Problems from the Book - Problem 19.9

Let $n \in \mathbb{N}$. Let $w_1, w_2, ..., w_n$ be n reals. Prove the inequality

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{ijw_i w_j}{i+j-1} \ge \left(\sum_{i=1}^{n} w_i\right)^2.$$

Solution by Darij Grinberg

The following solution uses some linear algebra. **Notations.**

- For any matrix A, we denote by $A \begin{bmatrix} j \\ i \end{bmatrix}$ the entry in the j-th column and the i-th row of A. [This is usually denoted by A_{ij} or by $A_{i,j}$.]
- Let k be a field. Let $u \in \mathbb{N}$ and $v \in \mathbb{N}$, and let $a_{i,j}$ be an element of k for every $(i,j) \in \{1,2,...,u\} \times \{1,2,...,v\}$. Then, we denote by $(a_{i,j})_{1 \le i \le u}^{1 \le j \le v}$ the $u \times v$ matrix A which satisfies $A \begin{bmatrix} j \\ i \end{bmatrix} = a_{i,j}$ for every $(i,j) \in \{1,2,...,u\} \times \{1,2,...,v\}$.
- Let $n \in \mathbb{N}$. Let $t_1, t_2, ..., t_n$ be n objects. Let $m \in \{1, 2, ..., n\}$. Then, we let $\left(t_1, t_2, ..., \widehat{t_m}, ..., t_n\right)$ denote the (n-1)-tuple $(t_1, t_2, ..., t_{m-2}, t_{m-1}, t_{m+1}, t_{m+2}, ..., t_n)$ (that is, the (n-1)-tuple $(s_1, s_2, ..., s_{n-1})$ defined by $s_i = \begin{cases} t_i, & \text{if } i < m; \\ t_{i+1}, & \text{if } i \ge m \end{cases}$ for all $i \in \{1, 2, ..., n-1\}$).
- Let L be a commutative ring with unity. Let T be a finite set. Let $a: T \to L$ be a map. Let $k \in \mathbb{N}$. We define an element $\sigma_k(a)$ of L by

$$\sigma_{k}\left(a\right) = \sum_{\substack{S \subseteq T; \\ |S| = k}} \prod_{i \in S} a\left(i\right).$$

[Many readers will notice that if $T = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$, then $\sigma_k(a)$ is the k-th elementary symmetric polynomial evaluated at a(1), a(2), ..., a(n).] The Viete theorem states that

$$\prod_{\ell \in T} (x - a(\ell)) = \sum_{k=0}^{|T|} (-1)^k \, \sigma_k(a) \, x^{|T|-k} \tag{1}$$

for every $x \in L$.

Theorem 1 (Sylvester). Let $n \in \mathbb{N}$, and let $A \in \mathbb{R}^{n \times n}$ be a symmetric $n \times n$ matrix. Then, the matrix A is positive definite if and only if every $m \in \{1, 2, ..., n\}$ satisfies $\det \left(\left(A \begin{bmatrix} j \\ i \end{bmatrix}\right)_{1 \le i \le m}^{1 \le j \le m}\right) > 0$.

For a proof of Theorem 1, see any book on symmetric or Hermitian matrices.

Theorem 2 (Cauchy determinant). Let k be a field. Let $m \in \mathbb{N}$. Let $a_1, a_2, ..., a_m$ be m elements of k. Let $b_1, b_2, ..., b_m$ be m elements of k. Assume that $a_j \neq b_i$ for every $(i, j) \in \{1, 2, ..., m\}^2$. Then,

$$\det\left(\left(\frac{1}{a_{j}-b_{i}}\right)_{1\leq i\leq m}^{1\leq j\leq m}\right) = \frac{\prod\limits_{\substack{(i,j)\in\{1,2,\ldots,m\}^{2};\\i>j}} \left(\left(a_{i}-a_{j}\right)\left(b_{j}-b_{i}\right)\right)}{\prod\limits_{\substack{(i,j)\in\{1,2,\ldots,m\}^{2}}} \left(a_{j}-b_{i}\right)}.$$

In the following, I attempt to give the most conceptual proof of Theorem 2. First we recall a known fact we are not going to prove:

Theorem 3 (Vandermonde determinant). Let S be a commutative ring with unity. Let $m \in \mathbb{N}$. Let $a_1, a_2, ..., a_m$ be m elements of S. Then,

$$\det\left(\left(a_i^{j-1}\right)_{1 \le i \le m}^{1 \le j \le m}\right) = \prod_{\substack{(i,j) \in \{1,2,\dots,m\}^2; \\ i > j}} \left(a_i - a_j\right).$$

Besides, a trivial fact:

Lemma 4. Let S be a commutative ring with unity. Let $a \in S$. In the ring S[X] (the polynomial ring over S in one indeterminate X), the element X - a is not a zero divisor.

Proof of Lemma 4. Assume that X - a is a zero divisor in S[X]. Then, there exists a polynomial $P(X) \in S[X]$ such that (X - a) P(X) = 0 and $P(X) \neq 0$. Let $n = \deg P$; then, there exist n + 1 elements $r_0, r_1, ..., r_n$ of S such that $r_n \neq 0$ and $P(X) = \sum_{k=0}^{n} r_k X^k$. Define $r_{n+1} \in S$ by $r_{n+1} = 0$. Define $r_{-1} \in S$ by $r_{-1} = 0$. Then,

$$\sum_{k=0}^{n+1} r_k X^k = \sum_{k=0}^{n} r_k X^k + \underbrace{r_{n+1}}_{=0} X^{n+1} = \sum_{k=0}^{n} r_k X^k + 0 = \sum_{k=0}^{n} r_k X^k = P\left(X\right)$$

and

$$\sum_{k=0}^{n+1} r_{k-1} X^k = \underbrace{r_{0-1}}_{=r_{-1}=0} X^0 + \sum_{k=1}^{n+1} r_{k-1} X^k = 0 + \sum_{k=1}^{n+1} r_{k-1} X^k = \sum_{k=1}^{n+1} r_{k-1} X^k$$

