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The purpose of this note is to collect some theorems and proofs related to integrality
in commutative algebra. The note is subdivided into four parts.

Part 1 (Integrality over rings) consists of known facts (Theorems 1, 4, 5) and a
generalized exercise from [1] (Corollary 3) with a few minor variations (Theorem 2 and
Corollary 6).

Part 2 (Integrality over ideal semifiltrations) merges integrality over rings (as con-
sidered in Part 1) and integrality over ideals (a less-known but still very useful notion;
the book [2] is devoted to it) into one general notion - that of integrality over ideal
semifiltrations (Definition 9). This notion is very general, yet it can be reduced to the
basic notion of integrality over rings by a suitable change of base ring (Theorem 7).
This reduction allows to extend some standard properties of integrality over rings to
the general case (Theorems 8 and 9).

Part 3 (Generalizing to two ideal semifiltrations) continues Part 2, adding one more
layer of generality. Its main result is a "relative” version of Theorem 7 (Theorem 11)
and a known fact generalized one more time (Theorem 13).

Part 4 (Accelerating ideal semifiltrations) generalizes Theorem 11 (and thus also
Theorem 7) a bit further by considering a generalization of powers of an ideal.

This note is supposed to be self-contained (only linear algebra and basic knowledge
about rings, ideals and polynomials is assumed). The proofs are constructive. However,
when writing down the proofs I focussed on maximal detail (to ensure correctness)
rather than on clarity, so the proofs are probably a pain to read. I think of making a
short version of this note with the obvious parts of proofs left out.

Preludium

Definitions and notations:

Definition 1. In the following, "ring” will always mean ”commutative ring with
unity”. We denote the set {0,1,2,...} by N, and the set {1,2,3,...} by N*.

Definition 2. Let A be a ring, and let n € N. Let M be an A-module. If mq, ms,
..., my, are n elements of M, then we define an A-submodule (my, ms,...,m,) , of M by

n
(my,ma, ...,mp) 4 = {Zaimi | (a1, a9, ...,a,) GA"}.
i=1

Also, if S is a finite set, and m, is an element of M for every s € S, then we define an
A-submodule (ms | s € 5), of M by

(ms | SES>A:{Za5ms | (as)seSeAS}.

seS
Of course, if my, mo, ..., m,, are n elements of M, then (my, mo, ...,m,) , = (ms | s €{1,2,...,n}),.
Definition 3. Let A be a ring, and let n € N. Let M be an A-module. We say
that the A-module M is n-generated if there exist n elements my, ms, ..., m, of M



such that M = (my,ms,...,m,) ,. In other words, the A-module M is n-generated if
and only if there exists a set S and an element mg of M for every s € S such that

|S|]=nand M =(m, | s€S),.
Definition 4. Let A and B be two rings. We say that A C B if and only if

(the set A is a subset of the set B) and (the inclusion map A — B is a ring homomorphism) .

Now assume that A C B. Then, obviously, B is canonically an A-algebra (since A C
B). Ifuy, us, ..., u, are n elements of B, then we define an A-subalgebra A [uy, ua, ..., u,]
of B by

A[ul,UQ,...,un]:{P<u1,U27...,un) | PGA[XI,XQ,...,XH]}.

In particular, if v is an element of B, then the A-subalgebra A [u] of B is defined
by
Al = {P(w) | PeA[X]}.

Since A[X] = {Z ;X' | meNand (ag,a,...,a,) € Am+1}, this becomes

1=0

Alu] = {(Z aiXi> (w) | meNand (ag,aq,...,an) € Am+1}

1=0

(Where <Z a; X Z) (u) means the polynomial Z a; X" evaluated at X = u)
i=0

i=0
= {Z au' | m €N and (ag,ai,...,am) € AmH} (because (Z aiX’) (u) = Z aiui> .
=0 =0 i=0

Obviously, uA [u] C Alu| (since A [u] is an A-algebra and u € A [u]).

1. Integrality over rings

Theorem 1. Let A and B be two rings such that A C B. Obviously, B is
canonically an A-module (since A C B). Let n € N. Let u € B. Then, the
following four assertions A, B, C and D are pairwise equivalent:

Assertion A: There exists a monic polynomial P € A[X]| with degP =n
and P (u) = 0.
Assertion B: There exist a B-module C' and an n-generated A-submodule

U of C such that U C U and such that every v € B satisfying vU = 0

satisfies v = 0. (Here, C' is an A-module, since C' is a B-module and
ACB,)

Assertion C: There exists an n-generated A-submodule U of B such that
1leUand uU CU.

Assertion D: We have Afu] = (u° ul, .. ,u" 1) ,.



Definition 5. Let A and B be two rings such that A C B. Let n € N. Let u € B.
We say that the element u of B is n-integral over A if it satisfies the four equivalent
assertions A, B, C and D of Theorem 1.

Hence, u is n-integral over A if and only if there exists a monic polynomial P € A [X]
with deg P = n and P (u) = 0.

Proof of Theorem 1. We will prove the implications A = C, C = B, B = A,
A= D and D = C.

Proof of the implication A = C. Assume that Assertion A holds. Then, there
exists a monic polynomial P € A[X] with deg P =n and P (u) = 0. Since P € A[X]

is a monic polynomial with deg P = n, there exist elements ag, a1, ..., a,_1 of A such
n—1 n—1
that P (X) = X"+ > a; X*. Thus, P (u) = u"+ > ayuF, so that P (u) = 0 becomes
k=0 k=0
n—1 n—1
u™ + > apuf = 0. Hence, u™ = — Y apu”.
k=0 k=0

Let U be the A-submodule (u°,u',...,u"""), of B. Then, U is an n-generated
A-module (since u°, u', ..., u"~! are n elements of U). Besides, 1 = u" € U.

Now, u-u* € U for any k € {0,1,...,n — 1} (since k € {0,1,...,n — 1} yields either
0<k<n—lork=n—1butu-uf =u* e (W u' . u ), =Uif0<k<n-—1,

n—1
=— Y quf € (Wi, ... unt), =Uif k=n—1, so that
k=0

k n
u-u* € U in both cases). Hence,

1

and u-u* =u-u""t =

1

ulU = u<u0,u1, ...,u”*1>A = <U~u0,u~u e un71> cU

A

(since u - u* € U for any k € {0,1,....,n — 1}).

Thus, Assertion C holds. Hence, we have proved that A — C.

Proof of the implication C = B. Assume that Assertion C holds. Then, there
exists an n-generated A-submodule U of B such that 1 € U and uU C U. Every v € B
satisfying vU = 0 satisfies v = 0 (since 1 € U and vU = 0 yield v \1,_/ coU =0

€U
and thus v -1 = 0, so that v = 0). Set C' = B. Then, C is a B-module, and U is
an n-generated A-submodule of C' (since U is an n-generated A-submodule of B, and
C' = B). Thus, Assertion B holds. Hence, we have proved that C = B.

Proof of the implication B = A. Assume that Assertion B holds. Then, there
exist a B-module C' and an n-generated A-submodule U of C such that uU C U (where
C' is an A-module, since C' is a B-module and A C B), and such that every v € B
satisfying vU = 0 satisfies v = 0.

Since the A-module U is n-generated, there exist n elements my, mo, ..., m, of U
such that U = (mq, mo, ..., m,) 4. For any k € {1,2,...,n}, we have

umy, € ulU (since my, € U)

CU= <m1am27 "'7mn>Aa

n
so that there exist n elements ax1, s, ..., ag, of A such that umy = > ax;m;.
i=1

We introduce two notations:

e For any matrix 7" and any integers x and y, we denote by T, , the entry of the
matrix 7" in the z-th row and the y-th column.
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e For any assertion U, we denote by [] the Boolean value of the assertion U (that

. 1, if U is true;
is, U] = { 0, if U is false )-

Clearly, the nxn identity matrix I,, satisfies (1,,),; = [¢ = i] for every ¢ € {1,2,...,n}
and i € {1,2,...,n}.
Note that for every 7 € {1,2,...,n}, we have

n

Z[z =T]m; =m,, (1)

i=1
since
n
i=1 i€{1,2,....,n}
— E [i=71] m; + E i =1] m,
) S—— ) S——
i€{1,2,....,n} —1, since i€{1,2,...,n} —0, since
such that i=7 ;i true such that i#£7T ,__iq false,
since 1#£T
= E Im; + E Om,; = E m; + 0
~—
i€{1,2,..,n} —m, 1€{1,2,....,n} 1€{1,2,....,n}
such that i=71 such that i#7 such that i=7
=0
since {i € {1,2,...,n} | i=71}={7},
Z Z because T € {1,2,...,n}
1€{1,2,...,n} ie{r}
such that i=71
= M.
Hence, for every k € {1,2,...,n}, we have
n n n n
E (uli = k| —ag;)m; = E (uli =klm; —ag;mi) =u E [i = k]m; — E ag M
i=1 i=1 i=1 =1

(applied to 7=k)

n
= umy, — E ar;m; =0

=1

n
(since umy, = > ag.m;).

