0, a_1, ..., a_n)$, there exists some $(p_0, p_1, ..., p_n) \in \left(A_{[I]}\right)^{n+1}$ such that

$$\sum_{k=0}^{n} p_k \cdot (uY)^k = 0, \qquad p_n = 1, \qquad \text{and} \qquad p_i \in J_{n-i} A_{[I]} \text{ for every } i \in \{0, 1, ..., n\}.$$

For every $k \in \{0, 1, ..., n\}$, we have

$$p_k \in J_{n-k} A_{[I]} = J_{n-k} \sum_{i \in \mathbb{N}} I_i Y^i \qquad \left(\text{since } A_{[I]} = \sum_{i \in \mathbb{N}} I_i Y^i\right)$$
$$= \sum_{i \in \mathbb{N}} J_{n-k} I_i Y^i = \sum_{i \in \mathbb{N}} I_i J_{n-k} Y^i,$$

and thus, there exists a sequence $(p_{k,i})_{i\in\mathbb{N}}\in A^{\mathbb{N}}$ such that $p_k=\sum_{i\in\mathbb{N}}p_{k,i}Y^i$, such that $p_{k,i}\in I_iJ_{n-k}$ for every $i\in\mathbb{N}$, and such that only finitely many $i\in\mathbb{N}$ satisfy $p_{k,i}\neq 0$. Thus,

$$\sum_{k=0}^{n} p_{k} \cdot (uY)^{k} = \sum_{k=0}^{n} \sum_{i \in \mathbb{N}} p_{k,i} Y^{i} \cdot \underbrace{(uY)^{k}}_{=u^{k}Y^{k}} \qquad \left(\text{since } p_{k} = \sum_{i \in \mathbb{N}} p_{k,i} Y^{i}\right)$$

$$= \sum_{k=0}^{n} \sum_{i \in \mathbb{N}} p_{k,i} \underbrace{Y^{i} \cdot Y^{k}}_{=Y^{i+k}} u^{k}$$

$$= \sum_{k=0}^{n} \sum_{i \in \mathbb{N}} p_{k,i} Y^{i+k} u^{k} = \sum_{k \in \{0,1,\dots,n\}} \sum_{i \in \mathbb{N}} p_{k,i} Y^{i+k} u^{k}$$

$$= \sum_{(k,i) \in \{0,1,\dots,n\} \times \mathbb{N}} p_{k,i} Y^{i+k} u^{k} = \sum_{\ell \in \mathbb{N}} \sum_{(k,i) \in \{0,1,\dots,n\} \times \mathbb{N}; p_{k,i}} p_{k,i} \underbrace{Y^{i+k}}_{=Y^{\ell}} u^{k}$$

$$= \sum_{\ell \in \mathbb{N}} \sum_{(k,i) \in \{0,1,\dots,n\} \times \mathbb{N}; p_{k,i} Y^{\ell} u^{k}} p_{k,i} Y^{\ell} u^{k} = \sum_{\ell \in \mathbb{N}} \sum_{(k,i) \in \{0,1,\dots,n\} \times \mathbb{N}; p_{k,i} u^{k} Y^{\ell}} p_{k,i} u^{k} Y^{\ell}.$$

Hence,
$$\sum_{k=0}^{n} p_k \cdot (uY)^k = 0$$
 becomes $\sum_{\ell \in \mathbb{N}} \sum_{\substack{(k,i) \in \{0,1,\ldots,n\} \times \mathbb{N}; \\ i+k=\ell}} p_{k,i} u^k Y^\ell = 0$. In other words, the

Hence,
$$\sum_{k=0}^{n} p_k \cdot (uY)^k = 0$$
 becomes $\sum_{\ell \in \mathbb{N}} \sum_{\substack{(k,i) \in \{0,1,\dots,n\} \times \mathbb{N}; \\ i+k=\ell}} p_{k,i} u^k Y^\ell = 0$. In other words, the polynomial $\sum_{\ell \in \mathbb{N}} \sum_{\substack{(k,i) \in \{0,1,\dots,n\} \times \mathbb{N}; \\ i+k=\ell}} p_{k,i} u^k Y^\ell \in B[Y]$ equals 0. Hence, its coefficient before

 Y^n equals 0 as well. But its coefficient before Y^n is $\sum_{\substack{(k,i)\in\{0,1,\ldots,n\}\times\mathbb{N};\\i\perp k=n}}p_{k,i}u^k$. Hence,

$$\sum_{\substack{(k,i)\in\{0,1,\dots,n\}\times\mathbb{N};\\i+k=n}} p_{k,i}u^k \text{ equals } 0.$$

