An adventitious angle problem concerning /2 and % / Darij Grinberg

The purpose of this note is to give two solutions of the following problem (Fig. 1):
Let ABC be an isosceles triangle with AB = AC and BC = 1. Let P be a point on the side AB
of thistriangle which satisfies AP = 1.
Provethat CP = /2 holdsif and only if A CAB =
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It is not hard to solve this problem using trigonometry or complex numbers (see, e. g., the MathLinks
discussion
http://ww. mat hl i nks. ro/ Foruni vi ewt opi c. php?t =22849
for the direction A CAB = % = CP = /2).

Here, we will present two synthetic solutions of the problem; the first one was given (for the
directionCP = y2 = A CAB = %) by Stefan V. (a pseudonym), the second one is apparently original.

First solution (Stefan V.):
Before solving the problem, we recall two facts on parallelograms. Thefirst oneis a pretty
well-known formula:
Lemma 1. Let ABCD be aparallelogram. Then, AC2 + BD? = 2« (AB? + BC?).
In other words, the sum of the squares of the diagonals of a parallelogram is equal to the double sum
of the squares of two adjacent sides. (See Fig. 2.)
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Lemma 1l is most easily proven using vectors and their scalar products: Since ABCD isa
parallelogram, we have CD = BA, or, equivalently, CD = —AB. ThusBD = BC + CD = BC - AB, and
hence

—2 —2 — —\ 2 — —\ 2
AC2+BD2=AC +BD = (AB+BC) +(BC—AB)
—2 —_— — —2 —2 _—s — —2
_ (AB +2.AB.BC+BC )+(BC _2.BQ.AB+AB )
2 2
:2-(AB +BG ) — 2. (AB? + BC?),

so Lemma 1 is proven. Note that Lemma 1 is more known in the form
AC? + BD? = AB? + BC? + CD? + DA?, which istrivially equivalent to AC? + BD2 = 2« (AB? + BC?)
since AB = CD and BC = DA (because ABCD is a parallelogram).

The next property of parallelograms applied below will be:

Lemma 2. Let ABCD be a parallelogram. If AC = /2 « AB, then BD = /2 « BC.

In other words, if in aparallelogram, adiagonal is /2 times aslong as a side, then the other diagonal
is y/2 times aslong as the other side. (See Fig. 3.)
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Infact, Lemma2isatrivial corollary of Lemmal: If AC = /2 « AB, then AC? = 2« AB?;
subtracting this from the equation AC? + BD? = 2« (AB? + BC?) which holds by Lemma 1, we obtain
BD? = 2+ BC?, sothat BD = /2 « BC, and Lemma 2 is proven.
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Thereisaso an aternative proof of Lemma 2 using similar triangles (Fig. 4): Let X be the reflection
of the point A in the point B. Then, BX = AB. On the other hand, AB = DC, since ABCD isa
parallelogram. Thus, BX = DC. Together with BX || DC (what followsfrom AB || DC, what is because
ABCD is aparallelogram), this yields that the quadrilateral BDCX is a parallelogram, so that XC = BD.

Now, we supposed that AC = /2 « AB, sothat AC? = 2 « AB. In other words, ﬁCB: 2. AéB But

BX = AByields2« AB = AB + BX = AX, so thisbecomes 2 = AX  since we dlso trivialy have

AB AC’
A CAB = A XAC, we can conclude that the triangles CAB and XAC are similar. Thus, )ég ﬁCB: :

Since XC = BD and AC = /2 « AB, this becomes Eg ‘/_A°BAB = J2: hence,

BD = /2 « CB = /2 « BC. Thisagain proves Lemma 2.
Now we come to the actual solution of the problem:
In order to solve the problem, we have to prove two assertions:
Assertion 1: If CP = /2, then A CAB = %
Assertion 2: If A CAB = % then CP = /2.
Before we verify these two assertions, we perform some observations independent of the validity of
CP = J/2 and A CAB = %

(SeeFig. 5.) Let the parallel to the line AB through the point C meet the parallels to the lines BC and
AC through the point P at the points Sand R.