$$= \sum_{k=0}^{n} \underbrace{r_{(k+1)-1}}_{=r_k} \underbrace{X^{k+1}}_{=X^k X} \qquad \text{(here we substituted } k+1 \text{ for } k \text{ in the sum)}$$

$$= X \sum_{k=0}^{n} r_k X^k = XP(X).$$

Hence,

$$\begin{split} 0 &= \left(X - a \right) P \left(X \right) = \underbrace{X P \left(X \right)}_{=\sum_{k=0}^{n+1} r_{k-1} X^{k}} - a \underbrace{P \left(X \right)}_{=\sum_{k=0}^{n+1} r_{k} X^{k}} \\ &= \sum_{k=0}^{n+1} r_{k-1} X^{k} - a \sum_{k=0}^{n+1} r_{k} X^{k} = \sum_{k=0}^{n+1} \left(r_{k-1} - a r_{k} \right) X^{k}. \end{split}$$

Since $r_{k-1} - ar_k \in S$ for every $k \in \{0, 1, ..., n+1\}$, this yields $r_{k-1} - ar_k = 0$ for every $k \in \{0, 1, ..., n+1\}$. For k = n+1, this yields $r_{(n+1)-1} - ar_{n+1} = 0$. Thus,

$$0 = \underbrace{r_{(n+1)-1}}_{=r_n} - a \underbrace{r_{n+1}}_{=0} = r_n - a \cdot 0 = r_n,$$

what contradicts $r_n \neq 0$. Hence, our assumption that X - a is a zero divisor in S[X] was wrong. Therefore, X - a is not a zero divisor in S[X]. This proves Lemma 4.

Lemma 5. Let R be a commutative ring with unity. Let $m \in \mathbb{N}$. In the ring $R[X_1, X_2, ..., X_m]$ (the polynomial ring over R in m indeterminates X_1 , $X_2, ..., X_m$), the element $\prod_{\substack{(i,j) \in \{1,2,...,m\}^2;\\i>j}} (X_i - X_j) \text{ is not a zero divisor.}$

Proof of Lemma 5. We will first show that:

For any
$$(i, j) \in \{1, 2, ..., m\}^2$$
 satisfying $i > j$, the element $X_i - X_j$ of the ring $R[X_1, X_2, ..., X_m]$ is not a zero divisor. (2)

 $\begin{aligned} & \textit{Proof of (2). } \text{Let } R\left[X_{1}, X_{2}, ..., \widehat{X_{i}}, ..., X_{m}\right] \text{ denote the sub-} R\text{-algebra of } R\left[X_{1}, X_{2}, ..., X_{m}\right] \\ & \text{generated by the } m-1 \text{ elements } X_{1}, \ X_{2}, \ ..., \ X_{i-2}, \ X_{i-1}, \ X_{i+1}, \ X_{i+2}, \ ..., \ X_{m} \text{ (that is, the } m \text{ elements } X_{1}, \ X_{2}, \ ..., X_{m} \text{ except of } X_{i}). \text{ (In other words, define a sub-} R\text{-} \\ & \text{algebra } R\left[X_{1}, X_{2}, ..., \widehat{X_{i}}, ..., X_{m}\right] \text{ of } R\left[X_{1}, X_{2}, ..., X_{m}\right] \text{ by } R\left[X_{1}, X_{2}, ..., \widehat{X_{i}}, ..., X_{m}\right] = \\ & R\left[y_{1}, y_{2}, ..., y_{m-1}\right], \text{ where we define } m-1 \text{ elements } y_{1}, y_{2}, ..., y_{m-1} \text{ of } R\left[X_{1}, X_{2}, ..., X_{m}\right] \\ & \text{by } y_{j} = \left\{ \begin{array}{c} X_{j}, \text{ if } j < i; \\ X_{j+1}, \text{ if } j \geq i \end{array} \right. \text{ for every } j \in \{1, 2, ..., m-1\}.) \end{aligned}$

Consider the ring $\left(R\left[X_1,X_2,...,\widehat{X_i},...,X_m\right]\right)[X]$ (this is the polynomial ring over the ring $R\left[X_1,X_2,...,\widehat{X_i},...,X_m\right]$ in one indeterminate X).

It is known that there exists an R-algebra isomorphism $\phi: \left(R\left[X_1, X_2, ..., \widehat{X_i}, ..., X_m\right]\right)[X] \to R\left[X_1, X_2, ..., X_m\right]$ such that $\phi(X) = X_i$ and $\phi(X_k) = X_k$ for every $k \in \{1, 2, ..., m\} \setminus \{i\}$.

Since i > j yields $j \in \{1, 2, ..., m\} \setminus \{i\}$, we have $\phi(X_j) = X_j$ and thus $\phi(X - X_j) = \underbrace{\phi(X)}_{=X_i} - \underbrace{\phi(X_j)}_{=X_j} = X_i - X_j$. Since $X - X_j$ is not a zero divisor in $\left(R\left[X_1, X_2, ..., \widehat{X_i}, ..., X_m\right]\right)[X]$

(by Lemma 4, applied to $S = R\left[X_1, X_2, ..., \widehat{X_i}, ..., X_m\right]$ and $a = X_j$), it follows that $\phi\left(X - X_j\right)$ is not a zero divisor in $R\left[X_1, X_2, ..., X_m\right]$ (since ϕ is an R-algebra isomorphism). In other words, $X_i - X_j$ is not a zero divisor in $R\left[X_1, X_2, ..., X_m\right]$ (since $\phi\left(X - X_j\right) = X_i - X_j$). This proves (2).

It is known that if we choose some elements of a ring such that each of these elements is not a zero divisor, then the product of these elements is not a zero divisor. Hence, (2) yields that the element $\prod_{\substack{(i,j)\in\{1,2,\dots,m\}^2;\\i>j}} (X_i-X_j) \text{ of the ring } R\left[X_1,X_2,\dots,X_m\right] \text{ is not}$

a zero divisor. This proves Lemma 5.

