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In this note we will solve two interconnected problems from the MathLinks discus-
sion
http://www.mathlinks.ro/Forum/viewtopic.php?t=67939

We start with a theorem:
Theorem 1. Let ¢ be a complex number, and let 1 = 2cos . Let £k > 1

be an integer, and let x5, x3, ..., xx be k — 1 complex numbers. Then, the
chain of equations

1 1 1
= —+Ty=—+a33=..= + T3 (1)
Ty T2 Tp—1
(if & = 1, then this chain of equations has to be regarded as the zero

assertion, i. e. as the assertion which is always true) holds if and only if
sin ((m + 1) ¢)

the equation z,, = - holds for every m € {1, 2, ..., k} . Hereby,
sin (my)
i 1
in the case when sin (m¢p) = 0, the equation z,, = s ((m 1) is to be
sin (my)

understood as follows:

o If o is an integer multiple of 7, then sin (mp) = sin((m+ 1) ¢) = 0, and the
i ((m +1)) has to be understood as lim i ((m +1) @D)'
sin (my) Yv—p  sin (ma)

number

e If v is not an integer multiple of 7 and we have sin (my) = 0, then sin ((m + 1) ) #
sin ((m + 1) ¢)
sin (my)

0, and the equation x,, = is considered wrong.

Proof of Theorem 1. In our following proof, we will only consider the case when ¢
is not an integer multiple of 7, because we will not need the case when ¢ is a multiple
of 7 in our later applications of Theorem 1. Besides, our following proof can be easily
modified to work for the case of ¢ being a multiple of 7 as well (this modification is
left to the reader).

We will establish Theorem 1 by induction over k:

For k£ = 1, we have to prove that the zero assertion holds if and only if z; =
sin (14 1)) _ .
W. Well, since the zero assertion always holds, we have to prove that the
sin((141) )

- always holds. This is rather easy:
sin (1)

equation x; =

2sinpcosp  sin(2p)  sin((14+1)¢)

= 2 =
o o8y sin ¢ sin ¢ sin (1¢)



Thus, Theorem 1 is proven for k = 1.
Now we come to the induction step. Let n > 1 be an integer. Assume that Theorem
1 holds for £ = n. This means that:

(*) If 29, z3, ..., &, are n — 1 complex numbers, then the chain of equations
1 1 1
T1=—+4Tyo=—+a3=..= + 1z, (2)
I ) Tn-1

i 1
holds if and only if the equation x,, = ot ((Trz +1)¢) holds for every m € {1,2,...,n}.
sin (m

We have to prove that Theorem 1 also holds for & = n + 1. This means that we
have to prove that:

(**) If xo, x3, ..., Tpn, Tpy1 are n complex numbers, then the chain of equations
1 1 1 1
T1=—+Tyg=—+a3=..= + X, = — + Tyt (3)
X1 T2 Tn—1 T,

i 1
holds if and only if the equation z,, = sin ((m +1) ) holds for every m € {1,2,...,n,n+ 1}.

sin (mgp)
So let’s prove (**). This requires verifying two assertions:

' 1
Assertion 1: If (3) holds, then x,, = St ((m +1)¢)
sin (my)

holds for every m € {1,2,...,n,n+ 1}.

sin ((m + 1) ¢)

Assertion 2: If z,, = -
sin (myp)

(3) holds.
Before we step to the proofs of these assertions, we show that

holds for every m € {1,2,...,mn,n + 1}, then

sin (ny) sin ((n +2) )

= sin ((n+1) ¢) * sin((n+1)¢)

This is because

sin (nyp) sin ((n + 2) ) _ sin (np) + sin ((n + 2) )
sin((n+1)p)  sin((n+1)y) sin((n+ 1) ¢)
:sin((n+1)<,0—<,0)+sin(( +1)p+ )

sin ((n+1) ¢)
(sin ((n+1)¢)cosp —cos((n+ 1) p)sing) + (sin ((n + 1) ¢) cosp + cos ((n + 1) ) sin )
sin((n+1) ¢)

2sin ((n+ 1) ¢) cos ¢
= - =2cosp = 7.
sin ((n+1) ¢)

