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In this note we will solve two interconnected problems from the MathLinks discus-
sion

http://www.mathlinks.ro/Forum/viewtopic.php?t=67939

We start with a theorem:

Theorem 1. Let ' be a complex number, and let x1 = 2 cos': Let k � 1
be an integer, and let x2; x3; :::; xk be k � 1 complex numbers. Then, the
chain of equations

x1 =
1

x1
+ x2 =

1

x2
+ x3 = ::: =

1

xk�1
+ xk (1)

(if k = 1; then this chain of equations has to be regarded as the zero
assertion, i. e. as the assertion which is always true) holds if and only if

the equation xm =
sin ((m+ 1)')

sin (m')
holds for everym 2 f1; 2; :::; kg : Hereby,

in the case when sin (m') = 0; the equation xm =
sin ((m+ 1)')

sin (m')
is to be

understood as follows:

� If ' is an integer multiple of �; then sin (m') = sin ((m+ 1)') = 0; and the

number
sin ((m+ 1)')

sin (m')
has to be understood as lim

 !'

sin ((m+ 1) )

sin (m )
:

� If ' is not an integer multiple of � and we have sin (m') = 0; then sin ((m+ 1)') 6=
0; and the equation xm =

sin ((m+ 1)')

sin (m')
is considered wrong.

Proof of Theorem 1. In our following proof, we will only consider the case when '
is not an integer multiple of �; because we will not need the case when ' is a multiple
of � in our later applications of Theorem 1. Besides, our following proof can be easily
modi�ed to work for the case of ' being a multiple of � as well (this modi�cation is
left to the reader).
We will establish Theorem 1 by induction over k:
For k = 1; we have to prove that the zero assertion holds if and only if x1 =

sin ((1 + 1)')

sin (1')
: Well, since the zero assertion always holds, we have to prove that the

equation x1 =
sin ((1 + 1)')

sin (1')
always holds. This is rather easy:

x1 = 2 cos' =
2 sin' cos'

sin'
=
sin (2')

sin'
=
sin ((1 + 1)')

sin (1')
:
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Thus, Theorem 1 is proven for k = 1:
Now we come to the induction step. Let n � 1 be an integer. Assume that Theorem

1 holds for k = n: This means that:
(*) If x2; x3; :::; xn are n� 1 complex numbers, then the chain of equations

x1 =
1

x1
+ x2 =

1

x2
+ x3 = ::: =

1

xn�1
+ xn (2)

holds if and only if the equation xm =
sin ((m+ 1)')

sin (m')
holds for every m 2 f1; 2; :::; ng :

We have to prove that Theorem 1 also holds for k = n + 1: This means that we
have to prove that:
(**) If x2; x3; :::; xn; xn+1 are n complex numbers, then the chain of equations

x1 =
1

x1
+ x2 =

1

x2
+ x3 = ::: =

1

xn�1
+ xn =

1

xn
+ xn+1 (3)

holds if and only if the equation xm =
sin ((m+ 1)')

sin (m')
holds for everym 2 f1; 2; :::; n; n+ 1g :

So let�s prove (**). This requires verifying two assertions:

Assertion 1: If (3) holds, then xm =
sin ((m+ 1)')

sin (m')
holds for everym 2 f1; 2; :::; n; n+ 1g :

Assertion 2: If xm =
sin ((m+ 1)')

sin (m')
holds for every m 2 f1; 2; :::; n; n+ 1g ; then

(3) holds.
Before we step to the proofs of these assertions, we show that

x1 =
sin (n')

sin ((n+ 1)')
+
sin ((n+ 2)')

sin ((n+ 1)')
: (4)

This is because

sin (n')

sin ((n+ 1)')
+
sin ((n+ 2)')

sin ((n+ 1)')
=
sin (n') + sin ((n+ 2)')

sin ((n+ 1)')

=
sin ((n+ 1)'� ') + sin ((n+ 1)'+ ')

sin ((n+ 1)')

=
(sin ((n+ 1)') cos'� cos ((n+ 1)') sin') + (sin ((n+ 1)') cos'+ cos ((n+ 1)') sin')

sin ((n+ 1)')