We have CS || AB, or, equivalently, CS || BP, and we have PS || BC; thus, the quadrilateral BCSP
isaparalelogram. Thus, CS = BP. On the other hand, we have CR || AB, or, equivaently, CR | AP,
and we have PR || AC; thus, the quadrilateral ACRP is aparallelogram. Thisyields CR = AP. Hence,
RS= CR+ CS= AP + BP = AB. Together with RS || AB thisimpliesthat the quadrilateral ABRSisa
parallelogram.

Let A CAB = a. Sincetriangle ABC isisosceles, its base angle A ABC then equals




_n—-ACAB _ m—a
A ABC = 5 =S5

Since CR || AB, we have A BCR = A ABC, sothat ABCR = ”—50‘.
Now CR = AP = 1 = BC; thus, the triangle BCRisisosceles, so its base angleis

T« T+a
ACBR— Z—ABCR _ """ 2 _ (=5*) _mta
2 2 2 4

Hence,

APBR= AABC+ ACBR= 22 4 fta _ 2X-Or(I+d) _ 3r-a

Now, PR || ACimplies ARPB = A CAB, sothat A RPB = a. Thus, the sum of anglesin triangle PBR
yields

ABRP = 7— APBR- ARPB = 7 — 3”4—“ —a=ZdL g I

Now, we have BP = BRif and only if the triangle PBR is isosceles with base PR; this holds if and
onlyif ARPB = ABRP,i.eifa =& _430‘ ; but thisis obvioudy equivalent to 4o = = — 3a, henceto

o= % So we have shown that BP = BR holdsif and only if a = %
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Now, we will prove the Assertions 1 and 2. We start with the proof of Assertion 1:

Assumethat CP = /2. Since AP = 1, thisrewritesas CP = /2 « AP. By Lemma 2, applied to the
parallelogram ACRP, thisentails AR = J/2 « AC. Since AB = AC, thisrewritesas AR = /2 « AB.
According to Lemma 2, applied to the parallelogram ABRS, thisleadsto BS = /2 « BR. But since
BC = 1, we can rewrite the equation CP = /2 in the form CP = /2 « BC aswell, and thus, from
Lemma 2, applied to the parallelogram BCSP, we conclude that BS = /2 « BP. Comparing this with
BS= /2 « BR, weget BP = BR. As showed above, thisisequivalenttoa = Z-, i. e. to A CAB = %

7’
and thus Assertion 1 is proven.
More difficult is the proof of Assertion 2:
Assumethat A CAB = % In other words, a = % According to the above, thisyields BP = BR.

Application of Lemma 1 to the parallelogram BCSP yields BS? + CP? = 2 « (BC2 + BP?), what, in
view of BC? = 12 = 1, becomes BS? + CP? = 2.« (1 + BP?).

Application of Lemma 1 to the parallelogram ACRP yields CP? + AR? = 2 « (AC2 + AP?), what, in
view of AC = AB and AP? = 12 = 1, becomes CP? + AR? = 2« (AB? + 1).

Application of Lemma 1 to the parallelogram ABRSyields AR? + BS? = 2 « (AB? + BR?), what, in
view of BP = BR, becomes AR? + BS?* = 2« (AB? + BP?).

Thus,



cp2 - 24CP?2 _ (BS? + CP?) + (CP? + AR?) — (AR? + BS?)
= L5 = iy
_ 2+(1+BP?)+2+(AB?2+1) -2« (AB?+BP?)
- 5 _

sothat CP = /2. Thus, Assertion 2 is proven, and the solution of the problem is complete.
Second solution:
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(SeeFig. 6.) The point P lies on the side AB of triangle ABC and satisfies AP = 1. Let Q be the point
on the side AC of triangle ABC satisfying AQ = 1. Since the triangle ABC isisosceles with AB = AC,
from symmetry it then followsthat PQ || BC, BP = CQ and BQ = CP. Since PQ | BC, we have
A QPB = 7 — A ABC. Sincetriangle ABC isisosceleswith AB = AC, we have A ABC = A ACB. Thus
AQPB =7- AACB = 7 — AQCB. Thus, the quadrilateral BPQC is cyclic, so the Ptolemy theorem
yieldsCP « BQ = BC« PQ + BP « CQ. Since BC = 1, BQ = CP and BP = CQ, this becomes
CP+ CP = 1+ PQ+ BP « BP, what simplifiesto CP? = PQ + BP?2.