Now, let’s prove Assertion 1: We assume that (3) holds. We have to prove that

i 1
Ty = St ((m 1) holds for every m € {1,2,...,n,n+ 1} . In fact, since (3) yields
sin (mep)

i 1
(2), we can conclude from (*) that the equation z,, = o ((m + 1) holds for every
sin (my)

m € {1,2,...,n}. It remains to prove this equation for m = n + 1; in other words, it
sin ((n 4 2) @)

sin ((n+1) ¢)

remains to prove that x,,; = . In order to prove this, we note that the

2



i 1
equation z,, = sin ((m + )gp), which holds for every m € {1,2,...,n}, particularly

sin (my)
i 1 1 i 1
W—+m. Hence, — = M Now, (3) yields ©1 = — +
sin (nyp) T, sin((n+1)¢) Ty,
sin (nyp)

sin((n+ 1))

yields x,, =

Tny1, SO that z; = + x,11. Comparing this with (4), we obtain x, 1 =

W—+2)(p), ged.. Thus, Assertion 1 is proven.

sin ((n+1) ¢)

sin ((m + 1) ¢)
sin (my)

holds for every m € {1,2,...,n,n + 1}, and we want to show that (3) holds.

sin ((m + 1) ¢)
sin (my)

{1,2,...,n,n+ 1}, so that in particular, it holds for every m € {1,2,...,n}. Hence,

according to (*), the equation (2) must hold. Now, we are going to prove the equation

Now we will show Assertion 2. To this end, we assume that z,, =

We have assumed that the equation z,, = holds for every m €

1= — + Tpy1-
n

sin ((m + 1) )

Since z,, = , holds for every m € {1,2,...,n,n+ 1}, we have z,, =
sin (my)
1 1 i 2
W—+M and z,,1 = sm((n——l—)ga) The former of these two equations yields
sin (nep) sin((n+1) @)
1 sin (nep)

i St Do) Thus, the equation (4) results in

_ sin(nyp) sin(n+2)p) 1 .
17 Sin (n+1) ) + sin((n+1)¢)  , T Tt

Thus, the equation x; = — + 2,41 is proven. Combining this equation with (2), we
x

get (3), and this completes ‘the proof of Assertion 2.

As both Assertions 1 and 2 are now verified, the induction step is done, so that the
proof of Theorem 1 is complete.

The first consequence of Theorem 1 will be:

Theorem 2. Let n > 1 be an integer, and let xy, x3, ..., x,, be n nonzero
complex numbers such that

1 1 1 1
T1=—+4Ty=—+a3=..= +x,=—. (5)
T ) Tp—1 Ty
Then, there exists some integer j € {1,2,...,n + 1} such that z; = 2 cos ]:2
n

: Jm
1
sin ((m—I— )n+2>
. Jm
sin [ m
n+2

Proof of Theorem 2. We need two auxiliary assertions:
Assertion 1: We have x1 # 2.

and z,, = for every m € {1,2,....,n}.




Assertion 2: We have z, # —2.
Proof of Assertion 1. Assume the contrary. Then, ;1 = 2. Now, we can prove

1
by induction over m that x,, = 14+ — for every m € {1,2,...,n}. (In fact: For
m
1
m = 1, we have to show that z; = 1 + T what rewrites as x1 = 2 and this was our
1
assumption. Now, assume that x,, = 1 + — holds for some m € {1,2,....,.n — 1} . We

m

1
want to prove that z,.; = 1+ 1 holds as well. Well, the equation (5) yields

m +
1 1
1 = — + Ty, so that x,,.1 = 1 — —. Since 1 = 2 and z,,, = 1+ —, we thus have
1 + 2 1 ) . .
Tyl = 2 — T = m = 1+ ——. Hence, the induction proof is complete.)
14— m+1 m—+1
m

1
Now, since we have shown that z,, = 1 + — holds for every m € {1,2,...,n}, we have

1 1 1
T, = 14— in particular. But (5) yields zy = —, so that 1 = zy-2,, = 2- (1 + —) , what
n T n

n
is obviously wrong since 2 - (1 + — | > 2-1> 1. Hence, we obtain a contradiction, and
n

thus our assumption that Assertion 1 doesn’t hold was wrong. This proves Assertion
1.
The proof of Assertion 2 is similar (this time we have to show that if z; = —2, then

1
T, = — (1 + —) for every m € {1,2,...,n}).
m

Now, since the function cos : C — C is surjective, there must exist a complex

x x x
number ¢ such that 2L = cos . Hereby, if “L is real and satisfies —1 < == < 1,

then we take this ¢ such that ¢ is real and satisfies ¢ € [0, 7] (this is possible since
cos : [0, ] — [—1,1] is surjective).
Assertions 1 and 2 state that x; # 2 and xz; # —2. Hence, % # 1 and % # —1.

Since % = cos p, this yields cosp # 1 and cosp # —1, and thus ¢ is not an integer

multiple of 7.
Define another complex number z,,,1 by z,+1 = 0. Then, (5) rewrites as

1 1 1 1
T T Tn—1 Tn

x
Since 31 = cos p, we have x1 = 2cosp, so that we can apply Theorem 1 to the n

complex numbers zy, 3, ..., Tpi1, and from the chain of equations (6) we conclude
sin (m + 1) o)
sin (my)

that z,, = holds for every m € {1,2,....,n+ 1}.