Now comes a rather useful fact:

Theorem 6. Let R be a commutative ring with unity. Let $m \in \mathbb{N}$. Consider the ring $R[X_1, X_2, ..., X_m]$ (the polynomial ring over R in m indeterminates $X_1, X_2, ..., X_m$). Define a map $X : \{1, 2, ..., m\} \to R[X_1, X_2, ..., X_m]$ by $X(i) = X_i$ for every $i \in \{1, 2, ..., m\}$. Then,

$$\det\left(\left((-1)^{m-j}\,\sigma_{m-j}\left(X\mid_{\{1,2,\ldots,m\}\setminus\{i\}}\right)\right)_{1\leq i\leq m}^{1\leq j\leq m}\right) = \prod_{\substack{(i,j)\in\{1,2,\ldots,m\}^2;\\j>i}} \left(X_i-X_j\right).$$

Proof of Theorem 6. Theorem 3 (applied to $S = R[X_1, X_2, ..., X_m]$ and $a_i = X_i$) yields

$$\det\left(\left(X_{i}^{j-1}\right)_{1\leq i\leq m}^{1\leq j\leq m}\right) = \prod_{\substack{(i,j)\in\{1,2,\dots,m\}^{2};\\i>j}} \left(X_{i} - X_{j}\right). \tag{3}$$

Let $V = (X_i^{j-1})_{1 \le i \le m}^{1 \le j \le m}$. Then, $V \begin{bmatrix} j \\ i \end{bmatrix} = X_i^{j-1}$ for every $i \in \{1, 2, ..., m\}$ and $i \in \{1, 2, ..., m\}$.

 $j \in \{1, 2, ..., m\}$. Since $(X_i^{j-1})_{1 \le i \le m}^{1 \le j \le m} = V$, the equation (3) becomes

$$\det V = \prod_{\substack{(i,j) \in \{1,2,\dots,m\}^2; \\ i > j}} (X_i - X_j).$$

Let $W = \left((-1)^{m-j} \sigma_{m-j} \left(X \mid_{\{1,2,\dots,m\} \setminus \{i\}} \right) \right)_{1 \leq i \leq m}^{1 \leq j \leq m}$. Then, $W \begin{bmatrix} j \\ i \end{bmatrix} = (-1)^{m-j} \sigma_{m-j} \left(X \mid_{\{1,2,\dots,m\} \setminus \{i\}} \right)$ for every $i \in \{1,2,\dots,m\}$ and $j \in \{1,2,\dots,m\}$.

For every $i \in \{1, 2, ..., m\}$ and $j \in \{1, 2, ..., m\}$, we can apply (1) to $L = R[X_1, X_2, ..., X_m]$, $x = X_j$, $T = \{1, 2, ..., m\} \setminus \{i\}$ and $a = X \mid_{\{1, 2, ..., m\} \setminus \{i\}}$, and obtain

$$\prod_{\ell \in \{1,2,\dots,m\} \setminus \{i\}} \left(X_j - \left(X \mid_{\{1,2,\dots,m\} \setminus \{i\}} \right) (\ell) \right) = \sum_{k=0}^{m-1} \left(-1 \right)^k \sigma_k \left(X \mid_{\{1,2,\dots,m\} \setminus \{i\}} \right) X_j^{(m-1)-k},$$

because

$$|T| = |\{1, 2, ..., m\} \setminus \{i\}| = |\{1, 2, ..., m\}| - 1$$
 (since $i \in \{1, 2, ..., m\}$)
= $m - 1$.

Since $\left(X\mid_{\{1,2,\ldots,m\}\setminus\{i\}}\right)(\ell)=X\left(\ell\right)=X_{\ell}$ and $X_{j}^{(m-1)-k}=X_{j}^{(m-k)-1}$, this becomes

$$\prod_{\ell \in \{1,2,\dots,m\} \setminus \{i\}} (X_j - X_\ell) = \sum_{k=0}^{m-1} (-1)^k \, \sigma_k \left(X \mid_{\{1,2,\dots,m\} \setminus \{i\}} \right) X_j^{(m-k)-1}. \tag{4}$$

Now, for every $i \in \{1, 2, ..., m\}$ and $j \in \{1, 2, ..., m\}$, we have

$$(WV^{T})\begin{bmatrix} j \\ i \end{bmatrix} = \sum_{k=1}^{m} \underbrace{W\begin{bmatrix} k \\ i \end{bmatrix}} \cdot \underbrace{V^{T}\begin{bmatrix} j \\ k \end{bmatrix}}_{=V\begin{bmatrix} k \\ j \end{bmatrix} = X_{j}^{k-1}}$$

$$= \sum_{k=1}^{m} (-1)^{m-k} \sigma_{m-k} \left(X \mid_{\{1,2,\dots,m\}\setminus\{i\}} \right) X_{j}^{k-1}$$

$$= \sum_{k=0}^{m-1} (-1)^{k} \sigma_{k} \left(X \mid_{\{1,2,\dots,m\}\setminus\{i\}} \right) X_{j}^{(m-k)-1}$$

$$= \sum_{\ell \in \{1,2,\dots,m\}\setminus\{i\}} (X_{j} - X_{\ell}) \quad \text{(by (4))}. \tag{5}$$

Thus, if $j \neq i$, then

$$(WV^{T}) \begin{bmatrix} j \\ i \end{bmatrix} = \prod_{\ell \in \{1, 2, \dots, m\} \setminus \{i\}} (X_{j} - X_{\ell}) = \underbrace{(X_{j} - X_{j})}_{\ell \in (\{1, 2, \dots, m\} \setminus \{i\}) \setminus \{j\}} (X_{j} - X_{\ell})$$
(since $j \in \{1, 2, \dots, m\} \setminus \{i\}$, because $j \in \{1, 2, \dots, m\}$ and $j \neq i$)
$$= 0.$$