=1
Define a matrix S € A™*" by Sy,; = ai,; for all k € {1,2,...,n} and i € {1,2,...,n}.
Define a matrix 7" € B™™ by T = adj (ul, —S) (where S is considered as an
element of B"*" because S € A"*" and A C B).
Let P € A[X] be the characteristic polynomial of the matrix S € A"*". Then, P is
monic, and deg P = n. Besides, P (X) = det (X1, — S), so that P (u) = det (ul,, — 5).
Then,

P (u) -1, =det (ul, = S)- I, =adj(ul, = S)-(ul, —S)=T- (ul, — 95).
~—_— —

=T
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Now, for every 7 € {1,2,...,n}, we have

n

P (u)m, = P (u) Z li=7] my (since (1) yields m, = Z [i = 7] mi>

— —— —
= == (1), =1
— P ()yymi =3P @) ()ymi =S| P -1y | mo
i=1 =1~ =\
—(P(u)In), =T (ul-5))
=> (T (ul, - S)) ZZTTk ul, — S),
=1 N VT i=1 k=1
:kz::lTT’k(UIn S)kz
_’EE:Z;kEE: kzﬂ% = T%kjgz u(]ﬁ)hi_'skd m;
%’_’ k=1 i=1 ——
—u(ln)y Sk e =k
—[i=H]
= ZTT,kZ(u[Z =k|—ap;)m; =0
k=1 i=1

Thus,
P(u)-U=P(u)  (my,mg,...my), = (P(u)-my, P(u) -mo,.. Pu) m,),
= (0,0, ...,0) 4, (since P (u)-m, =0 for any 7 € {1,2,...,n})
=0.

This implies P (u) = 0 (since every v € B satisfying vU = 0 satisfies v = 0). Thus,
Assertion A holds. Hence, we have proved that B = A.

Proof of the implication A = D. Assume that Assertion A holds. Then, there
exists a monic polynomial P € A[X] with deg P =n and P (u) = 0. Since P € A[X]
is a monic polynomial with deg P = n, there exist elements ag, a1, ..., a,_1 of A such

n—1 n—1
that P (X) = X"+ > a; X*. Thus, P (u) = u"+ > apu¥, so that P (u) = 0 becomes
k=0 k=0

n—1 n—1
u™ + > apuf = 0. Hence, u" = — 3 aput.
k=0 k=0
Let U be the A-submodule (u°, u', ..., u""') , of B. As in the Proof of the implication
A = C, we can show that U is an n-generated A-module, and that 1 € U and uU C U.

Now, we are going to show that
u' e U for any i € N. (2)

Proof of (2). We will prove (2) by induction over i:

Induction base: The assertion (2) holds for i = 0 (since u’ € U). This completes
the induction base.

Induction step: Let 7 € N. If the assertion (2) holds for i = 7, then the assertion
(2) holds for i = 7+ 1 (because if the assertion (2) holds for i = 7, then u™ € U, so
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that ™ =u- «” € wU C U, so that u"*! € U, and thus the assertion (2) holds for

eu
i =7+ 1). This completes the induction step.

Hence, the induction is complete, and (2) is proven.
Thus,

Alu] = {Zami | meNand (ag,ar,...,an,) € AmH} cU
i=0

(since Y a;u’ € U for any m € N and any (ag, ay, ..., a,,) € A™™, because a; € A and
=0
u* € U for any i € {0,1,...,m} (by (2)) and U is an A-module). On the other hand,

U C Alul, since

n—1
U= <u0,u1,...,u”_1>A = {Z aiu’ | (ag,ay,...,ap_1) € A"}

C {Z au' | m €N and (ag,ay,...,an) € Am“} = Alu].

=0

Thus, U = A[u]. In other words, (u° u',...,u" '), = A[u]. Thus, Assertion D holds.
Hence, we have proved that A = D.

Proof of the implication D = C. Assume that Assertion D holds. Then, A[u] =
(WP uty o u) .

Let U be the A-submodule (u°,u',...,u"" "), of B. Then, U is an n-generated

A-module (since u’, u!, ..., u""! are n elements of U). Besides, 1 = u° € U.
Also,

ulU = u - <u0,u1, ...,u”’1>A =u-Afu] CAfu] = <u0,u1, ...,u"’1>A =U.

Thus, Assertion C holds. Hence, we have proved that D = C.

Now, we have proved the implications A = D, D — (C,C = B and B—= A
above. Thus, all four assertions A, B, C and D are pairwise equivalent, and Theorem
1 is proven.

Theorem 2. Let A and B be two rings such that A C B. Let n € N. Let
v € B. Let ay, ai, ..., a, be n+ 1 elements of A such that Y a;0" = 0. Let
i=0

n—k
k€ {0,1,....,n}. Then, > a;;v" is n-integral over A.
i=0

Proof of Theorem 2. Let U be the A-submodule (v°,v',...,v"" '), of B. Then,

U is an n-generated A-module (since v°, v!, ..., v"~! are n elements of U). Besides,
1=2"¢cU.



n—k
Let u = Y a;4xv". Then,
i=0

O—Zav —Zav —|—Zalv —Za,v —|—Zaz+kv

—vipk
(here, we substituted ¢ 4+ k for ¢ in the second sum)
k-1 n—k k-1
= Z a0t + o* Z ik V" = Z a; vt + vFu,
=0 i=0 i=0
—_———
=u
-1
so that v* u——ZaZ
Now, we are gomg to show that
w' e U for any t € {0,1,...,n — 1}. (3)

Proof of (3). Since t € {0,1,...,n — 1}, one of the following two cases must hold:
Case 1: We have t € {0,1, ...,k — 1}.

Case 2: We have t € {k,k+1,...,n —1}.
In Case 1, we have

n—k
wvt = Zal%v e ZalJrkv € <v0,v1, ...,v”*1>A
=0 —pitt
since t € {O, 1,...k—1} yieldsi+t € {0,1,...,n — 1} and thus
vt e {vo,vl, "1} for any i € {0,1,....,n — k}
=U.

In Case 2, we have t € {k,k+1,...,n—1}, thust — k € {0,1,....n — k — 1} and
hence

k—1 k—1
w' = u Uk+(t_k) = vku T a; ’U since vku = — E CLiUZ
N—_—— H,—/
—vkyt—k =0 —i+(t—k) 1=0

k—1

_ i+ (t—k 0,1 n—1

——E a;v't )€<v,v,...,v >A
=0

sincet —k € {0,1,....n—k — 1} yieldsi+ (t — k) € {0,1,...,n — 1} and thus
vtk € L0 ot oY for any i € {0,1,...,k — 1}
=U.

Hence, in both cases, we have uv' € U. Thus, uv® € U always holds, and (3) is
proven.

Now,

ulU = u (%, 0", ...,v"_1>A = (w0, w', ...,uv”_1>A -y (due to (3)).



Altogether, U is an n-generated A-submodule of B such that 1 € U and uU C U.
Thus, u € B satisfies Assertion C of Theorem 1. Hence, u € B satisfies the four
equivalent assertions A, B, C and D of Theorem 1. Consequently, u is n-integral over

n—k n—k
A. Since u = a;4+;v", this means that a;4+V" is n-integral over A. This proves
+ ) +
i=0 i=0
Theorem 2.

Corollary 3. Let A and B be two rings such that A C B. Let « € N and
6 €N. Let u e Band v € B. Let sg, $1, ..., So be a+ 1 elements of A

such that > s;v° = u. Let tg, ty, ..., t3 be B+ 1 elements of A such that
i=0

B .
St~ = uvP. Then, u is (o + B)-integral over A.
i=0

(This Corollary 3 generalizes Exercise 2-5 in [1].)
Proof of Corollary 3. Let k = f and n = aw+ 3. Then, k € {0,1,...,n}. Define
n + 1 elements ag, a4, ..., a, of A by

a; = to— sg, if i = 3; for every i € {0,1,...,n}.
—S;_p, it i >,



a+0 /-1 a+i
a;v’ = a;v" = E ai v g z' v+ E

=0 =0 —tﬁ i =0 —tO 50, i=F+1 :_51 85
since since since
1< =0 >0

B-1 B a+p

:E tﬁ_ivz—kg (to — s0) V" + g —Si—g) v
=0 =0 z B+1
N - 7 - >

:(tO—SO)'[)B . a+p i
=tovP —sguvP _i—ﬁ+1 Si—pY

8-1 a+f

:Ztﬁ ;U —|—t0v —sgv

=

0

B8-1
= Z tﬁ_ivi + tovﬂ —
=0

(here, we substituted ¢ +  for 7 in the second sum)

p-1 a
= Z tlg_ﬂ)i + toU’B - (807)6 + Z Sﬂ)iU’B>
=0 i=1

B
= Z ta—(a-iy 0"
i1 T

B

i=06+1

B
SoU +E S(itB8)—
(i+B)

i=1
=3;

:1}6*0 :UO’U’B

i+
582

:viyﬁ

=1

Z Si—gv" —Ztﬁ R —i—tgv

(07
Tty 0P — sy 0P +Zs,~vivﬁ

(here, we substituted 3 — ¢ for 7 in the first sum)

= Z tﬂ)ﬁ_i + toU’B_O -

1=

M=

(.
I

1

—_

tﬂ)ﬁ_i + toU’B_O —

(sov UB+ZSUU>

(0%
sov® + E 8;v°

) )
=3 tvPi=uph
i=0

-~
(&3

=" sivi=u

1=0

il

a+

sgvﬁ—i- Z S;—pv

i=B+1

)



n—k
Thus, Theorem 2 yields that Y~ a0’ is n-integral over A. But

i=0
i
E aHkv = E alwv = E CLHQ v+ E CLHg v
—to S0, :_5(z+6) B>
since since
i=0 yields >0 yields
i+08=0 i+08>0
0 n—p3
i i
= E (to — so) V" + E —S@+8)-8 | V
i=0 i=1 ~
=(t0—80)’l}0
:tovo—sovo
=to— Sovo
n—p
—to—sov—kg szv—to—sov—g 5;0°
i=1
=ty — spv° — E 50" (since n = a + (3 yields n — = «)

=19 — SOUO—FZSivi =1y — u.