. ) sin((n+ 2 .
Thus, in particular, x,., = ( )QO; Since z,,1 = 0, we thus must have
¥

. sin ((n + 1)
sin ((n + 2) )
s ((n+ 1))

multiple of 7. Let j € Z be such that (n+2)p = jm. Then, ¢ = % Thus,
n

= 0. This yields sin ((n+2)¢) = 0. Thus, (n+2)p is an integer



7T2’ and 2, — sin ((m+1) ¢)

- becomes z,, =
n+ sin (my)

r1 = 2cose becomes r; = 2cos
. Jm

1
sin ((m—l— )n—|—2)

) g
sin | m
n+2

T
Now, 5 = COS ¢ = COS

. It remains to show that j € {1,2,....,n+ 1}.

T
must be real and satisfy —1 < ?1 < 1 (since cosines of

real angles are real and lie between —1 and 1). Therefore, according to the definition
of ¢, we have ¢ € [0,7]. Since ¢ is not a multiple of 7, this becomes ¢ € ]0,7][.

Since ¢ = %, this yields j € |0,n + 2[. Since j is an integer, this results in j €
n

{1,2,...,n+ 1} . Hence, Theorem 2 is proven.
The first problem from the MathLinks thread asks us to show:

Theorem 3. Let n > 1 be an integer, and let =1, x5, ..., x, be n positive
real numbers such that

1 1 1 1

331:—+x2:—+a:3=...: —|—[L’n2—
T T2 Tn—1 T
sin <(m +1) =~ )
s n+ 2

Then, z; = 2cos —— and z,, = for every m €

n—+ 2 : T

sin ( m
( n -+ 2)

{1,2,....,n}.
Proof of Theorem 3. According to Theorem 2, there exists some integer j €

sin ((m +1) T

] 2
{1,2,...,n + 1} such that z; = 2cos JT_ and T = 'n—i— for every
n+2 . Jm
sin [ m
( n + 2)
m € {1,2,...,n}. For every m € {1,2,....,n,n + 1} , we thus have
. Jm m-l Jm
m— m— 1) —— 1) ———
1 1sm((s+ )n—l-Q) 8H181n<(s+ )n—|—2)
s=1 s=1 1 1
sin (Sn+2) 51;[1 sin (Sn+2)
ﬁ . Jm . Jm : Jm
sin | s sin ( m sin { m
s=92 n + 2 B n + 2 . n -+ 2
T m—1 ; - ; - ‘ :
. Jm . Jm T
8];[1 sin (871—1—2) sin (1n—|—2> smn+2
m—1
Since the reals xq, 3, ..., z,,—1 are all positive, their product [] x; is positive, and
s=1

sin (m :2)
this yields that nﬁ is positive. But since j € {1,2,...,n+ 1}, the term

sin

n+ 2



sin 2" g positive (since 0 < T~ 7), and thus it follows that sin | m IT ) s
n+ 2 n+ 2 n+ 2

positive. Since this holds for every m € {1,2,...,n,n + 1}, this means that the numbers

sin (m ‘Tz> are positive for all m € {1,2,....n,n+ 1}. Since j € {1,2,....n + 1},
n

1

becomes z; = 2cos
n 4+ n

this yields j = 1
7r
i 1
sin ((m+ )n—l—Z)

sin ((m +1) ‘7_:2)
n becomes x,, = . This proves Theorem 3.

) gm ) T
s {m s | m
n+2 n+2

A converse of Theorem 3 is:

T
. Hence, 1 = 2cos and z,, =
9 27

Theorem 4. Let n > 1 be an integer, and define n reals =1, xs, ..., x, by

sin ((m +1) HLH>

Ty = for every m € {1,2,...,n}. Then, the reals x,
sin (mn i 2)
Zo, ..., T, are positive. Besides, 1 = 2cos — and the reals x1, xo, ...,
x,, satisfy the equation (5).
Proof of Theorem /4. At first, it is clear that the reals xy, x5, ..., x, are pos-

itive, because, for every m € {1,2,...,n}, we have sin ((m~|— 1) % > 0 and
n

™

sin (mn12> > 0 (since 0 < (m+1)
_ T
sin ((m+ 1) n+2)

> 0.

. i
sin|{m
n+2

! Proof. Assume the contrary - that is, assume that j > 2.