Hence, the matrix WV^T is diagonal. Therefore,

$$\det \left(WV^{T}\right) = \prod_{i=1}^{m} \left(WV^{T}\right) \left[\begin{array}{c} i\\ i \end{array}\right] = \prod_{i=1}^{m} \prod_{\ell \in \{1,2,\dots,m\} \backslash \{i\}} \left(X_{i} - X_{\ell}\right)$$

$$\left(\text{since (5), applied to } j = i, \text{ yields } \left(WV^{T}\right) \left[\begin{array}{c} i\\ i \end{array}\right] = \prod_{\ell \in \{1,2,\dots,m\} \backslash \{i\}} \left(X_{i} - X_{\ell}\right)$$

$$= \prod_{i \in \{1,2,\dots,m\}} \prod_{j \in \{1,2,\dots,m\} \backslash \{i\}} \left(X_{i} - X_{j}\right) \qquad \text{(here, we renamed ℓ as j in the second product)}$$

$$= \prod_{i \in \{1,2,\dots,m\}} \prod_{j \in \{1,2,\dots,m\} \backslash \{i\}} \left(X_{i} - X_{j}\right) = \prod_{(i,j) \in \{1,2,\dots,m\}^{2}; \ j \neq i} \left(X_{i} - X_{j}\right)$$

$$= \prod_{(i,j) \in \{1,2,\dots,m\}^{2}; \ (i,j) \in \{1,2,\dots,m\}^{2}; \ i > j} \left(X_{i} - X_{j}\right)$$

$$\left(\text{since the set } \left\{\left(i,j\right) \in \left\{1,2,\dots,m\right\}^{2} \mid j \neq i\right\} \text{ is the union of the two disjoint sets } \left\{\left(i,j\right) \in \left\{1,2,\dots,m\right\}^{2} \mid j > i\right\} \text{ and } \left\{\left(i,j\right) \in \left\{1,2,\dots,m\right\}^{2} \mid i > j\right\}$$

But on the other hand,

$$\det\left(WV^{T}\right) = \det W \cdot \det\left(V^{T}\right)$$

$$= \det W \cdot \prod_{\substack{(i,j) \in \{1,2,\dots,m\}^2; \\ i>j}} (X_i - X_j) \qquad \left(\text{since } \det \left(V^T \right) = \det V = \prod_{\substack{(i,j) \in \{1,2,\dots,m\}^2; \\ i>j}} (X_i - X_j) \right).$$

Hence,

$$\det W \cdot \prod_{\substack{(i,j) \in \{1,2,\dots,m\}^2; \\ i>j}} (X_i - X_j) = \det (WV^T)$$

$$= \prod_{\substack{(i,j) \in \{1,2,\dots,m\}^2; \\ j>i}} (X_i - X_j) \cdot \prod_{\substack{(i,j) \in \{1,2,\dots,m\}^2; \\ i>j}} (X_i - X_j).$$

But since the element $\prod_{\substack{(i,j)\in\{1,2,\ldots,m\}^2;\\i>j}} (X_i-X_j)$ of the ring $R[X_1,X_2,\ldots,X_m]$ is not a

zero divisor (according to Lemma 5), this yields

$$\det W = \prod_{\substack{(i,j) \in \{1,2,\dots,m\}^2; \\ j > i}} (X_i - X_j).$$

Since
$$W = \left((-1)^{m-j} \sigma_{m-j} \left(X \mid_{\{1,2,\dots,m\} \setminus \{i\}} \right) \right)_{1 \leq i \leq m}^{1 \leq j \leq m}$$
, this becomes
$$\det \left(\left((-1)^{m-j} \sigma_{m-j} \left(X \mid_{\{1,2,\dots,m\} \setminus \{i\}} \right) \right)_{1 \leq i \leq m}^{1 \leq j \leq m} \right) = \prod_{(i,j) \in \{1,2,\dots,m\}^2;} (X_i - X_j).$$

Thus, Theorem 6 is proven.

Next, we show:

Theorem 7. Let R be a commutative ring with unity. Let $m \in \mathbb{N}$. Let a_1 , $a_2, ..., a_m$ be m elements of R. Let $b_1, b_2, ..., b_m$ be m elements of R. Then,

$$\det\left(\left(\prod_{\ell\in\{1,2,\dots,m\}\setminus\{i\}} (a_j - b_\ell)\right)_{1\leq i\leq m}^{1\leq j\leq m}\right) = \prod_{\substack{(i,j)\in\{1,2,\dots,m\}^2;\\i>j}} ((a_i - a_j)(b_j - b_i)).$$

Proof of Theorem 7. Consider the ring $R[X_1, X_2, ..., X_m]$ (the polynomial ring over R in m indeterminates $X_1, X_2, ..., X_m$). Define a map $X: \{1, 2, ..., m\} \rightarrow R[X_1, X_2, ..., X_m]$ by $X(i) = X_i$ for every $i \in \{1, 2, ..., m\}$.

Let $\widetilde{V} = (a_i^{j-1})_{1 \le i \le m}^{1 \le j \le m}$. Then, $\widetilde{V} \begin{bmatrix} j \\ i \end{bmatrix} = a_i^{j-1}$ for every $i \in \{1, 2, ..., m\}$ and $j \in \{1, 2, ..., m\}$. Besides,

$$\det \widetilde{V} = \det \left(\left(a_i^{j-1} \right)_{1 \le i \le m}^{1 \le j \le m} \right) = \prod_{\substack{(i,j) \in \{1,2,\dots,m\}^2; \\ i > j}} (a_i - a_j)$$
 (by Theorem 3).

Let $W = \left((-1)^{m-j} \sigma_{m-j} \left(X \mid_{\{1,2,\dots,m\} \setminus \{i\}} \right) \right)_{1 \le i \le m}^{1 \le j \le m}$. Then, $W \begin{bmatrix} j \\ i \end{bmatrix} = (-1)^{m-j} \sigma_{m-j} \left(X \mid_{\{1,2,\dots,m\} \setminus \{i\}} \right)$ for every $i \in \{1,2,\dots,m\}$ and $j \in \{1,2,\dots,m\}$.