(83 .
=3 sivi=u
i=0

Thus, tyg — u is n-integral over A. On the other hand, —t, is l-integral over A (by
Theorem 5 (a) below, applied to a = —tg). Thus, (—to) + (to — u) is n - 1-integral over
A (by Theorem 5 (b) below, applied to z = —to, y = tg — v and m = 1). In other
words, —u is n-integral over A (since (—tg) + (to —u) = —u and n -1 = n). On the
other hand, —1 is l-integral over A (by Theorem 5 (a) below, applied to a = —1).
Thus, (—1) - (—u) is n - 1-integral over A (by Theorem 5 (c) below, applied to z = —1,
y = —uand m = 1). In other words, u is (o + ()-integral over A (since (—1)-(—u) =u
and n-1=n = a+ ). This proves Corollary 3.

Theorem 4. Let A and B be two rings such that A C B. Let v € B and
u € B. Let m € N and n € N. Assume that v is m-integral over A, and
that u is n-integral over A [v]. Then, u is nm-integral over A.
Proof of Theorem 4. Since v is m-integral over A, we have A [v] = (00,01, ..., v™71)
(this is the Assertion D of Theorem 1, stated for v and m in lieu of u and n).
Since u is n-integral over A [v], we have (A [v]) [u] = (u°,u!, ..., u"fl)AM (this is the
Assertion D of Theorem 1, stated for A[v] in lieu of A).
Let S ={0,1,...,n— 1} x {0,1,....,m — 1}.
Let x € (A[v]) [u]. Then, there exist n elements by, by, ..., b,_1 of A[v] such that x =

n—1
i;() biu' (since x € (A[v]) [u] = (u°,ul, ...,un—1>AM), But for each i € {0,1,...,n — 1},

A
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m—1

there exist m elements a;o, a;1, ..., @;m—1 of A such that b; = > a; ;07 (because
=0

bi € Alv] = (0° vt ... ,v™ 1) ). Thus,

._\
,_\

n—1 n—1 m—
T = = a”vjuZ g a; jv'u" = E a; jv’u’
- \/ - ’ ’
=0 i=0 j=0 (4,5)€{0,1,...,n—1}x{0,1,.... m—1} (4,5)€S
= Z a; ]U]

e (W' | (i,j)€8), (since a; ; € A for every (i,j) € S)
So we have proved that z € (v/u' | (i,j) € S), for every x € (A [v]) [u]. Thus,
(A[]) [u] € (Wu’ | (i,7) € S),. Conversely, (v/u' | (i,5) € S), € (Av])[u] (since
v/ € Alv] for every (i,j) € S, and thus v’ u' € (A[v])[u] for every (i,5) € S, and
€AV
therefore

(v7u! )€S), = > au | (@i5) i 0es € A% ¢ S (A0]) [u]
(i,9)€S
—_——
- €(A[v])[u], since
vIut€(Alv])[u] for all (¢,5)€S
( and (A[v])[u] is an A-module )

). Hence, (A[])[u] = (vu' | (i,7) € S),. Thus, the A-module (A[v])[u] is nm-
generated (since
5] = {0, 1, oo — 1} x {0, 1, ccom — 1} = [{0, 1, oo — 1}[ - [{0, 1, ooy — 1}| = nm

g v~
=n =m

).
Let U = (A[v])[u]. Then, the A-module U is nm-generated. Besides, U is an
A-submodule of B, and we have 1 = u° € (A [v]) [u] = U and

wlU =u(Av]) [u] C (A[v]) [u] (since (A[v])[u] is an A [v]-algebra and u € (A [v]) [u])
=U.

Altogether, we now know that the A-submodule U of B is nm-generated and sat-
isfies 1 € U and wU C U.

Thus, the element u of B satisfies the Assertion C of Theorem 1 with n replaced by
nm. Hence, u € B satisfies the four equivalent assertions A, B, C and D of Theorem
1, all with n replaced by nm. Thus, u is nm-integral over A. This proves Theorem 4.

Theorem 5. Let A and B be two rings such that A C B.

(a) Let a € A. Then, a is 1-integral over A.

(b) Let z € Band y € B. Let m € N and n € N. Assume that x is m-
integral over A, and that y is n-integral over A. Then, x + y is nm-integral
over A.
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(c) Let z € Band y € B. Let m € N and n € N. Assume that x is
m-integral over A, and that y is n-integral over A. Then, zy is nm-integral
over A.

Proof of Theorem 5. (a) There exists a monic polynomial P € A [X] with deg P =1
and P (a) = 0 (namely, the polynomial P € A[X] defined by P (X) = X — a). Thus,
a is 1-integral over A. This proves Theorem 5 (a).
(b) Since y is n-integral over A, there exists a monic polynomial P € A[X] with
deg P = n and P (y) = 0. Since P € A[X] is a monic polynomial with deg P = n,
there exists a polynomial P € A[X] with deg P < n and P (X) = X" + P (X).
Now, define a polynomial @ € (A z]) [X] by Q (X) = P (X — x). Then,
deg Q) = deg P (since shifting the polynomial P by the constant = does not change its degree)

=N

and Q (z +y) = P((z+y) —2)=P(y) =0

Define a polynomial @ € (A[z]) [X] by Q (X) = (X —2)" — X") + P(X —z).
Then, deg @ < n (since
deg (ﬁ (X — x)) = deg (ﬁ (X)>
(since shifting the polynomial P by the constant x does not change its degree>
= deg]5 <n
and
n—1
deg ((X — 2)" — X") = deg <<<X —) - X)) (X ) X)

k=0
1

< deg (X — ) — X) +deg (” (X — x)kX"_l_k>

=deg(—x)=0 ~ ~— _
<n—1, since
deg((X—x)anfl’k)gn—l

for any k€{0,1,...,n—1}

b
Il

<04+ (n—-1)=n—-1<n
yield
deg Q = deg (@ (X)> = deg (((X—x)"—X”) —i—ﬁ(X—x))

< max ¢ deg ((X — )" — X"),deg (]5 (X — a:)) <max{n,n}=n

J/

~~
<n v~

). Thus, the polynomial ) is monic (since
Q(X)=P(X —2)=(X —a2)" + P(X — ) (since P(X) :X"+}3(X))
= X"+ (X —2)" = X")+ P(X —2) = X"+ Q(X)

=Q(X)

12



and deg Q < n).

Hence, there exists a monic polynomial @ € (A[z])[X] with deg@ = n and
Q(x+y) = 0. Thus, z + y is n-integral over A[z]. Thus, Theorem 4 (applied to
v = and u = x + y) yields that x 4+ y is nm-integral over A. This proves Theorem 5
(b).

(c) Since y is n-integral over A, there exists a monic polynomial P € A[X] with
degP = n and P (y) = 0. Since P € A[X] is a monic polynomial with deg P = n,

n—1
there exist elements ag, aj, ..., a,_; of A such that P (X) = X" + > ax X*. Thus,
k=0
n—1

Py)=y"+ > ary®
k=0

n—1
Now, define a polynomial Q € (A[z]) [X] by Q (X) = X" + > 2" *a; X*. Then,
k=0

—1 n—1

o n n—k k__ nn n—k_k k
Q(zy) = (2y)" + " " ay (zy)” ="y —l—Zx " agy

3

=gnyn k=0 :akatk'yk k=0 =z
=zFay”
n—1 n—1
=a"y" + E apyt =" |yt + E apy® | = 0.
k=0 k=0
=P(y)=0

Also, the polynomial @ € (Alz]) [X] is monic and deg@ = n (since Q (X) = X" +
n—1
S @™ *a, X*). Thus, there exists a monic polynomial Q € (A [x]) [X] with deg@Q = n
k=0

and Q (zy) = 0. Thus, zy is n-integral over A [z]. Hence, Theorem 4 (applied to v =z
and u = zy) yields that xy is nm-integral over A. This proves Theorem 5 (c).

Corollary 6. Let A and B be two rings such that A C B. Let n € N*
and m € N. Let v € B. Let by, by, ..., b,_1 be n elements of A, and let

n—1

u= > bv'. Assume that vu is m-integral over A. Then, u is nm-integral
i=0

over A.

Proof of Corollary 6. Define n + 1 elements ag, ai, ..., a, of Alvu| by

—vu, if 1 = 0; .
we{ T EY e

Then, ag = —vu. Let k = 1. Then,

n n n n—1
i 0 Q i—1 A
E av' = ag v + E a; U = —vu-+ g b,_1v" v = —vu + E bv'v
% 0 . , VN , 7 [
=0 ——yu =1 =1 —b;_q,=vi"lo i=1 =0
since
>0 =u

(here, we substituted ¢ for ¢ — 1 in the sum)

= —vu+uv = 0.

13



Now, A[vu] and B are two rings such that A[vu] C B. The n + 1 elements ayg, a1,
., @y, of Afvu] satisfy > a;v' =0. We have k =1 € {0,1,...,n}.

1=0

n—k
Hence, Theorem 2 (applied to the ring A [vu] in lieu of A) yields that Y a0’ is
i=0
n-integral over A [vu]. But

n—1 n—1
)
E a,+kv—§ i V= biit1) 121—5 bv' = u.
~—~
1=0 —b,. =0
=0(i+1)—1,
since i+1>0

Hence, u is n-integral over A [vu|. But vu is m-integral over A. Thus, Theorem 4
(applied to vu in lieu of v) yields that u is nm-integral over A. This proves Corollary
6.

