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This note is based on a problem from the IMO longlist 1976 proposed by Great
Britain (GBR 2 in [1]). When I first saw that problem, I spent a longer time solving it,
and the solution obtained was rather nonstandard for an olympiad geometry problem.
Before we state the problem, four conventions are appropriate:

e The point of intersection of two lines ¢ and h will be denoted by g N A in the
following.

e The parallel to a line g through a point P will be denoted by para (P; g).

e We will use directed lengths (also known as signed lengths). Hereby, the directed
length of a segment PQ will be denoted by PQ (of course, this directed length
is only defined if the line through the points P and () is directed, but we can
work with ratios of directed lengths on non-directed lines as well). The usual,
non-directed distance between two points P and () will be denoted by PQ.

e We work in the projective plane with the Euclidean structure on its Euclidean
component. This means that we work as one usually works in Euclidean geometry,
but a formulation of the kind "the three lines concur at one point" will also include
the case that these three lines concur at one infinite point, i. e. are all parallel
to each other. We will consider such cases as limiting cases, i. e. we won’t pay
particular attention to them even if they require a modification of our arguments.

Now we are ready to formulate the assertion of the IMO longlist problem (Fig. 1):
Theorem 1. Let ABC and A’B'C’ be two triangles on a plane. Denote

X =BCnBC; Y =CANC'A; Z =ABNAB;
X' = para(A4; BC)Npara(A"; B'C'); Y’ = para (B; CA)Npara(B'; C'A);
7' = para (C; AB)Npara(C'; A'B').

Then, the lines X X', Y'Y’ ZZ' concur at one point.



Fig. 1

The solution is based on the following fact (Fig. 2):

Theorem 2, the Gergonne-Euler theorem. Let ABC be a triangle,
and P a point in its plane. The lines AP, BP, C'P intersect the lines BC,
CA, AB at the points Ay, By, C1. Then,

PA, PBy PC,

- + =
AA, BB, CCy

Remark. The assertion of this theorem can be equivalently stated in the form
AP BP CP AP BP CP AP BP CP

+ + = 2 as well as in the form . . = + + +2.
AA, BBy CC, PA, PB; PCy PA, PB; PC;
Proving the equivalence is a simple calculation exercise.




Fig. 2

Proof of Theorem 2. (See Fig. 3.) Without loss of generality, we consider only the
case when the point P lies inside the triangle ABC. Let H, and P, be the orthogonal

projections of the points B and P on the line CA. Then, BH, | CA and PP, 1L CA

PB PP,
together yield BH, || PP,, and thus, by Thales, we have 5 Bi = B_HZ;




Fig. 3

Now we denote by | P, P> Ps| the (non-directed) area of an arbitrary triangle P, Py Ps.
Since the area of a triangle equals 3" sidelength - corresponding altitude, we have

1
|ABC| = 3 CA - BH, (since triangle ABC has C'A as a side and BH,, as the cor-
1
responding altitude) and |CPA| = 5 CA - PP, (since triangle CPA has CA as a

1
cp4l 3 ¢4 Ph pp
side and PP, as the corresponding altitude). Thus, | 1B C| = 12 =35 Hb .
ABCl L oA BH, b
C e this ¢ PB,; PP, ; PB |CPA| Similar] PCy |APB|
is to = ——, we ge = . Similar =
CHIparing BB,  BH, " ®" BB, ~ |ABC| Y ¢c, T JABC|



PA,  |BPC|
AA,  |ABC|

aln

Hence,

PA1+PB1 PC, |BPC| |CPA| |APB| |BPC|+|CPA|+|APB| |ABC|
AA, BB, CC, |ABC| |ABC| |ABC| |ABC| - |ABC|

1.

PA PA, PB PB PC PC

AAi = A_Ai’ BBi = BBi and CC’i = C’Ci (since P lies inside triangle ABC),
PA, PB, P

and thus this becomes L4 L4 & = 1. This proves Theorem 2.