Thus,

$$0 = \sum_{\substack{(k,i) \in \{0,1,\dots,n\} \times \mathbb{N}; \\ i+k=n}} p_{k,i}u^k = \sum_{\substack{k \in \{0,1,\dots,n\} \\ i+k=n}} p_{k,i}u^k = \sum_{\substack{k \in \{0,1,\dots,n\} \\ i+k=n}} p_{k,n-k}u^k$$

$$\left(\begin{array}{c} \text{since } \{i \in \mathbb{N} \mid i+k=n\} = \{i \in \mathbb{N} \mid i=n-k\} = \{n-k\} \text{ (because } n-k \in \mathbb{N}, \\ \text{since } k \in \{0,1,\dots,n\} \text{) yields } \sum_{\substack{i \in \mathbb{N}; \\ i+k=n}} p_{k,i}u^k = \sum_{i \in \{n-k\}} p_{k,i}u^k = p_{k,n-k}u^k \end{array} \right)$$

Note that

$$\sum_{i \in \mathbb{N}} p_{n,i} Y^i = p_n \qquad \left(\text{since } \sum_{i \in \mathbb{N}} p_{k,i} Y^i = p_k \text{ for every } k \in \{0, 1, ..., n\} \right)$$

$$= 1 = 1 \cdot Y^0$$

in A[Y], and thus the coefficient of the polynomial $\sum_{i\in\mathbb{N}}p_{n,i}Y^i\in A[Y]$ before Y^0 is 1; but the coefficient of the polynomial $\sum_{i\in\mathbb{N}}p_{n,i}Y^i\in A[Y]$ before Y^0 is $p_{n,0}$; hence, $p_{n,0}=1$. Define an (n+1)-tuple $(a_0,a_1,...,a_n)\in A^{n+1}$ by $a_k=p_{k,n-k}$ for every $k\in\{0,1,...,n\}$.

Then, $a_n = p_{n,n-n} = p_{n,0} = 1$. Besides,

$$\sum_{k=0}^{n} a_k u^k = \sum_{k=0}^{n} p_{k,n-k} u^k = \sum_{k \in \{0,1,\dots,n\}} p_{k,n-k} u^k = 0.$$

Finally, $a_k = p_{k,n-k} \in I_{n-k}J_{n-k}$ (since $p_{k,i} \in I_iJ_{n-k}$ for every $i \in \mathbb{N}$) for every $k \in \mathbb{N}$ $\{0, 1, ..., n\}$. In other words, $a_i \in I_{n-i}J_{n-i}$ for every $i \in \{0, 1, ..., n\}$.

Altogether, we now know that

$$\sum_{k=0}^{n} a_k u^k = 0, \qquad a_n = 1, \qquad \text{and} \qquad a_i \in I_{n-i} J_{n-i} \text{ for every } i \in \{0, 1, ..., n\}.$$

Thus, by Definition 9 (applied to $(I_{\rho}J_{\rho})_{\rho\in\mathbb{N}}$ instead of $(I_{\rho})_{\rho\in\mathbb{N}}$), the element u is nintegral over $(A, (I_{\rho}J_{\rho})_{\rho\in\mathbb{N}})$. This proves Lemma \mathcal{F}' .

Combining Lemmata \mathcal{E}' and \mathcal{F}' , we obtain that u is n-integral over $\left(A, (I_{\rho}J_{\rho})_{\rho\in\mathbb{N}}\right)$ if and only if uY is n-integral over $(A_{[I]}, (J_{\tau}A_{[I]})_{\tau \in \mathbb{N}})$. This proves Theorem 11.

For the sake of completeness, we mention the following trivial fact (which shows why Theorem 11 generalizes Theorem 7):

Theorem 12. Let A and B be two rings such that $A \subseteq B$. Let $n \in \mathbb{N}$. Let $u \in B$.

We know that $(A)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A (according to Theorem 10 (a)).

Then, the element u of B is n-integral over $\left(A, (A)_{\rho \in \mathbb{N}}\right)$ if and only if u is n-integral over A.

Proof of Theorem 12. In order to verify Theorem 12, we have to prove the following two lemmata:

Lemma \mathcal{L} : If u is n-integral over $(A, (A)_{\rho \in \mathbb{N}})$, then u is n-integral over A.