2. Integrality over ideal semifiltrations

Definitions:
Definition 6. Let A be a ring, and let ([p)pGN be a sequence of ideals of A. Then,
(£p) eny is called an ideal semifiltration of A if and only if it satisfies the two conditions

Iy = A;
L1, C 1, for every a € N and b € N.

Definition 7. Let A and B be two rings such that A C B. Then, we identify
the polynomial ring A [Y] with a subring of the polynomial ring B [Y] (in fact, every
element of A [Y] has the form Y ;Y for some m € N and (ag, ay, ..., a,,) € A™ and

i=0
thus can be seen as an element of B [Y] by regarding a; as an element of B for every

i€{0,1,...,m}).
Definition 8. Let A be a ring, and let (Ip)peN be an ideal semifiltration of A. Con-

sider the polynomial ring A[Y]. Let A [(I p) pen * Y] denote the A-submodule > LY
ieN
of the A-algebra A[Y]. Then,

Al e+ Y| =D 1

1€EN
= {Z a;Y' | (a; € I; for all i € N), and (only finitely many i € N satisfy a; # 0)}
ieN
={P € A[Y] | the i-th coefficient of the polynomial P lies in I; for every ¢ € N}.

Now,1 € A [([p)peN * Y} (becausel = 1 YOe LLY'C S LYi=A [(Ip)peN * Y} ).

CA=I, ieN

14



Also, the A-submodule A [(I p) pen * Y] of A[Y] is closed under multiplication (since

A[(Jp)peN*Y}-A[( ) e * } Sy Ly =Syt Y Ly

ieN ieN ieN jEN
(here we renamed i as j in the second sum)

=3 N YLy =YY" vy’

€N jeN €N jeN CI@+J _Yz+J

since (Ip) ,en
is an ideal
semifiltration

CY D LYy nyh=>"ny’

i€N jeN keN 1€N

(here we renamed k as i in the sum)

= A (L) e * V|

). Hence, A [(I 0) pent * Y] is an A-subalgebra of the A-algebra A [Y]. This A-subalgebra
A [(Ip)peN * Y] is called the Rees algebra of the ideal semifiltration (/,)
Clearly, AC A [(Ip)pEN * Y], since A [(Ip)

pEN”

S LY'D [0 YO —A-1=

Y] =
p €N

_A =1

A.

Definition 9. Let A and B be two rings such that A C B. Let (/,) .y be an ideal
semifiltration of A. Let n € N. Let u € B.

We say that the element u of B is n-integral over (A, (1 p)pGN) if there exists some

(ap,ay, ...,a,) € A" such that

Zakuk =0, ap, =1, and a; € I,_; for every i € {0,1,...,n}.

We start with a theorem which reduces the question of n-integrality over (A, (1 p)p €N>

to that of n-integrality over a ring?:

Theorem 7. Let A and B be two rings such that A C B. Let (,) oy be
an ideal semifiltration of A. Let n € N. Let u € B.

Consider the polynomial ring A[Y] and its A-subalgebra A [(I )
defined in Definition 8.

Then, the element u of B is n-integral over (A, ([p)pEN) if and only if
the element uY of the polynomial ring B [Y] is n-integral over the ring
A [(Ip)peN * Y] . (Here, A [(Ip)peN * Y} C B[Y] because A [(Ip)peN * Y] C

A[Y] and we consider A[Y] as a subring of B [Y] as explained in Definition
7).

<Y

pEN

!Theorem 7 is inspired by Proposition 5.2.1 in [2].
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Proof of Theorem 7. In order to verify Theorem 7, we have to prove the following
two lemmata:

Lemmoa E: If u is n-integral over (A, (1,) ), then uY is n-integral over A [([p)peN * Y] )

peN

Lemma F: If uY is n-integral over A [(Ip) *Y}, then u is m-integral over

(A1) ).
Proof of Lemma £: Assume that u is n-integral over (A, (Ip)peN>. Then, by Defi-

nition 9, there exists some (ag, a1, ..., a,) € A" such that

peEN

Zakuk =0, a, =1, and a; € I,_; for every i € {0,1,...,n}.
k=0
Note that a; Y% € A [(Ip)peN * Y] for every k € {0,1,...,n} (because a; Y" %€
GInfk'
L Y ® CSYLY: = A [(Ip)pEN *Y]) Thus, we can define a polynomial P €

ieN
(A [(Ip)peN * YD [X] by P(X) = 3 apY"*X*. This polynomial P satisfies deg P <
k=0
n, and its coefficient before X™ is a, Y" " = 1. Hence, this polynomial P is monic
=1 =Y0=1

and satisfies deg P = n. Also, P(X) = 3 a, Y *X* yields
k=0

PuY)=> aY" " y)" => ay" v = ot Y RYVE =y gt = 0.
k=0 k=0 k=0 =Yn k=0

=0

Thus, there exists a monic polynomial P € (A [(Ip)pGN * YD [X] with deg P = n and
P (uY) = 0. Hence, uY is n-integral over A [(IP)pGN * Y] This proves Lemma &.
Proof of Lemma F: Assume that uY is n-integral over A [([ p)pEN * Y} . Then, there
exists a monic polynomial P € (A [([P)pGN *k YD [X] with deg P =n and P (uY) = 0.
Since P € (A [(Ip)peN*YD [X] satisfies deg P = n, there exists (po,p1,...,Pn) €

n+1 n
(A [([p)pGN * YD such that P (X) = > p.X*. Besides, p, = 1, since P is monic
k=0

and deg P = n.

For every k € {0,1,...,n}, we have p, € A [(Ip)peN * Y] = > LY" and thus, there

ieN
exists a sequence (pii);cy € AN such that pp = > pi;Y?, such that py,; € I; for every
iEN

i € N, and such that only finitely many i € N satisfy py.; # 0. Thus, P (X) = Y pp X*
0

n

k
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becomes P (X) = > Y ppiY'X* (since pr = > priY?). Hence,

k=0 i€N ieN
praY" ( uY Z > XYt
k=0 ieN . kyk k=0 ieN —Yitk
_ﬁkuk
_ Zp Yz-l—k kE _ Z Zpk,iyi+kuk
k=0 i€N ke{0,1,..,n} €N
_ 3 priY b = § 3 s Y b
(k,i)€{0,1,...,n} xN LeN (k,)e{0,1,. n}XN; =y
H—k
=2 2 mYW=) Z P
LeN (k,i)e{0,1,...,n} xN; LeN (k,i)e{0,1,...,n} xN;
it k=t i+k=¢
Hence, P (uY) = 0 becomes ) > peiu®Y? = 0. In other words, the
¢EN (k,i)e{0,1,...,n} xN;
z—l—k Z
polynomial > Z Di,iU Y € B[Y] equals 0. Hence, its coefficient before
LEN (1 )e{0,1,...,n} xN;
ith=0 )
B
Y™ equals 0 as well. But its coefficient before Y™ is > priu”. Hence,
(k,i)€{0,1,...,n} xN;
i+k=n
priu” equals 0.
(k,5)€e{0,1,...,n} xN;
i+k=n
Thus,
0= Z pk,iuk = Z Z pk,iuk = Z pk,n—kuk
(k,0)€{0,1,...,n} xN; ke{0,1,...,n} ’LEN ke{0,1,....,n}
i+k=n i+k=
since {i € N | z'—i—k:n}:{zeN | i=n—k}={n—k} (because n — k € N,
since k € {0,1,...,n}) yields > pru*= > pru® = ppnruf
i€N; i€{n—k}
i+k=n
Note that
meYi =Dy, (smce Zp;“ = py, for every k € {0, 1, ,n})
€N ieN
=1=1-Y"
in A[Y], and thus the coefficient of the polynomial > p,;Y" € A[Y] before YV is 1;
ieN
but the coefficient of the polynomial Y p,;Y* € A[Y] before Y is p, o; hence, p, o = 1.

ieN
Define an (n + 1)-tuple (ag, a1, ..., a,) € A" by a, = pg,—x forevery k € {0,1,...,n}.
Then, a, = pnp—n = pno = 1. Besides,

Zaku = Zpkn put = Z Prn_u’ =0,

k=0 ke{0,1,...n}
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Finally, ax = prn—k € Lh—k (since pg; € I; for every ¢ € N) for every k € {0,1,...,n}.
In other words, a; € I,_; for every i € {0,1,...,n}.
Altogether, we now know that

n
Zakuk =0, a, =1, and a; € I,,_; for every i € {0,1,....,n}.
k=0

Thus, by Definition 9, the element u is n-integral over (A, (1,) > . This proves Lemma

F.
Combining Lemmata £ and F, we obtain that u is n-integral over (A, (1 p)p€N> if

peN

and only if uY is n-integral over A [([ 0) pen * Y]. This proves Theorem 7.

The next theorem is an analogue of Theorem 5 for integrality over ideal semifiltra-
tions:

Theorem 8. Let A and B be two rings such that A C B. Let (I, be

an ideal semifiltration of A.

(a) Let uw € A. Then, u is 1-integral over (A, (Ip)p€N> if and only if u € .

)pEN

(b) Let x € Band y € B. Let m € N and n € N. Assume that x is
m-integral over (A, (Ip)peN) , and that y is n-integral over (A, (Ip)pEN)'

Then, x + y is nm-integral over <A, (Ip)p€N>.