AA; BB, CC,

Now,

)
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Fig. 4

Next we establish a lemma (see Fig. 4 for Lemma 3 b)):

Lemma 3. In the configuration of Theorem 1, let P be an arbitrary point
in the plane. The lines AP, BP, C'P intersect the lines BC, C A, AB at the



points Ay, By, C;. The lines A'P, B'P, C'P intersect the lines B'C’, C"A’,
A'B' at the points A}, Bf, C]. Then:

PA PA;
a) The point P lies on the line X X’ if and only if — = ——L.
AA, AA
PB PB;j
b) The point P lies on the line YY" if and only if L= L
BB, B'Bj
P PC
c) The point P lies on the line ZZ' if and only if G = ﬁ
co, Oy

Proof of Lemma 3. (See Fig. 4.) Let Q = PY'NCA and Q' = PY'NC'A’. Since

PB P
Y’ € para(B; CA), we have BY' || C'A, and thus, by Thales, L = Q. Since
BB, YQ
PB PQy
Y’ € para (B'; C'A’), we have B'Y' || C'A’, and thus, by Thales, —— = :Q
B'B] Y'Q)

Now, we construct a chain of obviously equivalent assertions:
(The point P lies on the line YY”)
<= (The line PY"’ passes through the point Y)
<= (The line PY" passes through the point CANC'A’)
<= (The line PY’ intersects the lines CA and C’'A’ at the same point)
<— (PY'NCA=PY'NC'A) <= (Q=0Q)
(Fo_ 72y (7 ro
Y'Q Y'Q BB, B'Bj
!/ /!
where the last equivalence is due to PBy = ﬁ and E = ﬁ This chain
BBy  Y'Q B'B,  Y'Q)
proves Lemma 3 b). Lemma 3 a) and c) are proven in an analogous way, and thus the
proof of Lemma 3 is complete.

Combining the above, we now complete the proof of Theorem 1: Denote by P
the point of intersection of the lines X X’ and YY'. Let A;, By, C; be the points of
intersection of the lines AP, BP, C'P with the lines BC, C'A, AB, respectively. Let
A}, B, C be the points of intersection of the lines A'P, B'P, C'P with the lines B'C",
C'A’, A'B’, respectively.

Since P lies on X X', Lemma 3 a) yields = . Since P lies on Y'Y’ Lemma
AA; AA

Y

PB PB;
3b) yields —= = L
BB, B'Bj
P (with the lines AP, BP, CP intersecting the lines BC, CA, AB at Ay, By, C}),
PA, PBy, PC PA PA PB PB;

Sl L1, Using L — L and L — L this transforms
AA, BB, CCy AA; AA} BB, B'Bj
PA PB; P

L PR PG
A'Ay B'BY CCy

On the other hand, Theorem 2, applied to the triangle A’B'C’ and the point P
(with the lines A’P, B'P, C'P intersecting the lines B'C’, C'A’, A'B’ at A}, By, C}),

. Now, Theorem 2, applied to the triangle ABC' and the point

yields

into




PAT PB, PC! PAT PB, PC

yields = 1. Comparing this with + =1, we
A'Ay B'B  C'CY A'AY B'By CCy
PC PC
get —— = —L According to Lemma 3 c), this shows that P lies on ZZ'.
co, ooy

Thus, the lines X X', YY" and ZZ' concur at one point - namely, at the point P.
This proves Theorem 1.

We note in passing that Theorem 1 can be proven in a different way as well:

There exists an affine transformation of the plane which maps the points A, B, C
to the points A’, B’, C'. If this transformation has a fixed point, then it can be shown
that this fixed point lies on the lines X X', Y'Y’ ZZ'. If this transformation has no
fixed points, then one can see that the lines X X', YY' ZZ’ are all parallel to each
other. The details of this proof are left to the reader.

As a further application of the Gergonne-Euler theorem, we can show (see Fig. 2
again):

Theorem 4, the van Aubel theorem. Let ABC' be a triangle, and let
P be a point in its plane. The lines AP, BP, C'P intersect the lines BC,
CA, AB at the points A, By, C. Then,

AP AC, AB;
PA, C,B BC’
BP  BA, N BC.
PB, A C C,A
CP (B, N CA,
PC, B,A AB

This result is classical and easy to prove using the Thales theorem and auxiliary
points. Here we will derive it from Theorem 2:

Consider the triangle PBC' and the point A in its plane. The lines PA, BA, CA
intersect the lines BC, CP, PB at the points A;, Cy, B;. Thus, the equation (1) of
Theorem 2 yields

AA,  AC,  AB

=1, so that
PA, BC, CB
A (A01 . ABl>
PA, ~ \BC, CB,/)’
But Ad —1= AAl;PAl = AP and
PA; PA; PA;

(_A01 . _ABl) B ( _ACl) . ( ABl) _AC . AB;
BCO, CB,) \ BC; CB,) OB B, C
AP AG . AB,
PA, OB BC

Hence, this becomes

. This proves (4), and similarly (5) and (6)

can be established.
We have thus deduced Theorem 4 from Theorem 2. Similarly, by the way, we could
have deduced Theorem 2 from Theorem 4 as well.
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