=
2 sin ((n+ 1)') cos'

sin ((n+ 1)')
= 2 cos' = x1:

Now, let�s prove Assertion 1: We assume that (3) holds. We have to prove that

xm =
sin ((m+ 1)')

sin (m')
holds for every m 2 f1; 2; :::; n; n+ 1g : In fact, since (3) yields

(2), we can conclude from (*) that the equation xm =
sin ((m+ 1)')

sin (m')
holds for every

m 2 f1; 2; :::; ng : It remains to prove this equation for m = n + 1; in other words, it

remains to prove that xn+1 =
sin ((n+ 2)')

sin ((n+ 1)')
: In order to prove this, we note that the
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equation xm =
sin ((m+ 1)')

sin (m')
; which holds for every m 2 f1; 2; :::; ng ; particularly

yields xn =
sin ((n+ 1)')

sin (n')
: Hence,

1

xn
=

sin (n')

sin ((n+ 1)')
: Now, (3) yields x1 =

1

xn
+

xn+1; so that x1 =
sin (n')

sin ((n+ 1)')
+ xn+1: Comparing this with (4), we obtain xn+1 =

sin ((n+ 2)')

sin ((n+ 1)')
; qed.. Thus, Assertion 1 is proven.

Now we will show Assertion 2. To this end, we assume that xm =
sin ((m+ 1)')

sin (m')
holds for every m 2 f1; 2; :::; n; n+ 1g ; and we want to show that (3) holds.
We have assumed that the equation xm =

sin ((m+ 1)')

sin (m')
holds for every m 2

f1; 2; :::; n; n+ 1g ; so that in particular, it holds for every m 2 f1; 2; :::; ng : Hence,
according to (*), the equation (2) must hold. Now, we are going to prove the equation

x1 =
1

xn
+ xn+1:

Since xm =
sin ((m+ 1)')

sin (m')
holds for every m 2 f1; 2; :::; n; n+ 1g ; we have xn =

sin ((n+ 1)')

sin (n')
and xn+1 =

sin ((n+ 2)')

sin ((n+ 1)')
: The former of these two equations yields

1

xn
=

sin (n')

sin ((n+ 1)')
: Thus, the equation (4) results in

x1 =
sin (n')

sin ((n+ 1)')
+
sin ((n+ 2)')

sin ((n+ 1)')
=
1

xn
+ xn+1:

Thus, the equation x1 =
1

xn
+ xn+1 is proven. Combining this equation with (2), we

get (3), and this completes the proof of Assertion 2.
As both Assertions 1 and 2 are now veri�ed, the induction step is done, so that the

proof of Theorem 1 is complete.
The �rst consequence of Theorem 1 will be:

Theorem 2. Let n � 1 be an integer, and let x1; x2; :::; xn be n nonzero
complex numbers such that

x1 =
1

x1
+ x2 =

1

x2
+ x3 = ::: =

1

xn�1
+ xn =

1

xn
: (5)

Then, there exists some integer j 2 f1; 2; :::; n+ 1g such that x1 = 2 cos
j�

n+ 2

and xm =
sin

�
(m+ 1)

j�

n+ 2

�
sin

�
m

j�

n+ 2

� for every m 2 f1; 2; :::; ng :

Proof of Theorem 2. We need two auxiliary assertions:
Assertion 1: We have x1 6= 2:
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Assertion 2: We have x1 6= �2:
Proof of Assertion 1. Assume the contrary. Then, x1 = 2: Now, we can prove

by induction over m that xm = 1 +
1

m
for every m 2 f1; 2; :::; ng : (In fact: For

m = 1; we have to show that x1 = 1 +
1

1
; what rewrites as x1 = 2 and this was our

assumption. Now, assume that xm = 1 +
1

m
holds for some m 2 f1; 2; :::; n� 1g : We

want to prove that xm+1 = 1 +
1

m+ 1
holds as well. Well, the equation (5) yields

x1 =
1

xm
+xm+1; so that xm+1 = x1�

1

xm
: Since x1 = 2 and xm = 1+

1

m
; we thus have

xm+1 = 2 � 1

1 +
1

m

=
m+ 2

m+ 1
= 1 +

1

m+ 1
: Hence, the induction proof is complete.)