(c) Let z € Band y € B. Let m € N and n € N. Assume that x is

m-integral over (A, (Ip)pGN) , and that y is n-integral over A. Then, zy is
nm-integral over (A, (Ip)p€N>'

Proof of Theorem 8. (a) In order to verify Theorem 8 (a), we have to prove the
following two lemmata:

Lemma G: If u is 1-integral over (A, (Ip)peN>, then u € I;.
Lemma H: If uw € I, then u is 1-integral over <A, (IP)pEN>'
Proof of Lemma G: Assume that u is 1-integral over (A, ([p)p€N>. Then, by Defi-

nition 9 (applied to n = 1), there exists some (ag,a;) € A? such that
Zakuk =0, a; =1, and a; € I_; for every i € {0,1}.

Thus, ag € I (since a; € I;_; for every i € {0,1}). Also,
1
O:Zakuk:ao W o+ oap ut =ag+ u,

k=0 =1 =1 =u

sothat u=— ay € I (since I; is an ideal). This proves Lemma G.

eh-o=h
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Proof of Lemma H: Assume that v € I;. Then, —u € I; (since [; is an ideal).
1

Set ag = —u and a; = 1. Then aput = ag a; uw = —u+u=0. Also
0 1 ,kgo k 0 . 1 +oar u + )
=—u = =1 =u

a; € I,_; for every i € {0,1} (since aqp=—ue€lh =1 ganday=1€ A=1y=1_1).
Altogether, we now know that (ag,a;) € A% and

Zakuk =0, a; =1, and a; € I,_; for every i € {0,1}.

Thus, by Definition 9 (applied to n = 1), the element u is 1-integral over (A, (Ip)pEN)'
This proves Lemma H.

Combining Lemmata G and H, we obtain that u is 1-integral over (A, (Ip)p€N> if
and only if u € I;. This proves Theorem 8 (a).

(b) Consider the polynomial ring A [Y] and its A-subalgebra A [(I p) pen * Y} . The-
orem 7 (applied to = and m instead of u and n) yields that zY is m-integral over

A [(Ip)pEN * Y] (since x is m-integral over (A, ([p>p€N>)' Also, Theorem 7 (applied to
y instead of u) yields that yY is n-integral over A [(I p)peN * Y] (since y is n-integral

over (A, (Ip)p€N>). Hence, Theorem 5 (b) (applied to A [(Ip)pEN * Y] , B[Y], Y and
yY instead of A, B, = and y, respectively) yields that Y + yY is nm-integral over
A [(Ip)pEN * Y]. Since Y +yY = (x +y) Y, this means that (z + y) Y is nm-integral

over A [(Ip)peN * Y} . Hence, Theorem 7 (applied to x 4+ y and nm instead of u and n)

yields that x + y is nm-integral over (A, (1 p)p6N>. This proves Theorem 8 (b).

(c) First, a trivial observation:

Lemma Z: Let A, A" and B’ be three rings such that A C A’ C B’. Let v € B'.
Let n € N. If v is n-integral over A, then v is n-integral over A’.

Proof of Lemma Z: Assume that v is n-integral over A. Then, there exists a monic
polynomial P € A[X] with deg P = n and P (v) = 0. Since A C A, we can identify
the polynomial ring A [X] with a subring of the polynomial ring A’ [X] (as explained
in Definition 7). Thus, P € A[X] yields P € A’[X]. Hence, there exists a monic
polynomial P € A’ [X]| with deg P = n and P (v) = 0. Thus, v is n-integral over A’
This proves Lemma 7.

Now let us prove Theorem 8 (c).

Consider the polynomial ring A[Y] and its A-subalgebra A [(I p) pen * Y]. The-
orem 7 (applied to x and m instead of u and n) yields that zY is m-integral over
A [(Ip)peN >) On the other hand, Lemma

7 (applied to A’ = A [(Ip)

* Y] (since x is m-integral over (A, (Lp) pery

pen * Y}, B’ = B[Y] and v = y) yields that y is n-integral
over A [(Ip)peN * Y] (since y is n-integral over A, and A C A [(Ip)pGN * Y] C B[Y]).
Hence, Theorem 5 (c) (applied to A [([P)pGN * Y} , B[Y] and zY instead of A, B and z,

respectively) yields that zY -y is nm-integral over A [(I o) en ¥ Y} . Since 2Y -y = xyY,

peEN
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this means that zyY is nm-integral over A [(I P)pEN * Y]. Hence, Theorem 7 (applied
to xy and nm instead of u and n) yields that zy is nm-integral over (A, (1 p)p€N>. This

proves Theorem 8 (c).

The next theorem imitates Theorem 4 for integrality over ideal semifiltrations:
Theorem 9. Let A and B be two rings such that A C B. Let (I,)
an ideal semifiltration of A.
Let ve Band u € B. Let m € N and n € N.
(a) Then, (I,A[v]) ¢y is an ideal semifiltration of A [v].
(b) Assume that v is m-integral over A, and that w is n-integral over
(A [v], (I,A [v])peN>. Then, u is nm-integral over (A, ([p>p€N>'

be

pEN

Proof of Theorem 9. (a) More generally:

Lemma J: Let A and A’ be two rings such that A C A". Let (/,)
semifiltration of A. Then, (I,A’) .y is an ideal semifiltration of A'.

Proof of Lemma J: Since (I ) pen 18 an ideal semifiltration of A, the set I, is an
ideal of A for every p € N, and we have

]0 = A,
1.1, C I, for every a € N and b € N.

peN be an ideal

Now, the set 1,A’ is an ideal of A’ for every p € N (since I, is an ideal of A). Hence,
(1,A4') oy is a sequence of ideals of A’. Tt satisfies

T A = AA = A"
LA - LA = I[,LA C I, ,A" (since I,I, C I,.p) for every a € N and b € N.

Thus, by Definition 6 (applied to A" and (1,A4") y instead of A and (1) ), it follows
that (I A ) is an ideal semifiltration of A’. ThlS proves Lemma J.

Now let. us prove Theorem 9 (a). In fact, Lemma J (applied to A’ = A[v]) yields
that (1,A [v]) oy is an ideal semifiltration of A [v]. This proves Theorem 9 (a).

(b) First, we will show a simple fact:

Lemma K: Let A, A and B’ be three rings such that A C A’ C B’. Let v € B'.
Then, A"- Afv] = A [v].

Proof of Lemma K: We have \A/’/ Av] C A [v] - A'[v] = A’ [v] (since A’ [v]

Al car,
since ACA’

is a ring). On the other hand, let x be an element of A’ [v]. Then, there exists some

n
n € N and some (ag, a1, ..., a,) € (A)""" such that = 3 azv*. Thus,

r = Z a U € Z AAfv] C A Av] (since A" A[v] is an additive group).
i GA[U] k=0

Thus, we have proved that x € A’-A[v] for every x € A" [v]. Therefore, A’ [v] C A’-Av].
Combined with A" - Av] C A’[v], this yields A" - A[v] = A’[v]. Hence, we have
established Lemma K.
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Now let us prove Theorem 9 (b). In fact, consider the polynomial ring A[Y]
and its A-subalgebra A [([P)pEN * Y]. We have A [(Ip)peN * Y} C A[Y], and (as ex-
plained in Definition 7) we can identify the polynomial ring A [Y] with a subring of
(A[v]) [Y] (since A C A[v]). Hence, A [(Ip) * Y] C (A[v]) [Y]. On the other hand,

(AL [, A ]+ Y] € (AL Y]
Now, we will show that (A [v]) [(IPA [v])
In fact, Definition 8 yields

(AR (LA e # Y| = D LAR] Y =Y 1Y Alo] = A | (L) e * Y| - A0

€N €N

(since Z LY'=A [(Ip)peN * Y})

1€EN

= (4| yex +Y]) 0]

(by Lemma K (applied to A’ = A [(Ip) R y] and B' = (A[]) [Y])).

peN

e # V] = (A ]) o)

pEN
Note that (as explained in Definition 7) we can identify the polynomial ring (A [v]) [Y]

with a subring of B [Y] (since A[v] € B). Thus, A [(Jp)peN + Y} C (A[v])[Y] yields
A [(Ip)pEN x Y] c BIY].
Besides, Lemma Z (applied to A [(I ) pen * Y}, BY] and m instead of A’, B’ and

n) yields that v is m-integral over A [( p) pen * Y] (since v is m-integral over A, and
ACA [(Ip)peN ¥ Y] c BIY)).
Now, Theorem 7 (applied to A [v] and (I,A [v]) o instead of A and (I,) ) yields
that Y is n-integral over (A [v]) [(IPA [v]) pen * ] (since u is n-integral over (A ], (1,A [v])peN> ).
Since (A [v]) [(IPA [v]) e * Y] = (A [(Ip)peN D [v], this means that Y is n-integral
over (A [([p) * YD [v]. Now, Theorem 4 (applied to A [(I ) pen * Y}, B[Y] and uY
instead of A, B and u) yields that uY" is nm-integral over A [( p) pen * Y] (since v is m-
Y], and uY is n-integral over (A [(IP)pEN * YD [v]). Thus,

integral over A [( p) pen *

Theorem 7 (applied to nm instead of n) yields that u is nm-integral over (A, (1 p)peN).
This proves Theorem 9 (b).

3. Generalizing to two ideal semifiltrations

Theorem 10. Let A be a ring.
(a) Then, (A) oy is an ideal semifiltration of A.
(b) Let (1,) oy and (J,) oy be two ideal semifiltrations of A. Then, (1,.J,)

is an ideal Semlﬁltration of A.