For every $i \in \{1, 2, ..., m\}$ and $j \in \{1, 2, ..., m\}$, we can apply (1) to $L = R[X_1, X_2, ..., X_m]$, $x = a_j, T = \{1, 2, ..., m\} \setminus \{i\}$ and $a = X \mid_{\{1, 2, ..., m\} \setminus \{i\}}$, and obtain

$$\prod_{\ell \in \{1,2,\dots,m\} \setminus \{i\}} \left(a_j - \left(X \mid_{\{1,2,\dots,m\} \setminus \{i\}} \right) (\ell) \right) = \sum_{k=0}^{m-1} \left(-1 \right)^k \sigma_k \left(X \mid_{\{1,2,\dots,m\} \setminus \{i\}} \right) a_j^{(m-1)-k},$$

because

$$|T| = |\{1, 2, ..., m\} \setminus \{i\}| = |\{1, 2, ..., m\}| - 1$$
 (since $i \in \{1, 2, ..., m\}$)
= $m - 1$.

Since $\left(X\mid_{\{1,2,\ldots,m\}\setminus\{i\}}\right)(\ell)=X\left(\ell\right)=X_{\ell}$ and $a_{j}^{(m-1)-k}=a_{j}^{(m-k)-1}$, this becomes

$$\prod_{\ell \in \{1,2,\dots,m\} \setminus \{i\}} (a_j - X_\ell) = \sum_{k=0}^{m-1} (-1)^k \, \sigma_k \left(X \mid_{\{1,2,\dots,m\} \setminus \{i\}} \right) a_j^{(m-k)-1}. \tag{6}$$

Now, for every $i \in \{1, 2, ..., m\}$ and $j \in \{1, 2, ..., m\}$, we have

$$\begin{split} \left(W\widetilde{V}^T\right)\left[\begin{array}{c}j\\i\end{array}\right] &= \sum_{k=1}^m \underbrace{W\left[\begin{array}{c}k\\i\end{array}\right]}_{=(-1)^{m-k}\sigma_{m-k}\left(X|_{\{1,2,\ldots,m\}\backslash\{i\}}\right)} \cdot \underbrace{\widetilde{V}^T\left[\begin{array}{c}j\\k\end{array}\right]}_{=\widetilde{V}\left[\begin{array}{c}k\\j\end{array}\right] = a_j^{k-1}} \\ &= \sum_{k=1}^m \left(-1\right)^{m-k}\sigma_{m-k}\left(X\mid_{\{1,2,\ldots,m\}\backslash\{i\}}\right) a_j^{k-1} \\ &= \sum_{k=0}^{m-1} \left(-1\right)^k \sigma_k \left(X\mid_{\{1,2,\ldots,m\}\backslash\{i\}}\right) a_j^{(m-k)-1} \\ &= \sum_{k=0}^m \left(-1\right)^k \sigma_k \left(X\mid_{\{1,2,\ldots,m\}\backslash\{i\}}\right) a_j^{(m-k)-1} \\ &= \prod_{\ell\in\{1,2,\ldots,m\}\backslash\{i\}} \left(a_j-X_\ell\right) \quad \text{(by (6))} \,. \end{split}$$

Hence,

$$W\widetilde{V}^T = \left(\prod_{\ell \in \{1,2,\dots,m\} \setminus \{i\}} (a_j - X_\ell)\right)_{1 \le i \le m}^{1 \le j \le m}.$$

Thus,

$$\det\left(\underbrace{\prod_{\ell \in \{1,2,\dots,m\}\backslash \{i\}} (a_j - X_\ell)}_{=W\widetilde{V}^T}\right)^{1 \le j \le m}\right) = \det\left(W\widetilde{V}^T\right) = \det W \cdot \det\left(\widetilde{V}^T\right)$$

$$= \prod_{(i,j) \in \{1,2,\dots,m\}^2;} (X_i - X_j) \cdot \prod_{(i,j) \in \{1,2,\dots,m\}^2;} (a_i - a_j)$$

$$= \int_{(i,j) \in \{1,2,\dots,m\}^2;} \left(\text{since } \det W = \det\left(\left((-1)^{m-j} \sigma_{m-j} \left(X \mid_{\{1,2,\dots,m\}\backslash \{i\}}\right)\right)^{1 \le j \le m}_{1 \le i \le m}\right) = \prod_{(i,j) \in \{1,2,\dots,m\}^2;\\ j > i} (a_i - X_j) \right)$$

$$= \prod_{(j,i) \in \{1,2,\dots,m\}^2;} (X_j - X_i) \cdot \prod_{(i,j) \in \{1,2,\dots,m\}^2;\\ (here, we renamed i and j as j and i in the first product}$$

$$= \prod_{(i,j) \in \{1,2,\dots,m\}^2;} (X_j - X_i) \cdot \prod_{(i,j) \in \{1,2,\dots,m\}^2;\\ i > j} (a_i - a_j) \cdot \prod_{(i,j) \in \{1,2,\dots,m\}^2;\\ (x_j - X_i) \cdot \prod_{(i,j) \in \{1,2,\dots,m\}^2;\\ i > j} (a_i - a_j) \cdot \prod_{(i,j) \in \{1,2,\dots,m\}^2;\\ (x_j - X_i) \cdot \prod_{(i,j) \in \{1,2,\dots,m\}^2;\\ i > j} (a_i - a_j) \cdot \prod_{(i,j) \in \{1,2,\dots,m\}^2;\\ (x_j - X_i) \cdot \prod_{(i,$$

Both sides of this identity are polynomials over the ring R in m indeterminates $X_1, X_2, ..., X_m$. Evaluating these polynomials at $X_1 = b_1, X_2 = b_2, ..., X_m = b_m$, we obtain

$$\det\left(\left(\prod_{\ell\in\{1,2,\dots,m\}\setminus\{i\}} (a_j - b_\ell)\right)_{1\leq i\leq m}^{1\leq j\leq m}\right) = \prod_{\substack{(i,j)\in\{1,2,\dots,m\}^2;\\i>j}} ((a_i - a_j)(b_j - b_i)).$$

This proves Theorem 7.