Now, since we have shown that xm = 1+
1

m
holds for every m 2 f1; 2; :::; ng ; we have

xn = 1+
1

n
in particular. But (5) yields x1 =

1

xn
; so that 1 = x1�xn = 2�

�
1 +

1

n

�
; what

is obviously wrong since 2 �
�
1 +

1

n

�
> 2 �1 > 1: Hence, we obtain a contradiction, and

thus our assumption that Assertion 1 doesn�t hold was wrong. This proves Assertion
1.
The proof of Assertion 2 is similar (this time we have to show that if x1 = �2; then

xm = �
�
1 +

1

m

�
for every m 2 f1; 2; :::; ng).

Now, since the function cos : C ! C is surjective, there must exist a complex
number ' such that

x1
2
= cos': Hereby, if

x1
2
is real and satis�es �1 � x1

2
� 1;

then we take this ' such that ' is real and satis�es ' 2 [0; �] (this is possible since
cos : [0; �]! [�1; 1] is surjective).
Assertions 1 and 2 state that x1 6= 2 and x1 6= �2: Hence,

x1
2
6= 1 and x1

2
6= �1:

Since
x1
2
= cos'; this yields cos' 6= 1 and cos' 6= �1; and thus ' is not an integer

multiple of �:
De�ne another complex number xn+1 by xn+1 = 0: Then, (5) rewrites as

x1 =
1

x1
+ x2 =

1

x2
+ x3 = ::: =

1

xn�1
+ xn =

1

xn
+ xn+1: (6)

Since
x1
2
= cos'; we have x1 = 2 cos'; so that we can apply Theorem 1 to the n

complex numbers x2; x3; :::; xn+1; and from the chain of equations (6) we conclude

that xm =
sin ((m+ 1)')

sin (m')
holds for every m 2 f1; 2; :::; n+ 1g :

Thus, in particular, xn+1 =
sin ((n+ 2)')

sin ((n+ 1)')
: Since xn+1 = 0; we thus must have

sin ((n+ 2)')

sin ((n+ 1)')
= 0: This yields sin ((n+ 2)') = 0: Thus, (n+ 2)' is an integer

multiple of �: Let j 2 Z be such that (n+ 2)' = j�: Then, ' =
j�

n+ 2
: Thus,
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x1 = 2 cos' becomes x1 = 2 cos
j�

n+ 2
; and xm =

sin ((m+ 1)')

sin (m')
becomes xm =

sin

�
(m+ 1)

j�

n+ 2

�
sin

�
m

j�

n+ 2

� : It remains to show that j 2 f1; 2; :::; n+ 1g :

Now,
x1
2
= cos' = cos

j�

n+ 2
must be real and satisfy �1 � x1

2
� 1 (since cosines of

real angles are real and lie between �1 and 1). Therefore, according to the de�nition
of '; we have ' 2 [0; �] : Since ' is not a multiple of �; this becomes ' 2 ]0; �[ :

Since ' =
j�

n+ 2
; this yields j 2 ]0; n+ 2[ : Since j is an integer, this results in j 2

f1; 2; :::; n+ 1g : Hence, Theorem 2 is proven.
The �rst problem from the MathLinks thread asks us to show:

Theorem 3. Let n � 1 be an integer, and let x1; x2; :::; xn be n positive
real numbers such that

x1 =
1

x1
+ x2 =

1

x2
+ x3 = ::: =

1

xn�1
+ xn =

1

xn
:

Then, x1 = 2 cos
�

n+ 2
and xm =

sin

�
(m+ 1)

�

n+ 2

�
sin

�
m

�

n+ 2

� for every m 2

f1; 2; :::; ng :