P/ peN
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Proof of Theorem 10. (a) Clearly, (A),y is a sequence of ideals of A. Hence, in
order to prove that (A) pen 1S an ideal semifiltration of A, it is enough to verify that it
satisfies the two conditions

A=A
AACA for every a € N and b € N.

But these two conditions are obviously satisfied. Hence, (A) y is an ideal semifiltration
of A (by Definition 6, applied to (A),cy instead of (I,) ). This proves Theorem 10

(a).
(b) Since (1) .y is an ideal semifiltration of A, it is a sequence of ideals of A, and
it satisfies the two conditions

IO = A7
1.0y C Iy for every a € Nand b € N

(by Definition 6). Since (J,) y is an ideal semifiltration of A, it is a sequence of ideals
of A, and it satisfies the two conditions

J() = A;
Jody € Jatp for every a € N and b € N

(by Definition 6, applied to (.J,) oy instead of (1,) )

Now, 1,J, is an ideal of A for every p € N (since I, and J, are ideals of A for every
p € N, and the product of any two ideals of A is an ideal of A). Hence, (I,J,) o is a
sequence of ideals of A. Thus, in order to prove that (/ pJp)pEN is an ideal semifiltration
of A, it is enough to verify that it satisfies the two conditions

[OJO = A,
I, Jy - Iydy C 1oy dars for every a € N and b € N.

But these two conditions are satisfied, since

[0 JO = AA = A,
~ N~
=A =A
1, J, - Iydy = 1,1, JoJy C LoipJars for every a € N and b € N.
—~—

Clats Sdats

Hence, (I PJP)pEN is an ideal semifiltration of A (by Definition 6, applied to (/,J,)
instead of (1,) ). This proves Theorem 10 (b).
Now let us generalize Theorem 7:

peN

Theorem 11. Let A and B be two rings such that A C B. Let (/,)

eN
and (J,) oy be two ideal semifiltrations of A. Let n € N. Let u € B. ’

We know that (I,J,) o is an ideal semifiltration of A (according to Theo-
rem 10 (b)).

Consider the polynomial ring A [Y] and its A-subalgebra A [(I o) Y].

peN *
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We will abbreviate the ring A [(Ip)peN * Y] by Ay

By Lemma J (applied to Ajy and (J;), .y instead of A" and (,) ), the
sequence (JTA[I])T oy I8 an ideal semifiltration of Ay (since A C Ay and
since (J7), ey = (Jp) oy is an ideal semifiltration of A).

Then, the element u of B is n-integral over (A, (I Pjp)peN> if and only if the
element ©Y of the polynomial ring B [Y] is n-integral over (A[[], (JTA[U)TGN> :

(Here, Ay € B[Y] because Ajjp = A [(Ip)peN * Y} C A]Y] and we consider
A[Y] as a subring of B[Y] as explained in Definition 7.)
Proof of Theorem 11. First, note that
Z Ly = Z LY’ (here we renamed /¢ as i in the sum)
¢eN ieN

= A (L) e ¥ Y| = Ay,

In order to verify Theorem 11, we have to prove the following two lemmata:

Lemma &': If u is n-integral over (A, (1,J,) then uwY is m-integral over

(A (- Am) o)
Lemma F': If uY is n-integral over (Am, (JTAm) N), then wu is n-integral over

TE
<A7 (IpJp)peN>'

Proof of Lemma E': Assume that u is n-integral over <A, (]pJp)peN>. Then, by
Definition 9 (applied to (I,J,) . instead of (I,) .y), there exists some (ag, a1, ..., a,) €
A" such that
Z apu® =0, a, =1, and a; € I,_;J,_; for every i € {0,1,...,n}.
k=0

peEN )7

Note that a, Y™ % ¢ App for every k € {0,1,...,n} (because ay € ISt C In_p
(since I,,_j is an ideal of A) and thus a,Y" % € I,_,Y"* C Y LY = Aqp). Thus,
iEN
we can define an (n + 1)-tuple (bg,b1,...,b,) € (Am)n+1 by by = apY" " for every
ke€{0,1,...,n}. Then,

S b ) = Sy = 3 e = Yt P - v Sk~
k=0 k=0 k=0 k=0 =yn k=0
=0
b, = a, Y" " =1,
~
=1 =Y0=1
and 4 '
bi=  a Y"'€J, i L,;Y"" CJiAp
—~~ —_——

€ln—idn—i CY Lyt
=Jn—iln_; LEN
=Amn
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for every i € {0,1,...,n}.
Altogether, we now know that (bg, by, ..., b,) € (Am>n+1 and

n

Z bk-(uY)k =0, b, =1, and by € Jo_i Ay for every i € {0,1,...,n}.

k=0

Hence, by Definition 9 (applied to Ay, B[Y], (‘]TAU])TeN’ uwY and (bg,by,...,b,)
instead of A, B, (Ip)peN, u and (ag,ai,...,a,)), the element wY is n-integral over

(Am, (‘]TAU])TeN>‘ This proves Lemma &’

Proof of Lemma F': Assume that uY is n-integral over (Am, (‘]TAU])TEN>' Then,
by Definition 9 (applied to Ay, B[Y], (JTA[I])TGN’ uwY and (pg,p1, ..., pn) instead of
A, B, (1,) pen» W and (ag, ai, ..., a,)), there exists some (pg, p1, ..., Pn) € (Am)nJrl such
that

Zpk-(uY)k =0, Pn =1, and pi € Jn—iApp for every i € {0,1,...,n}.

For every k € {0,1,...,n}, we have

Pr € Jn,kA[]] = Jo_k ZLYZ <since A[[] = Z LYZ>

ieN i€N
iEN €N

and thus, there exists a sequence (pgi),cy € AN such that p, = Y pr;Y", such that
ieN

Dk,i € LiJn— for every ¢ € N, and such that only finitely many ¢ € N satisfy py; # 0.

Thus,

D pe-(uy) = Z > peY' (uY) (Since Pk = Zpk,iY"')

k=0 ieN _ukyk ieN
—YkyF
n
i k,  k
TN——
k=0 €N —_Yitk
n
_ § E :pk,iY’L+kuk — E E pk,inJrkuk
k=0 i€N ke{0,1,...n} €N
E : i+k, k § E /‘ i+k , k
’ NN~
(k,9)e{0,1,...,n}xN LeN (k,i)€{0,1,...,n} xN; =yt
i+k=¢C
=> > wmXYu=) > paY’
LeN (k,i)e{0,1,...,n} xN; LeN (k,i)e{0,1,...,n} xN;
i+k={ i+k=C
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n
Hence, S py - (uY)* = 0 becomes 3 > priu®Y? = 0. In other words, the
k=0 (€N (k,i)€{0,1,....n} XN

i+k=(
polynomial > Z pk7iuk Y* € B[Y] equals 0. Hence, its coefficient before
LEN (1 )e{0,1,....n} xN;
o itk )
B
Y™ equals 0 as well. But its coefficient before Y™ is > priu”. Hence,
(k,i)€{0,1,...,n} xN;
i+k=n
> priu” equals 0.
(k,i)€{0,1,...,n} xN;
i+k=n
Thus,
0= Z pk,iuk = Z Z pk,iuk = Z pk,nfkuk
(k,i)e{0,1,...,n}xN; ke{0,1,....,n} i€N; ke{0,1,....,n}
i+k=n i+k=n

since {i €N | i+k=n}={ieN | i=n—k}={n—k} (because n — k € N,
since k € {0,1,...,n}) yields > pruf= > priu® = ppnruf

i€N; ie{n—k}
i+k=n
Note that
meYi = Dn (since Zpkini = py, for every k € {0, 1, ,n})
ieN ieN
=1=1-Y"
in A[Y], and thus the coefficient of the polynomial > p,;Y* € A[Y] before Y? is 1;
iEN
but the coefficient of the polynomial Y p,;Y* € A[Y] before Y is p, o; hence, p, o = 1.

ieN
Define an (n + 1)-tuple (ag, ai, ..., a,) € A" by a, = pg,_x forevery k € {0,1,...,n}.
Then, a, = pnp—n = Pno = 1. Besides,

n n
k k k
E arpu” = E Dkn—kU = E Prn—ku = 0.

ke{0,1,....,n}

Finally, ax = prn—k € In—kJn—r (since py; € I;J,_y for every i € N) for every k €
{0,1,...,n}. In other words, a; € I,,_;J,_; for every i € {0,1,...,n}.

Altogether, we now know that
Zakuk =0, an, = 1, and a; € I, ;J,_; for every i € {0,1,...,n}.
k=0
Thus, by Definition 9 (applied to (I,.J,)

instead of ([, the element wu is n-

pGN )peN) )

integral over (A, (IpJp)peN). This proves Lemma F’.
Combining Lemmata £ and F’, we obtain that u is n-integral over <A, (]pJp)peN>

if and only if uY is n-integral over (Am, (JTA[I})T eN). This proves Theorem 11.

For the sake of completeness, we mention the following trivial fact (which shows
why Theorem 11 generalizes Theorem 7):
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Theorem 12. Let A and B be two rings such that A C B. Let n € N.
Let u € B.

We know that (A) ¢y is an ideal semifiltration of A (according to Theorem
10 (a)).
Then, the element u of B is n-integral over (A, (A) peN) if and only if u is

n-integral over A.

Proof of Theorem 12. In order to verify Theorem 12, we have to prove the following
two lemmata:
Lemma L: If u is n-integral over (A, (A)p€N>, then u is n-integral over A.

Lemma M: If u is n-integral over A, then wu is n-integral over (A, (A)p€N>.