< 7and 0 < m— < 7) and thus
n+2 n+2

Ty =

Then, the smallest of the angles m I for m e{1,2,..,n,n+ 1} is 12T JT < 7 (since
n+2 n+2 n4+2
] 2 2 1
Jj < n+2), and the largest one is (n + 1) nji—:-Q >(n+1) n—:—r2 = ;n:Q ) = 7T+n:1_277 > . Thus,

some but not all of the numbers m € {1,2,...,n,n + 1} satisfy m% > m. Let p be the smallest
n

m € {1,2,....,n,n + 1} satisfying mnji_’g > 7. Then, Mnji—:—TQ >, but (p—1) nji_:_TQ < 7. Hence,
g g 1) Jm <(n—|—2)7r+ (si <nt2and (u—1) Jm <)
= — 7r since n an 1)<
un+2 n+2 a n+2 n+2 J a n+2
= 2m,
what, together with unjiir? >, yields 7 < ,unjij? < 2m. Thus, sin (,un‘]f2> < 0. But this

contradicts to the fact that sin (m%) is positive for all m € {1,2,...,n,n+ 1}. Hence, we get a
n

contradiction, so that our assumption that j > 2 was wrong. Hence, j must be 1.



The equation z; = 2 cos

T . .
5 18 pretty obvious:

. T . m . T T
sm((l—l—l)n+2)_s1n<2n+2)_2smn+2008n+2 -

T = = = 2cos .
sin [ 1 T sin T sin il n+2

Remains to prove the equation (5). In order to do this, define a real x,,; = 0.
Then,

m
i 2
0 sin Sln<(”+)n+2)

$n0n+nn12) $n0n+Dn12> $n0n+nn12)

$n0m+nni2)

Hence, the equation x,, = holds not only for every m € {1,2,...,n},

) T
sin | m
n+2
but also for m = n + 1. Thus, altogether, it holds for every m € {1,2,....n,n+ 1}.
and kK =n + 1), we have

Consequently, according to Theorem 1 (for ¢ = )

1 1 1 1
T1=—+To=—+2T3=..= +In:_+xn+1'
T X9 Tp—1 L

Using x,+1 = 0, this simplifies to (5). Thus, Theorem 4 is proven.
Now we are ready to solve the second MathLinks problem:

Theorem 5. Let n > 1 be an integer, and let 1, o, ..., ¥, be n positive
reals. Then,

. 1 1 1 1 s
min < Y1, — + Y2, — + Y3, ..y + Yp, — ¢ < 2c08 ) (7)
n Y2 n—1 Un n—+ 2

Proof of Theorem 5. We will prove Theorem 5 by contradiction: Assume that (7)
is not valid. Then,

. 1 1 1 1 s
min < y1, — + Yo, — + Y3, ..., + Yn, — ¢ > 208 : (])
(7 Yo n—1 Yn n+2
sin <(m +1) 12)
n
Define n reals x4, xo, ..., x, by x,,, = foreverym € {1,2,...,n}.
T
sin [ m
( n -+ 2)

Then, according to Theorem 4, the reals zi, xs, ..., x, are positive. Besides, ;1 =

2 cos o and the reals z, s, ..., x, satisfy the equation (5).

n

Now we will prove that y; > x; for every j € {1,2,...,n}. This we will prove
by induction over j: For j = 1, we have to show that y; > x;. This, in view of

7



x1 = 2cos m 5 becomes y; > 2cos - m 5 what follows from (8). Thus, y; > z; is

proven for j = 1.
Now, for the induction step, we assume that y; > xz; is proven for some j €
{1,2,...,n — 1} . We want to show that we also have y;.; > z,41.

1
In fact, according to (5), we have z1 = — 441, what, because of x; = 2 cos
a_’/‘ .

: n+2
1 1
comes down to 2cos —— = — + xj41. Since y; > x;, we have — > —, so this yields
n+2 Tj Y
1 1
2 cos > — + z;41. On the other hand, (8) yields — + y;411 > 2cos L Thus,
n + Yj Yj n+2

1
— + ¥Yj41 > — + 241, and thus y;41 > x4, is proven. This completes the induction
J J
proof of y; > x; for every j € {1,2,...,n}.

1 1
This, in particular, yields y,, > x,, so that — > —. On the other hand, after (8),
Tn Yn

1 1
we have . > 2cos - j_ 5 But 2 cos - j_ 5 =21y and (5) yields z; = prag Thus, we get
the following chain of inequalities:
1 1 s 1
— > — > 2cos =T = —.
T Yn n+2 T

This chain is impossible to hold. Therefore we get a contradiction, so that our assump-
tion was wrong, and Theorem 5 is proven.