Lemma \mathcal{M} : If u is n-integral over A, then u is n-integral over A, then A is A-integral over A, then A is A-integral over A.

Proof of Lemma \mathcal{L} : Assume that u is n-integral over $\left(A, (A)_{\rho \in \mathbb{N}}\right)$. Then, by Definition 9 (applied to $(A)_{\rho \in \mathbb{N}}$ instead of $(I_{\rho})_{\rho \in \mathbb{N}}$), there exists some $(a_0, a_1, ..., a_n) \in A^{n+1}$ such that

$$\sum_{k=0}^{n} a_k u^k = 0, a_n = 1, and a_i \in A \text{ for every } i \in \{0, 1, ..., n\}.$$

Define a polynomial $P \in A[X]$ by $P(X) = \sum_{k=0}^{n} a_k X^k$. Then, $P(X) = \sum_{k=0}^{n} a_k X^k = \sum_{k=0}^{n-1} a_k X^k$

$$\underbrace{a_n}_{=1}X^n + \sum_{k=0}^{n-1} a_k X^k = X^n + \sum_{k=0}^{n-1} a_k X^k$$
. Hence, the polynomial P is monic, and $\deg P = n$.

Besides, P(u) = 0 (since $P(X) = \sum_{k=0}^{n} a_k X^k$ yields $P(u) = \sum_{k=0}^{n} a_k u^k = 0$). Thus, there exists a monic polynomial $P \in A[X]$ with deg P = n and P(u) = 0. Hence, u is n-integral over A. This proves Lemma \mathcal{L} .

Proof of Lemma \mathcal{M} : Assume that u is n-integral over A. Then, there exists a monic polynomial $P \in A[X]$ with $\deg P = n$ and P(u) = 0. Since $\deg P = n$, there exists some (n+1)-tuple $(a_0, a_1, ..., a_n) \in A^{n+1}$ such that $P(X) = \sum_{k=0}^n a_k X^k$. Thus, $a_n = 1$ (since P is monic, and $\deg P = n$). Also, $\sum_{k=0}^n a_k X^k = P(X)$ yields $\sum_{k=0}^n a_k u^k = P(u) = 0$. Altogether, we now know that $(a_0, a_1, ..., a_n) \in A^{n+1}$ and

$$\sum_{k=0}^{n} a_k u^k = 0, a_n = 1, and a_i \in A \text{ for every } i \in \{0, 1, ..., n\}.$$

Hence, by Definition 9 (applied to $(A)_{\rho \in \mathbb{N}}$ instead of $(I_{\rho})_{\rho \in \mathbb{N}}$), the element u is n-integral over $(A, (A)_{\rho \in \mathbb{N}})$. This proves Lemma \mathcal{M} .

Combining Lemmata \mathcal{L} and \mathcal{M} , we obtain that u is n-integral over $\left(A, (A)_{\rho \in \mathbb{N}}\right)$ if and only if u is n-integral over A. This proves Theorem 12.

Finally, let us generalize Theorem 8 (c):

Theorem 13. Let A and B be two rings such that $A \subseteq B$. Let $(I_{\rho})_{{\rho} \in \mathbb{N}}$ and $(J_{\rho})_{{\rho} \in \mathbb{N}}$ be two ideal semifiltrations of A.

Let $x \in B$ and $y \in B$. Let $m \in \mathbb{N}$ and $n \in \mathbb{N}$. Assume that x is m-integral over $\left(A, (I_{\rho})_{\rho \in \mathbb{N}}\right)$, and that y is n-integral over $\left(A, (J_{\rho})_{\rho \in \mathbb{N}}\right)$. Then, xy is nm-integral over $\left(A, (I_{\rho}J_{\rho})_{\rho \in \mathbb{N}}\right)$.

Proof of Theorem 13. First, a trivial observation:

Lemma \mathcal{I}' : Let A, A' and B' be three rings such that $A \subseteq A' \subseteq B'$. Let $(I_{\rho})_{\rho \in \mathbb{N}}$ be an ideal semifiltration of A. Let $v \in B'$. Let $n \in \mathbb{N}$. If v is n-integral over $\left(A, (I_{\rho})_{\rho \in \mathbb{N}}\right)$, then v is n-integral over $\left(A', (I_{\rho}A')_{\rho \in \mathbb{N}}\right)$. (Note that $(I_{\rho}A')_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A', according to Lemma \mathcal{J} .)