Proof of Lemma L: Assume that u is n-integral over <A, (A)peN>. Then, by Defi-

nition 9 (applied to (A) .y instead of (1,) ), there exists some (ag, a1, ..., an) € Artl
such that
Zakuk =0, a, =1, and a; € A for every i € {0,1,....,n}.
k=0

Define a polynomial P € A[X] by P (X) = Y axX*. Then, P(X) = > a;, X* =
k=0 k=0

n—1 n—1
an X"+ 5 ap X* = X"+ a, X*. Hence, the polynomial P is monic, and deg P = n.
~ k=0 k=0

Besides, P (u) = 0 (since P (X) = > a; X* yields P (u) = > apu® = 0). Thus, there
k=0 k=0

exists a monic polynomial P € A[X] with degP = n and P (u) = 0. Hence, u is
n-integral over A. This proves Lemma L.

Proof of Lemma M : Assume that u is n-integral over A. Then, there exists a monic
polynomial P € A[X] with degP = n and P (u) = 0. Since deg P = n, there exists

some (n + 1)-tuple (ag, ay, ...,a,) € A" such that P (X) = > a,X*. Thus, a, = 1
k=0
(since P is monic, and deg P = n). Also, Y a X* = P (X) yields > apu* = P (u) = 0.
k=0 k=0

Altogether, we now know that (ag, ay, ..., a,) € A" and

Zakuk =0, a, =1, and a; € A for every i € {0,1,....,n}.
k=0
Hence, by Definition 9 (applied to (A) .\ instead of (I,) ), the element u is n-integral

over (A, (A) p€N>. This proves Lemma M.

Combining Lemmata £ and M, we obtain that u is n-integral over (A, (A) peN) if

and only if u is n-integral over A. This proves Theorem 12.
Finally, let us generalize Theorem 8 (c):
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Theorem 13. Let A and B be two rings such that A C B. Let (/,)

eN
and (J,) cy be two ideal semifiltrations of A. ’

Let x € Band y € B. Let m € N and n € N. Assume that x is m-integral
over (A, (1,) > , and that y is n-integral over (A, (J,) ) Then, zy is

nm-integral over (A, (IpJp)p€N>.

peN peN

Proof of Theorem 13. First, a trivial observation:
Lemma Z': Let A, A" and B’ be three rings such that A C A’ C B’. Let ({,)

an ideal semifiltration of A. Let v € B’. Let n € N. If v is n-integral over (A, (1,)

be

peN
peN |
then v is n-integral over (A/, (IpA’)p€N>. (Note that (/,A") . is an ideal semifiltration
of A’ according to Lemma 7.)

Proof of Lemma TI': Assume that v is n-integral over <A, (Ip)peN>. Then, by

Definition 9 (applied to B’ and v instead of B and ), there exists some (ag, a1, ..., a,) €
A" such that

n
Zakvk =0, a, =1, and a; € I,,_; for every i € {0,1,....,n}.
k=0

But (ag, ay, ..., a,) € A" yields (ag, ay, ..., a,) € (A)"" (since A C A'), and a; € I,,_;
yields a; € I,,_;A’ (since I,,_; C I, ;A’) for every i € {0,1,...,n}. Thus, (ag,ay,...,a,) €
(A" and

Z av® =0, a, =1, and a; € I, ;A for every i € {0,1,...,n}.
k=0
Hence, by Definition 9 (applied to B', A’, (I,A’) y and v instead of B, A, (,) o and

u), the element v is n-integral over (A’, (IpA’)p€N>. This proves Lemma 7'.

Now let us prove Theorem 13.
We have (J,) .y = (J-),oy. Hence, y is n-integral over (A, (J;)

n-integral over (A, (Jp)p€N> ).
Consider the polynomial ring A [Y] and its A-subalgebra A [(I p) pen * Y]. We will

peN en) (since y is

abbreviate the ring A [(]P)pEN * Y} by Aj. We have Ayp € BY], because A =

A [([ p) pen * Y] C A[Y] and we consider A[Y] as a subring of B[Y] as explained in
Definition 7.
Theorem 7 (applied to z and m instead of u and n) yields that zY is m-integral

over A [([P)pEN * Y] (since z is m-integral over <A, (]p)peN>). In other words, =Y is
m-integral over Ajy (since A [(Ip)peN s Y} = App).

On the other hand, Lemma Z’ (applied to Ay, B[Y], (J;),oy and y instead of
A, B, ([P)pEN and v) yields that y is n-integral over (Am, (JTAU])TGN) (since y is
n-integral over (A, (J;),y), and A C Ay C B[Y])).
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Hence, Theorem 8 (c) (applied to Ay, B[Y], (J-Ap)
of A, B, (I,)

(Am, (JTA[I])T€N> (since y is n-integral over (Am, (‘]TA[I])TEN>’ and Y is m-integral

e Ys Y, m and n instead

e Ts Yy 1 and m respectively) yields that y - Y is mn-integral over

over Ajpj). Since y - Y = xyY and mn = nm, this means that zyY is nm-integral

over <A[I], (JTAU])TGN)‘ Hence, Theorem 11 (applied to xy and nm instead of u and
n) yields that zy is nm-integral over <A, (1 pJp)p€N>' This proves Theorem 13.

4. Accelerating ideal semifiltrations
We start this section with an obvious observation:

Theorem 14. Let A be aring. Let (I,) .y be an ideal semifiltration of A.
Let A € N. Then, (1)) is an ideal semifiltration of A.

Proof of Theorem 14. Since (I, p)peN is an ideal semifiltration of A, it is a sequence
of ideals of A, and it satisfies the two conditions

]0 = A,
1.1, C I, for every a € N and b € N
(by Definition 6).
Now, I,, is an ideal of A for every p € N (since (Ip)peN is a sequence of ideals of

A). Hence, (I,) ¢y is a sequence of ideals of A. Thus, in order to prove that (Iy,)
is an ideal semifiltration of A, it is enough to verify that it satisfies the two conditions

I = A
Dl € Dot for every a € N and b € N.

But these two conditions are satisfied, since

Ivo =1y =4
DIy, C Dvgsns (since (]p)peN is an ideal semifiltration of A)
= I\(a+b) for every a € N and b € N.

Hence, (I),),cy is an ideal semifiltration of A (by Definition 6, applied to (Iy,)
instead of (/,) ). This proves Theorem 14.

I refer to (1)) oy as the A-acceleration of the ideal semifiltration (1,) -

Now, Theorem 11, itself a generalization of Theorem 7, is going to be generalized
once more:

peN

Theorem 15. Let A and B be two rings such that A C B. Let (1)

eN
and (J,) cy be two ideal semifiltrations of A. Let n € N. Let u € B. Let
AeN.
We know that (1)) y is an ideal semifiltration of A (according to Theorem
14).
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Hence, (I),J,) c is an ideal semifiltration of A (according to Theorem 10
(b), applied to (1)) . instead of (1,) cx)-

Consider the polynomial ring A [Y] and its A-subalgebra A [(I p) pen * Y].

We will abbreviate the ring A [(Ip)peN * Y] by A

By Lemma J (applied to A and (J;), oy instead of A" and (I,) ), the
is an ideal semifiltration of Ay (since A C Ay and

sequence (JTA[I])TGN
is an ideal semifiltration of A).

since (J7),en = (Jp)

peEN

Then, the element u of B is n-integral over (A, (],\pJp)peN> if and only if the
element uY ™ of the polynomial ring B [Y] is n-integral over (A[ 1 (JTA[ I])T€N> .

(Here, Ay € B[Y] because Ay = A [(]p)peN * Y} C A]Y] and we consider
A[Y] as a subring of B[Y] as explained in Definition 7.)

Proof of Theorem 15. First, note that

Z Ly = Z LY" (here we renamed ¢ as i in the sum)

{eN 1€EN
=A [(IP)pGN * Y] = Am.

In order to verify Theorem 15, we have to prove the following two lemmata:
Lemma E": If u is n-integral over (A, (IApJp)p€N>, then uY? is n-integral over

(A (- Am) o)
Lemma F": If uY? is n-integral over (A[I]v (JTA[U)TEN>’ then u is n-integral over

(A, (IApJp)peN) .
Proof of Lemma E": Assume that u is n-integral over (A, <[)‘PJp)p€N)' Then, by

Definition 9 (applied to (Ix,J,) ¢ instead of (I,) ), there exists some (ag, a1, ..., an) €
A" such that

Z apu® =0, a, =1, and a; € In(n—iyJn—i for every ¢ € {0,1,....,n}.
k=0

Note that apY ") ¢ App for every k € {0,1,...,n} (because a € Inp—g)Jn—t C
I\(n—r) (since Iy, is an ideal of A) and thus apY2"™% € I, Y20 C S LY =
iEN
Aqp). Thus, we can define an (n + 1)-tuple (b, by, ..., b,) € (Am)mrl by by = a; Y A=k)
for every k € {0,1,...,n}. Then,

Z by - (uy)\)k _ Z apY Ak (uy)\)k _ Z ap Y AR Ry e Z agu® Y ARy Mk
k=0 k=0 DGR

k=0 k=0 —yAn—k)+Ak
=ub (YA ) k —yAn
—uky Ak

by = a, Y —1
=1 =y 0=y0=1
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and

b; = a; YA e g I)\(nfi)Y)\(n_i) C Ju—iAn
~ —
elk(n—i)Jn—i C LY?
=Jn—ilx(n—i) _e%%w ‘
=A)

for every i € {0,1,...,n}.
Altogether, we now know that (bg, by, ..., b,) € (Am>n+1 and

n

Z by, - (uYA)k =0, b, =1, and by € Jo_; Ay for every i € {0,1,...,n}.

k=0
Hence, by Definition 9 (applied to Ay, B[Y], (J-Aq)
instead of A, B, (Ip)peN,
(Am, (‘]TAU])TeN>' This proves Lemma &”.