Proof of Theorem 2. Let
$$Q = \left(\prod_{\ell \in \{1,2,...,m\} \setminus \{i\}} (a_j - b_\ell)\right)_{1 \leq i \leq m}^{1 \leq j \leq m}$$
. Then, $Q \begin{bmatrix} j \\ i \end{bmatrix} = \prod_{\ell \in \{1,2,...,m\} \setminus \{i\}} (a_j - b_\ell)$ for every $i \in \{1,2,...,m\}$ and $j \in \{1,2,...,m\}$. Also,

$$\det Q = \det \left(\left(\prod_{\ell \in \{1,2,\dots,m\} \setminus \{i\}} (a_j - b_\ell) \right)_{1 \le i \le m}^{1 \le j \le m} \right) = \prod_{\substack{(i,j) \in \{1,2,\dots,m\}^2; \\ i > j}} ((a_i - a_j) (b_j - b_i))$$
 (by Theorem 7).

Let
$$P = \left(\left\{ \begin{array}{c} \prod_{\ell \in \{1,2,\dots,m\}} (a_i - b_\ell), \text{ if } i = j; \\ 0, \text{ if } i \neq j \end{array} \right)_{1 \leq i \leq m}^{1 \leq j \leq m}.$$
 Then,

 $P\begin{bmatrix} j \\ i \end{bmatrix} = \begin{cases} \left(\prod_{\ell \in \{1,2,\dots,m\}} (a_i - b_\ell)\right)^{-1}, \text{ if } i = j; \\ 0, \text{ if } i \neq j \end{cases} \text{ for every } i \in \{1,2,\dots,m\} \text{ and } j \in \{1,2,\dots,m\}.$ Thus, P is a diagonal matrix, so that

$$\det P = \prod_{j=1}^{m} P \begin{bmatrix} j \\ j \end{bmatrix} = \prod_{j \in \{1, 2, \dots, m\}} \underbrace{P \begin{bmatrix} j \\ j \end{bmatrix}}_{=(\prod_{\ell \in \{1, 2, \dots, m\}} (a_j - b_\ell))^{-1}, \text{ since } j = j}$$

$$= \prod_{j \in \{1, 2, \dots, m\}} \left(\prod_{\ell \in \{1, 2, \dots, m\}} (a_j - b_\ell) \right)^{-1} = \left(\prod_{j \in \{1, 2, \dots, m\}} \prod_{\ell \in \{1, 2, \dots, m\}} (a_j - b_\ell) \right)^{-1}$$

$$= \left(\prod_{(\ell, j) \in \{1, 2, \dots, m\}^2} (a_j - b_\ell) \right)^{-1} = \left(\prod_{(i, j) \in \{1, 2, \dots, m\}^2} (a_j - b_i) \right)^{-1}$$

(here, we renamed ℓ as i in the product).

Now, for every $i \in \{1, 2, ..., m\}$ and $j \in \{1, 2, ..., m\}$, we have

$$(QP) \begin{bmatrix} j \\ i \end{bmatrix} = \sum_{k=1}^{m} Q \begin{bmatrix} k \\ i \end{bmatrix} P \begin{bmatrix} j \\ k \end{bmatrix} = \sum_{k \in \{1,2,\dots,m\}} Q \begin{bmatrix} k \\ i \end{bmatrix} P \begin{bmatrix} j \\ k \end{bmatrix} + \sum_{k \in \{j\}} Q \begin{bmatrix} k \\ i \end{bmatrix} P \begin{bmatrix} j \\ k \end{bmatrix}$$

$$= \sum_{k \in \{1,2,\dots,m\} \setminus \{j\}} Q \begin{bmatrix} k \\ i \end{bmatrix} \cdot 0 + Q \begin{bmatrix} j \\ i \end{bmatrix} P \begin{bmatrix} j \\ j \end{bmatrix}$$

$$= \sum_{k \in \{1,2,\dots,m\} \setminus \{i\}} Q \begin{bmatrix} k \\ i \end{bmatrix} \cdot 0 + Q \begin{bmatrix} j \\ i \end{bmatrix} P \begin{bmatrix} j \\ j \end{bmatrix}$$

$$= Q \begin{bmatrix} j \\ i \end{bmatrix} P \begin{bmatrix} j \\ j \end{bmatrix}$$

$$= Q \begin{bmatrix} j \\ i \end{bmatrix} P \begin{bmatrix} j \\ j \end{bmatrix}$$

$$= \prod_{\ell \in \{1,2,\dots,m\} \setminus \{i\}} (a_j - b_\ell) \cdot \left(\prod_{\ell \in \{1,2,\dots,m\}} (a_j - b_\ell) \right)^{-1}, \text{ since } j = j$$

$$= \prod_{\ell \in \{1,2,\dots,m\} \setminus \{i\}} (a_j - b_\ell) \cdot \left((a_j - b_i) \cdot \prod_{\ell \in \{1,2,\dots,m\} \setminus \{i\}} (a_j - b_\ell) \right)^{-1}$$

$$= \prod_{\ell \in \{1,2,\dots,m\} \setminus \{i\}} (a_j - b_\ell) \cdot \left((a_j - b_i) \cdot \prod_{\ell \in \{1,2,\dots,m\} \setminus \{i\}} (a_j - b_\ell) \right)^{-1}$$

$$= (a_j - b_i)^{-1} = \frac{1}{a_i - b_i}.$$

Thus,

$$QP = \left(\frac{1}{a_j - b_i}\right)_{1 \le i \le m}^{1 \le j \le m}.$$

Hence,

$$\det\left(\underbrace{\left(\frac{1}{a_{j}-b_{i}}\right)^{1\leq j\leq m}_{1\leq i\leq m}}_{1\leq i\leq m}\right)=\det\left(QP\right)=\det Q\cdot\det P$$