Proof of Theorem 3. According to Theorem 2, there exists some integer j 2

f1; 2; :::; n+ 1g such that x1 = 2 cos
j�

n+ 2
and xm =

sin

�
(m+ 1)

j�

n+ 2

�
sin

�
m

j�

n+ 2

� for every

m 2 f1; 2; :::; ng : For every m 2 f1; 2; :::; n; n+ 1g ; we thus have

m�1Y
s=1

xs =

m�1Y
s=1

sin

�
(s+ 1)

j�

n+ 2

�
sin

�
s
j�

n+ 2

� =

m�1Q
s=1

sin

�
(s+ 1)

j�

n+ 2

�
m�1Q
s=1

sin

�
s
j�

n+ 2

�

=

mQ
s=2

sin

�
s
j�

n+ 2

�
m�1Q
s=1

sin

�
s
j�

n+ 2

� = sin

�
m

j�

n+ 2

�
sin

�
1
j�

n+ 2

� =

sin

�
m

j�

n+ 2

�
sin

j�

n+ 2

:

Since the reals x1; x2; :::; xm�1 are all positive, their product
m�1Q
s=1

xs is positive, and

this yields that
sin

�
m

j�

n+ 2

�
sin

j�

n+ 2

is positive. But since j 2 f1; 2; :::; n+ 1g ; the term
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sin
j�

n+ 2
is positive (since 0 <

j�

n+ 2
< �), and thus it follows that sin

�
m

j�

n+ 2

�
is

positive. Since this holds for everym 2 f1; 2; :::; n; n+ 1g ; this means that the numbers

sin

�
m

j�

n+ 2

�
are positive for all m 2 f1; 2; :::; n; n+ 1g : Since j 2 f1; 2; :::; n+ 1g ;

this yields j = 1 1. Hence, x1 = 2 cos
j�

n+ 2
becomes x1 = 2 cos

�

n+ 2
; and xm =

sin

�
(m+ 1)

j�

n+ 2

�
sin

�
m

j�

n+ 2

� becomes xm =
sin

�
(m+ 1)

�

n+ 2

�
sin

�
m

�

n+ 2

� : This proves Theorem 3.

A converse of Theorem 3 is:

Theorem 4. Let n � 1 be an integer, and de�ne n reals x1; x2; :::; xn by

xm =

sin

�
(m+ 1)

�

n+ 2

�
sin

�
m

�

n+ 2

� for every m 2 f1; 2; :::; ng : Then, the reals x1;

x2; :::; xn are positive. Besides, x1 = 2 cos
�

n+ 2
; and the reals x1; x2; :::;

xn satisfy the equation (5).

Proof of Theorem 4. At �rst, it is clear that the reals x1; x2; :::; xn are pos-

itive, because, for every m 2 f1; 2; :::; ng ; we have sin
�
(m+ 1)

�

n+ 2

�
> 0 and

sin

�
m

�

n+ 2

�
> 0 (since 0 < (m+ 1)

�

n+ 2
< � and 0 < m

�

n+ 2
< �) and thus

xm =

sin

�
(m+ 1)

�

n+ 2

�
sin

�
m

�

n+ 2

� > 0:

1Proof. Assume the contrary - that is, assume that j � 2:
Then, the smallest of the angles m

j�

n+ 2
for m 2 f1; 2; :::; n; n+ 1g is 1 j�

n+ 2
=

j�

n+ 2
< � (since

j < n+2), and the largest one is (n+ 1)
j�

n+ 2
� (n+ 1) 2�

n+ 2
=
2 (n+ 1)

n+ 2
� = �+

n

n+ 2
� � �: Thus,

some but not all of the numbers m 2 f1; 2; :::; n; n+ 1g satisfy m j�

n+ 2
� �: Let � be the smallest

m 2 f1; 2; :::; n; n+ 1g satisfying m j�

n+ 2
� �: Then, � j�

n+ 2
� �; but (�� 1) j�

n+ 2
< �: Hence,

�
j�

n+ 2
=

j�

n+ 2
+ (�� 1) j�

n+ 2
<
(n+ 2)�

n+ 2
+ � (since j < n+ 2 and (�� 1) j�

n+ 2
< �)

= 2�;

what, together with �
j�

n+ 2
� �; yields � � �

j�

n+ 2
< 2�: Thus, sin

�
�
j�

n+ 2

�
� 0: But this

contradicts to the fact that sin
�
m

j�

n+ 2

�
is positive for all m 2 f1; 2; :::; n; n+ 1g : Hence, we get a

contradiction, so that our assumption that j � 2 was wrong. Hence, j must be 1:
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The equation x1 = 2 cos
�

n+ 2
is pretty obvious:

x1 =

sin

�
(1 + 1)