Proof of Lemma F": Assume that uY? is n-integral over (Am, (JTA[I])TGN>' Then,
by Definition 9 (applied to Ay, B[Y], (J-Aq)

N uY?* and (b, by, ..., by)
u and (ag,ay, ...,a,)), the element uY? is n-integral over

uY? and (po, p1, ..., pn) instead of
n+1

TEN’

A, B, (Ip)peN, w and (ag, ay, ..., a,)), there exists some (po, p1, ..., Pn) € (A[I]) such
that
Zpk~ (uY’\)k =0, Pn = 1, and pi € Jn—iAqp for every i € {0,1,...,n}.
k=0

For every k € {0,1,...,n}, we have

Pr € Jn_kA[[] =Ju_k ZIIYZ (since A[I] = Z [lYZ>

ieN ieN
= Ik LY =Y LY
i€N ieN

and thus, there exists a sequence (pg;);.y € AN such that pr, = > pr;Y", such that
iEN
Pk,i € LiJn— for every ¢ € N, and such that only finitely many ¢ € N satisfy py; # 0.
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Thus,

zpk W) =3 v () ( pk:zpk,@-w)

k=0 ieN — ieN
,uk(yz\)
—uky Ak
—y Ny k
n
S
k=0 €N —Yi+Ak
n
SN gy = ST ST vy
k=0 ieN k€{0,1,....n} i€N
_ ViR, k yitAk K
S SR S S
(k,3)e{0,1,...,n}xN LeN (k, 1)6{0717 ,n}XN =Yt
=2 > mYu= > Y
LeN (k,i)e{0,1,...,n} xN; LeN (k,i)€{0,1,...,n} xN;
it Ak=( it Ak=0
n
Hence, > pg- (uYA)k = 0 becomes ) > Priu®Y* = 0. In other words, the
i+ k=
polynomial Z pru” Y? € B[Y] equals 0. Hence, its coefficient before
tEN (1 i)efo,1,...n} xN;
i+ A=
B
Y equals 0 as well. But its coefficient before Y is > priu®. Hence,
(kyi)€{0,1,....,n} xN;
i+ k=An
> priu® equals 0.
(k,1)e{0,1,...,n}xN;
i+Ak=An
Thus,
0= >, prat = Y > et = Y pramwu”
(k,i)€{0,1,...,n} xN; ke{0,1,...,n} i€N; ke{0,1,....,n}
P P i+Ak=An

since {i e N | i+ e=Xn}={ieN | i=An— Ak}
={ieN | i=AX(n—Fk)}={A(n—k)} (because A (n — k) € N,
since k € {0,1,...,n} yields n — k € N and we have A € N)

yields Z pk,iuk = Z pk,iuk = pk,)\(n—k)uk
i€N; ie{\(n—k)}
i+Ak=An
Note that
meYi = Dn (since ZpkﬁiYi = py. for every k € {0, 1, ,n})
ieN ieN
=1=1-Y"
in A[Y], and thus the coefficient of the polynomial > p,;Y" € A[Y] before Y? is 1;
iEeN
but the coefficient of the polynomial > p,;Y* € A[Y] before Y is p, o; hence, p, o = 1.
ieN
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Define an (n + 1)-tuple (ag, ai,...,a,) € A" by ap = pram-r) for every k €
{0,1,...,n}. Then, a, = ppr(n—n) = Pnr0 = Pno = 1. Besides,

n

dowt = peamwut = D pranoput =0.
k=0

k=0 ke{0,1,...,n}

Finally, ar = pram—k) € Iaxm-k)Jn—r (since pp; € I;J,—y for every i € N) for every
k €{0,1,...,n}. In other words, a; € I)(,—i)Jy—; for every i € {0,1,...,n}.

Altogether, we now know that
Z apu® =0, a, =1, and a; € Iy(n—iyJn—i for every ¢ € {0,1,....,n}.
k=0
Thus, by Definition 9 (applied to ([/\p‘]p)peN instead of (1,)

integral over (A, ([,\pJp)peN>. This proves Lemma F”.

pen)» the element u is n-

Combining Lemmata £” and F”, we obtain that u is n-integral over (A, (I,\pJp)peN>

if and only if uY? is n-integral over (A[I], (JTA[I])T GN). This proves Theorem 15.

A particular case of Theorem 15:

Theorem 16. Let A and B be two rings such that A C B. Let (]p)peN be
an ideal semifiltration of A. Let n € N. Let u € B. Let A € N.

We know that (1)) y is an ideal semifiltration of A (according to Theorem
14).

Consider the polynomial ring A[Y] and its A-subalgebra A [(Ip)peN *

defined in Definition 8.
Then, the element u of B is n-integral over (A, (1 Aﬂ)peN> if and only if

V]

the element uY* of the polynomial ring B [Y] is n-integral over the ring
A [(Ip)pEN * Y] . (Here, A [([p)pEN * Y} C B[Y] because A [(Ip)pEN * Y] C
A[Y] and we consider A [Y] as a subring of B [Y] as explained in Definition
7).

Proof of Theorem 16. Theorem 10 (a) states that (A) .y is an ideal semifiltration
of A.
We will abbreviate the ring A [(Ip)peN * Y} by Ay

We have the following five equivalences:

e The element u of B is n-integral over (A, (],\p)peN> it and only if the element u

of B is n-integral over (A, (1xpA) ) (since Iy, = I,,A).

pEN

e The element u of B is n-integral over (A, (1),A) ) it and only if the element

pEN
uY? of the polynomial ring B [Y] is n-integral over (A[I], (AA[I])T GN) (according
to Theorem 15, applied to (A) ¢y instead of (J,) )
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e The element uY ™ of the polynomial ring B [Y] is n-integral over (A[ 1 (AA[ 1])T€N>

if and only if the element uY? of the polynomial ring B [Y] is n-integral over

(A (Ain) o) (since [ Adiy | = (Ai), o = (Ai) )

=4m / e

e The element uY? of the polynomial ring B [Y] is n-integral over (A[[], (A[I])p eN)
if and only if the element uY* of the polynomial ring B [Y] is n-integral over Al
(by Theorem 12, applied to Ay, B [Y] and uY? instead of A, B and u).

e The element uY* of the polynomial ring B [Y] is n-integral over Ay if and only
if the element uY > of the polynomial ring B [Y] is n-integral over A [(I P)peN * Y}

(since Ay = A [(Ip)peN * Y] ).

Combining these five equivalences, we obtain that the element u of B is n-integral
over (A, (I /\P)peN) if and only if the element uY? of the polynomial ring B[Y] is n-

integral over A [(I p) pen * Y] . This proves Theorem 16.

Finally we can generalize even Theorem 2:

Theorem 17. Let A and B be two rings such that A C B. Let (I,)
be an ideal semifiltration of A. Let n € N. Let v € B. Let ag, aq, ...

9

a, be n + 1 elements of A such that > a;v' = 0 and a; € I,,_; for every
i=0

i€ {0,1,...,n}.

Let k € {0,1,...,n}. We know that (I(”—’f)P)peN is an ideal semifiltration of

A (according to Theorem 14, applied to A = n — k).
n—k
Then, > a;4v" is n-integral over <A, (I(n—k)p)peN>'
i=0
Proof of Theorem 17. Consider the polynomial ring A[Y] and its A-subalgebra
A [(Ip)peN * Y] defined in Definition 8. We have A |:<Ip)p€N * Y] C BJ[Y], because

A [(I 0) pen * Y] C A[Y] and we consider A[Y] as a subring of B[Y] as explained in
Definition 7.
As usual, note that

Z Ly = Z LY" (here we renamed ¢ as i in the sum)

teN ieN
—A [(Ip)peN * Y] .
In the ring B[Y], we have

Za,Y" i vY ZaZY" tyt ’—Y"Zav =0.
=Yn

_v'LY/L—YZv'L
=0
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Besides, a;Y" " € A [(Ip) Y] for every i € {0,1,...,n} (since \aﬁ-/Y”_i cl, ;Y C

ely_;
%\IIZYE =A [(IP)pGN * Y} ). Hence, Theorem 2 (applied to A |:<Ip)pEN * Y] , B[Y],vY
n—=k .
and a;Y"" instead of A, B, v and ;) yields that > a; Y™ 0% (vY)’ is n-integral
i=0
over A [(Ip)peN * Y} Since

n—k n—k n—k
Z ai+kyn—(z+k) (UY)Z _ Z Wi Yn—(z—i—k)yz ot = Z ai+kvz . Yn—k7
1=0 :Uiyi':yivi =0 —y(n—(i+k)+i—yn—k =0
n—=k )
this means that ;) ai kv’ - YK is n-integral over A [(Ip)peN * Y].
n—~k n—k
But Theorem 16 (applied to u = > a;4 v’ and A = n — k) yields that > a; 40" is
i=0 1=0
n—k )
n-integral over <A, (I(”*’f)P)peN> if and only if igo g0’ - Y™K is neintegral over the
n—k )
ring A [(Ip)peN * Y} Since we know that Y a; v’ - Y% is n-integral over the ring
i=0
n—k )
A [(Ip)peN * Y], this yields that Z;) a; k0" is n-integral over (A, (I("_k)p)peN)' This
proves Theorem 17.
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