The triangle ABC isisosceles with the base BC; let ¢ = A ABC = A ACB beits base angle. Then,
theangleat itsapex Ais A CAB = n — 2¢. Consequently, 29 = = — A CAB.
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(SeeFig. 7.) Now let M be the point on the ray QP satisfying A MAQ = ¢. Since PQ || BC, we have
AAQM = A ACB, thus A AQM = ¢, and thus A MAQ = A AQM = ¢; hence, the triangle MAQ is
isosceles with base AQ, and it has the same base angle as the isosceles triangle ABC (in fact, the base
angle of triangle ABC is ¢, t00). Furthermore, it has the same base as triangle ABC (since AQ = 1 and
BC = 1). Hence, the isosceles triangle MAQ is congruent to the isosceles triangle ABC. Therefore, the
legs of these two triangles are equal: QM = AB.

Since A CAB = & — 29 and A MAQ = ¢, we have

AMAP = AMAQ- ACAB = ¢ — (1 — 2¢) = 3¢ — 7.



(SeeFig. 8.) Let the angle bisector of the angle PAM intersect the line PQ at a point U. Then,

AUAP = AI\gAP = 3(”2_ " Consequently,

AUAQ = AUAP+ACAB=3¢T_”+(”_2¢): (3<P—7T)+22°(7T—2<p) _ ﬂ;(p.

On the other hand, A AQU = A AQM = ¢; by the sum of anglesin triangle UAQ, we thus have

AAUQ=7- AAQU- AUAQ=17-¢— ”;"’ = ”;"’ = AUAQ.
Therefore, the triangle UAQ isisosceles with QU = AQ. Since AQ = 1, thismeansthat QU = 1.
Together with QM = AB, thisleadsto MU = QM - QU = AB-1 = AB - AP = BP.
Similarly to the point M on the ray QP satisfying A MAQ = ¢, we can construct apoint N on the ray
PQ satisfying A NAP = ¢. Similarly to the point U, we then define the point of intersection V of the
angle bisector of the angle QAN with the line PQ. Similarly to the above equation QU = 1, we can now
provethat PV = 1.

As showed above, A AUQ = ”;‘p . In other words, A AUV = ”;‘p . Similarly, AAVU = ”;‘p .

On the other hand, A UAQ = = > ? and A AUQ = %. Thus, A AUV = 4 UAQ and
A AVU = A AUQ. Hence, the triangles AUV and QAU are similar; thisyields AU : UV = QA : AU, s0
that AU? = QA « UV. Since QA = AQ = 1, thisbecomes AU? = UV.

Now, UV = QU+ QV = QU + (PV-PQ) = 1+ (1-PQ) = 2-PQ, and hence

CP2-2 = (PQ+ BP2) -2 = BP2 - (2— PQ) = BP2 — UV = MU? — AU2

(since MU = BP and AU? = UV).
Asthe triangle MAQ is congruent to the triangle ABC, we have A QMA = A CAB; in other words,



A UMA = A CAB. On the other hand, the line AU is the angle bisector of the angle PAM, and thisyields
AMAU = AMAP _ 3p-m _ 6p-2r _ 3+2¢-2z

2 2 4 4
3-(7[—A_CAB)—27Z' _ T—3e« ACAB

4 4

Now, we have CP = /2 if and only if CP? = 2. But since CP? — 2 = MU? — AU?, we have
CP? = 2if and only if MU? = AU?, thusif and only if MU = AU, i. e. if and only if the triangle AMU is
isosceles with base AM. This, in turn, is equivalent to the equality of itsangles A UMA and A MAU; but

because of A UMA = A CABand AMAU = 2= 3'4ACAB, these angles are equal if and only if

A CAB = %. Thissimplifiesto 4+ A CAB = x — 3+ 4 CAB, and thusto 4 CAB = Z.
Combining, we see that CP = /2 if and only if A CAB = %; hence the problem is solved.