$$=\prod_{\substack{(i,j)\in\{1,2,\ldots,m\}^{2};\\i>j}}\left(\left(a_{i}-a_{j}\right)\left(b_{j}-b_{i}\right)\right)\cdot\left(\prod_{\substack{(i,j)\in\{1,2,\ldots,m\}^{2}\\i>j}}\left(a_{j}-b_{i}\right)\right)^{-1}$$

$$\left(\operatorname{since}\,\det Q=\prod_{\substack{(i,j)\in\{1,2,\ldots,m\}^{2};\\i>j}}\left(\left(a_{i}-a_{j}\right)\left(b_{j}-b_{i}\right)\right)\;\operatorname{and}\;\det P=\left(\prod_{\substack{(i,j)\in\{1,2,\ldots,m\}^{2}\\i>j}}\left(a_{j}-b_{i}\right)\right)^{-1}\right)$$

$$=\frac{\prod_{\substack{(i,j)\in\{1,2,\ldots,m\}^{2}\\i>j}}\left(\left(a_{i}-a_{j}\right)\left(b_{j}-b_{i}\right)\right)}{\prod_{\substack{(i,j)\in\{1,2,\ldots,m\}^{2}\\i>j}}\left(a_{j}-b_{i}\right)}.$$

Thus, Theorem 2 is proven.

Theorem 8. Let $n \in \mathbb{N}$. Let $a_1, a_2, ..., a_n$ be n pairwise distinct reals. Let c be a real such that $a_i + a_j + c > 0$ for every $(i, j) \in \{1, 2, ..., n\}^2$. Then, the matrix $\left(\frac{1}{a_i + a_j + c}\right)_{1 \le i \le n}^{1 \le j \le n} \in \mathbb{R}^{n \times n}$ is positive definite.

Proof of Theorem 8. Let $A = \left(\frac{1}{a_i + a_j + c}\right)_{1 < i < n}^{1 \le j \le n}$. Then, $A \begin{bmatrix} j \\ i \end{bmatrix} = \frac{1}{a_i + a_j + c}$ for every $i \in \{1, 2, ..., m\}$ and $j \in \{1, 2, ..., m\}$.

Thus, $A \in \mathbb{R}^{n \times n}$ is a symmetric $n \times n$ matrix (since $A \mid j \mid = \frac{1}{a_i + a_i + c} = \frac{1}{a_i + a_i + c}$ $\frac{1}{a_j + a_i + c} = A \begin{bmatrix} i \\ j \end{bmatrix} \text{ for every } i \in \{1, 2, ..., m\} \text{ and } j \in \{1, 2, ..., m\}).$

Define n reals $b_1, b_2, ..., b_n$ by $b_i = -a_i - c$ for every $i \in \{1, 2, ..., n\}$. Let $m \in \{1, 2, ..., n\}$. Then, $a_j \neq b_i$ for every $(i, j) \in \{1, 2, ..., m\}^2$ (since $a_j - b_i = a_j + a_j +$ $a_j - (-a_i - c) = a_i + a_j + c > 0$ yields $a_j > b_i$). Thus, Theorem 2 (applied to $k = \mathbb{R}$) yields

$$\det\left(\left(\frac{1}{a_{j}-b_{i}}\right)_{1\leq i\leq m}^{1\leq j\leq m}\right) = \frac{\prod\limits_{\substack{(i,j)\in\{1,2,\ldots,m\}^{2};\\i>j}} \left(\left(a_{i}-a_{j}\right)\left(b_{j}-b_{i}\right)\right)}{\prod\limits_{\substack{(i,j)\in\{1,2,\ldots,m\}^{2}}} \left(a_{j}-b_{i}\right)}.$$

Thus, every $m \in \{1, 2, ..., n\}$ satisfies

$$\det\left(\left(A\begin{bmatrix}j\\i\end{bmatrix}\right)_{1\leq i\leq m}^{1\leq j\leq m}\right) = \det\left(\left(\frac{1}{a_{j}-b_{i}}\right)_{1\leq i\leq m}^{1\leq j\leq m}\right)$$

$$\left(\operatorname{since} A\begin{bmatrix}j\\i\end{bmatrix} = \frac{1}{a_{i}+a_{j}+c} = \frac{1}{a_{j}-(-a_{i}-c)} = \frac{1}{a_{j}-b_{i}}\right)$$

$$\prod_{\substack{(i,j)\in\{1,2,\ldots,m\}^{2};\\i>j}} ((a_{i}-a_{j})(b_{j}-b_{i})) \prod_{\substack{(i,j)\in\{1,2,\ldots,m\}^{2};\\i>j}} (a_{i}-a_{j})^{2}$$

$$\prod_{\substack{(i,j)\in\{1,2,\ldots,m\}^{2}\\i>j}} (a_{i}+a_{j}+c)$$

$$\left(\operatorname{since} (a_{i}-a_{j})(b_{j}-b_{i}) = (a_{i}-a_{j})\underbrace{((-a_{j}-c)-(-a_{i}-c))}_{=-a_{j}-c+a_{i}+c=a_{i}-a_{j}}}_{=a_{i}-c+a_{i}+c=a_{i}-a_{j}}\right)$$

$$\operatorname{and} a_{j}-b_{i}=a_{j}-(-a_{i}-c)=a_{i}+a_{j}+c$$

$$>0$$

(since $(a_i - a_j)^2 > 0$ for every $(i, j) \in \{1, 2, ..., m\}^2$ satisfying i > j (because $a_1, a_2, ..., a_n$ are pairwise distinct, so that $a_i \neq a_j$, thus $a_i - a_j \neq 0$ and therefore $(a_i - a_j)^2 > 0$), and $a_i + a_j + c > 0$ for every $(i, j) \in \{1, 2, ..., m\}^2$).