Proof of Lemma \mathcal{I}' : Assume that v is n-integral over $\left(A, (I_{\rho})_{\rho \in \mathbb{N}}\right)$. Then, by Definition 9 (applied to B' and v instead of B and u), there exists some $(a_0, a_1, ..., a_n) \in A^{n+1}$ such that

$$\sum_{k=0}^{n} a_k v^k = 0, \qquad a_n = 1, \qquad \text{and} \qquad a_i \in I_{n-i} \text{ for every } i \in \{0, 1, ..., n\}.$$

But $(a_0, a_1, ..., a_n) \in A^{n+1}$ yields $(a_0, a_1, ..., a_n) \in (A')^{n+1}$ (since $A \subseteq A'$), and $a_i \in I_{n-i}$ yields $a_i \in I_{n-i}A'$ (since $I_{n-i} \subseteq I_{n-i}A'$) for every $i \in \{0, 1, ..., n\}$. Thus, $(a_0, a_1, ..., a_n) \in (A')^{n+1}$ and

$$\sum_{k=0}^{n} a_k v^k = 0, \qquad a_n = 1, \qquad \text{and} \qquad a_i \in I_{n-i} A' \text{ for every } i \in \{0, 1, ..., n\}.$$

Hence, by Definition 9 (applied to B', A', $(I_{\rho}A')_{\rho\in\mathbb{N}}$ and v instead of B, A, $(I_{\rho})_{\rho\in\mathbb{N}}$ and u), the element v is n-integral over $(A', (I_{\rho}A')_{\rho\in\mathbb{N}})$. This proves Lemma \mathcal{I}' .

Now let us prove Theorem 13.

We have $(J_{\rho})_{\rho \in \mathbb{N}} = (J_{\tau})_{\tau \in \mathbb{N}}$. Hence, y is n-integral over $(A, (J_{\tau})_{\tau \in \mathbb{N}})$ (since y is n-integral over $(A, (J_{\rho})_{\rho \in \mathbb{N}})$).

Consider the polynomial ring A[Y] and its A-subalgebra $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$. We will abbreviate the ring $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$ by $A_{[I]}$. We have $A_{[I]}\subseteq B[Y]$, because $A_{[I]}=A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]\subseteq A[Y]$ and we consider A[Y] as a subring of B[Y] as explained in Definition 7.

Theorem 7 (applied to x and m instead of u and n) yields that xY is m-integral over $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]$ (since x is m-integral over $\left(A,(I_{\rho})_{\rho\in\mathbb{N}}\right)$). In other words, xY is m-integral over $A_{[I]}$ (since $A\left[(I_{\rho})_{\rho\in\mathbb{N}}*Y\right]=A_{[I]}$).

On the other hand, Lemma \mathcal{I}' (applied to $A_{[I]}$, B[Y], $(J_{\tau})_{\tau \in \mathbb{N}}$ and y instead of A', B', $(I_{\rho})_{\rho \in \mathbb{N}}$ and v) yields that y is n-integral over $\left(A_{[I]}, \left(J_{\tau}A_{[I]}\right)_{\tau \in \mathbb{N}}\right)$ (since y is n-integral over $\left(A, (J_{\tau})_{\tau \in \mathbb{N}}\right)$, and $A \subseteq A_{[I]} \subseteq B[Y]$).

Hence, Theorem 8 (c) (applied to $A_{[I]}$, B[Y], $(J_{\tau}A_{[I]})_{\tau \in \mathbb{N}}$, y, xY, m and n instead of A, B, $(I_{\rho})_{\rho \in \mathbb{N}}$, x, y, n and m respectively) yields that $y \cdot xY$ is mn-integral over $(A_{[I]}, (J_{\tau}A_{[I]})_{\tau \in \mathbb{N}})$, and xY is m-integral over $A_{[I]}$. Since $y \cdot xY = xyY$ and mn = nm, this means that xyY is nm-integral over $(A_{[I]}, (J_{\tau}A_{[I]})_{\tau \in \mathbb{N}})$. Hence, Theorem 11 (applied to xy and nm instead of u and u yields that u is u is u-integral over u is u-integral over u-in

References

- [1] J. S. Milne, *Algebraic Number Theory*, version 3.02. http://jmilne.org/math/CourseNotes/math676.html
- [2] Craig Huneke and Irena Swanson, *Integral Closure of Ideals, Rings, and Modules*, London Mathematical Society Lecture Note Series, 336. Cambridge University Press, Cambridge, 2006.