�

n+ 2

�
sin

�
1

�

n+ 2

� =

sin

�
2

�

n+ 2

�
sin

�

n+ 2

=
2 sin

�

n+ 2
cos

�

n+ 2

sin
�

n+ 2

= 2 cos
�

n+ 2
:

Remains to prove the equation (5). In order to do this, de�ne a real xn+1 = 0:
Then,

xn+1 = 0 =
0

sin

�
(n+ 1)

�

n+ 2

� = sin �

sin

�
(n+ 1)

�

n+ 2

� = sin

�
(n+ 2)

�

n+ 2

�
sin

�
(n+ 1)

�

n+ 2

� :

Hence, the equation xm =
sin

�
(m+ 1)

�

n+ 2

�
sin

�
m

�

n+ 2

� holds not only for everym 2 f1; 2; :::; ng ;

but also for m = n + 1: Thus, altogether, it holds for every m 2 f1; 2; :::; n; n+ 1g :
Consequently, according to Theorem 1 (for ' =

�

n+ 2
and k = n+ 1), we have

x1 =
1

x1
+ x2 =

1

x2
+ x3 = ::: =

1

xn�1
+ xn =

1

xn
+ xn+1:

Using xn+1 = 0; this simpli�es to (5). Thus, Theorem 4 is proven.
Now we are ready to solve the second MathLinks problem:

Theorem 5. Let n � 1 be an integer, and let y1; y2; :::; yn be n positive
reals. Then,

min

�
y1;

1

y1
+ y2;

1

y2
+ y3; :::;

1

yn�1
+ yn;

1

yn

�
� 2 cos �

n+ 2
: (7)

Proof of Theorem 5. We will prove Theorem 5 by contradiction: Assume that (7)
is not valid. Then,

min

�
y1;

1

y1
+ y2;

1

y2
+ y3; :::;

1

yn�1
+ yn;

1

yn

�
> 2 cos

�

n+ 2
: (8)

De�ne n reals x1; x2; :::; xn by xm =
sin

�
(m+ 1)

�

n+ 2

�
sin

�
m

�

n+ 2

� for everym 2 f1; 2; :::; ng :

Then, according to Theorem 4, the reals x1; x2; :::; xn are positive. Besides, x1 =
2 cos

�

n+ 2
; and the reals x1; x2; :::; xn satisfy the equation (5).

Now we will prove that yj > xj for every j 2 f1; 2; :::; ng : This we will prove
by induction over j: For j = 1; we have to show that y1 > x1: This, in view of
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x1 = 2 cos
�

n+ 2
; becomes y1 > 2 cos

�

n+ 2
; what follows from (8). Thus, yj > xj is

proven for j = 1:
Now, for the induction step, we assume that yj > xj is proven for some j 2

f1; 2; :::; n� 1g : We want to show that we also have yj+1 > xj+1:

In fact, according to (5), we have x1 =
1

xj
+xj+1; what, because of x1 = 2 cos

�

n+ 2
;

comes down to 2 cos
�

n+ 2
=
1

xj
+ xj+1: Since yj > xj; we have

1

xj
>
1

yj
; so this yields

2 cos
�

n+ 2
>
1

yj
+ xj+1: On the other hand, (8) yields

1

yj
+ yj+1 > 2 cos

�

n+ 2
: Thus,

1

yj
+ yj+1 >

1

yj
+ xj+1; and thus yj+1 > xj+1 is proven. This completes the induction

proof of yj > xj for every j 2 f1; 2; :::; ng :
This, in particular, yields yn > xn; so that

1

xn
>
1

yn
: On the other hand, after (8),

we have
1

yn
> 2 cos

�

n+ 2
: But 2 cos

�

n+ 2
= x1; and (5) yields x1 =

1

xn
: Thus, we get

the following chain of inequalities:

1

xn
>
1

yn
> 2 cos

�

n+ 2
= x1 =

1

xn
:

This chain is impossible to hold. Therefore we get a contradiction, so that our assump-
tion was wrong, and Theorem 5 is proven.
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