Hence, according to Theorem 1, the symmetric matrix A is positive definite. Since $A = \left(\frac{1}{a_i + a_j + c}\right)_{1 \leq i \leq n}^{1 \leq j \leq n}$, this means that the matrix $\left(\frac{1}{a_i + a_j + c}\right)_{1 \leq i \leq n}^{1 \leq j \leq n}$ is positive definite. Thus, Theorem 8 is proven.

Corollary 9. Let $n \in \mathbb{N}$. Let $a_1, a_2, ..., a_n$ be n pairwise distinct reals. Let c be a real such that $a_i + a_j + c > 0$ for every $(i, j) \in \{1, 2, ..., n\}^2$. Let $v_1, v_2, ..., v_n$ be n reals. Then, the inequality $\sum_{i=1}^n \sum_{j=1}^n \frac{v_i v_j}{a_i + a_j + c} \ge 0$ holds, with equality if and only if $v_1 = v_2 = ... = v_n = 0$.

Proof of Corollary 9. Define a vector
$$v \in \mathbb{R}^n$$
 by $v = \begin{pmatrix} v_1 \\ v_2 \\ \dots \\ v_n \end{pmatrix}$. Then,
$$v^T \left(\frac{1}{a_i + a_i + c} \right)_{1 \le i \le n}^{1 \le j \le n} v = \sum_{i=1}^n \sum_{j=1}^n \frac{1}{a_i + a_j + c} v_i v_j = \sum_{j=1}^n \sum_{j=1}^n \frac{v_i v_j}{a_i + a_j + c}.$$

Also, obviously,

$$v = 0$$
 holds if and only if $v_1 = v_2 = \dots = v_n = 0$. (8)

(7)

Now, since the matrix $\left(\frac{1}{a_i+a_j+c}\right)_{1\leq i\leq n}^{1\leq j\leq n}\in\mathbb{R}^{n\times n}$ is positive definite (by Theorem 8), we have $v^T\left(\frac{1}{a_i+a_j+c}\right)_{1\leq i\leq n}^{1\leq j\leq n}v\geq 0$, with equality if and only if v=0. According to (7) and (8), this means that $\sum_{i=1}^n\sum_{j=1}^n\frac{v_iv_j}{a_i+a_j+c}\geq 0$, with equality if and only if v=1 and v

Corollary 10. Let $n \in \mathbb{N}$. Let $a_1, a_2, ..., a_n$ be n pairwise distinct reals. Let c be a real such that $a_i + a_j + c > 0$ for every $(i, j) \in \{1, 2, ..., n\}^2$. Let $w_1, w_2, ..., w_n$ be n reals. Then, the inequality $\sum_{i=1}^n \sum_{j=1}^n \frac{a_i a_j w_i w_j}{a_i + a_j + c} \ge -c \left(\sum_{i=1}^n w_i\right)^2$ holds, with equality if and only if $(c + a_1) w_1 = (c + a_2) w_2 = ... = (c + a_n) w_n = 0$.

Proof of Corollary 10. Define n reals $v_1, v_2, ..., v_n$ by $v_i = (c + a_i) w_i$ for every $i \in \{1, 2, ..., n\}$.

Then,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{a_{i}a_{j}w_{i}w_{j}}{a_{i} + a_{j} + c} - \left(-c\left(\sum_{i=1}^{n} w_{i}\right)^{2}\right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{a_{i}a_{j}w_{i}w_{j}}{a_{i} + a_{j} + c} + c\left(\sum_{i=1}^{n} w_{i}\right)^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{a_{i}a_{j}w_{i}w_{j}}{a_{i} + a_{j} + c} + c\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i}w_{j}$$

$$\left(\operatorname{since}\left(\sum_{i=1}^{n} w_{i}\right)^{2} = \sum_{i=1}^{n} w_{i} \cdot \sum_{i=1}^{n} w_{i} = \sum_{i=1}^{n} w_{i} \cdot \sum_{j=1}^{n} w_{j} = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i}w_{j}\right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{a_{i}a_{j}w_{i}w_{j}}{a_{i} + a_{j} + c} + cw_{i}w_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{a_{i}a_{j}}{a_{i} + a_{j} + c} + c\right)w_{i}w_{j}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{a_{i}a_{j} + (a_{i} + a_{j} + c)c}{a_{i} + a_{j} + c}w_{i}w_{j} = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{(c + a_{i})(c + a_{j})}{a_{i} + a_{j} + c}w_{i}w_{j}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{(c + a_{i})w_{i}(c + a_{j})w_{j}}{a_{i} + a_{j} + c}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{v_{i}v_{j}}{a_{i} + a_{j} + c} \qquad (\operatorname{since}(c + a_{i})w_{i} = v_{i} \operatorname{and}(c + a_{j})w_{j} = v_{j}).$$

Hence,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{a_i a_j w_i w_j}{a_i + a_j + c} \ge -c \left(\sum_{i=1}^{n} w_i\right)^2 \text{ holds if and only if } \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{v_i v_j}{a_i + a_j + c} \ge 0.$$
(9)

Also, clearly,

$$v_1 = v_2 = \dots = v_n = 0$$
 holds if and only if $(c + a_1) w_1 = (c + a_2) w_2 = \dots = (c + a_n) w_n = 0$.

(10)

By Corollary 9, the inequality $\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{v_i v_j}{a_i + a_j + c} \geq 0$ holds, with equality if and only if $v_1 = v_2 = \dots = v_n = 0$. According to (9) and (10), this means that $\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{a_i a_j w_i w_j}{a_i + a_j + c} \geq -c \left(\sum_{i=1}^{n} w_i\right)^2$, with equality if and only if $(c + a_1) w_1 = (c + a_2) w_2 = \dots = (c + a_n) w_n = 0$. Thus, Corollary 10 is proven.

The problem follows from Corollary 10 (applied to c = -1 and $a_i = i$).