
Problems from the Book – Problem 19.9

Let n ∈ N. Let w1, w2, ..., wn be n reals. Prove the inequality

n∑
i=1

n∑
j=1

ijwiwj

i + j − 1
≥

(
n∑

i=1

wi

)2

.

Solution by Darij Grinberg

The following solution uses some linear algebra.
Notations.

• For any matrix A, we denote by A

[
j
i

]
the entry in the j-th column and the

i-th row of A. [This is usually denoted by Aij or by Ai,j.]

• Let k be a field. Let u ∈ N and v ∈ N, and let ai,j be an element of k for every

(i, j) ∈ {1, 2, ..., u}×{1, 2, ..., v} . Then, we denote by (ai,j)
1≤j≤v
1≤i≤u the u×v matrix

A which satisfies A

[
j
i

]
= ai,j for every (i, j) ∈ {1, 2, ..., u} × {1, 2, ..., v} .

• Let n ∈ N. Let t1, t2, ..., tn be n objects. Let m ∈ {1, 2, ..., n}. Then, we let(
t1, t2, ..., t̂m, ..., tn

)
denote the (n− 1)-tuple (t1, t2, ..., tm−2, tm−1, tm+1, tm+2, ..., tn)

(that is, the (n− 1)-tuple (s1, s2, ..., sn−1) defined by si =

{
ti, if i < m;
ti+1, if i ≥ m

for

all i ∈ {1, 2, ..., n− 1}).

• Let L be a commutative ring with unity. Let T be a finite set. Let a : T → L be
a map. Let k ∈ N. We define an element σk (a) of L by

σk (a) =
∑
S⊆T ;
|S|=k

∏
i∈S

a (i) .

[Many readers will notice that if T = {1, 2, ..., n} for some n ∈ N, then σk (a) is
the k-th elementary symmetric polynomial evaluated at a (1) , a (2) , ..., a (n).]
The Viete theorem states that

∏
`∈T

(x− a (`)) =

|T |∑
k=0

(−1)k σk (a) x|T |−k (1)

for every x ∈ L.

Theorem 1 (Sylvester). Let n ∈ N, and let A ∈ Rn×n be a symmetric
n × n matrix. Then, the matrix A is positive definite if and only if every

m ∈ {1, 2, ..., n} satisfies det

((
A

[
j
i

])1≤j≤m

1≤i≤m

)
> 0.
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For a proof of Theorem 1, see any book on symmetric or Hermitian matrices.

Theorem 2 (Cauchy determinant). Let k be a field. Let m ∈ N. Let
a1, a2, ..., am be m elements of k. Let b1, b2, ..., bm be m elements of k.
Assume that aj 6= bi for every (i, j) ∈ {1, 2, ...,m}2. Then,

det

((
1

aj − bi

)1≤j≤m

1≤i≤m

)
=

∏
(i,j)∈{1,2,...,m}2;

i>j

((ai − aj) (bj − bi))

∏
(i,j)∈{1,2,...,m}2

(aj − bi)
.

In the following, I attempt to give the most conceptual proof of Theorem 2. First
we recall a known fact we are not going to prove:

Theorem 3 (Vandermonde determinant). Let S be a commutative
ring with unity. Let m ∈ N. Let a1, a2, ..., am be m elements of S. Then,

det
((

aj−1
i

)1≤j≤m

1≤i≤m

)
=

∏
(i,j)∈{1,2,...,m}2;

i>j

(ai − aj) .

Besides, a trivial fact:

Lemma 4. Let S be a commutative ring with unity. Let a ∈ S. In the
ring S [X] (the polynomial ring over S in one indeterminate X), the element
X − a is not a zero divisor.

Proof of Lemma 4. Assume that X − a is a zero divisor in S [X]. Then, there
exists a polynomial P (X) ∈ S [X] such that (X − a) P (X) = 0 and P (X) 6= 0. Let
n = deg P ; then, there exist n + 1 elements r0, r1, ..., rn of S such that rn 6= 0 and
P (X) =

∑n
k=0 rkX

k. Define rn+1 ∈ S by rn+1 = 0. Define r−1 ∈ S by r−1 = 0. Then,

n+1∑
k=0

rkX
k =

n∑
k=0

rkX
k + rn+1︸︷︷︸

=0

Xn+1 =
n∑

k=0

rkX
k + 0 =

n∑
k=0

rkX
k = P (X)

and

n+1∑
k=0

rk−1X
k = r0−1︸︷︷︸

=r−1=0

X0 +
n+1∑
k=1

rk−1X
k = 0 +

n+1∑
k=1

rk−1X
k =

n+1∑
k=1

rk−1X
k

=
n∑

k=0

r(k+1)−1︸ ︷︷ ︸
=rk

Xk+1︸ ︷︷ ︸
=XkX

(here we substituted k + 1 for k in the sum)

= X

n∑
k=0

rkX
k = XP (X) .
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Hence,

0 = (X − a) P (X) = XP (X)︸ ︷︷ ︸
=

Pn+1
k=0 rk−1Xk

−a P (X)︸ ︷︷ ︸
=

Pn+1
k=0 rkXk

=
n+1∑
k=0

rk−1X
k − a

n+1∑
k=0

rkX
k =

n+1∑
k=0

(rk−1 − ark) Xk.

Since rk−1 − ark ∈ S for every k ∈ {0, 1, ..., n + 1}, this yields rk−1 − ark = 0 for every
k ∈ {0, 1, ..., n + 1} . For k = n + 1, this yields r(n+1)−1 − arn+1 = 0. Thus,

0 = r(n+1)−1︸ ︷︷ ︸
=rn

−a rn+1︸︷︷︸
=0

= rn − a · 0 = rn,

what contradicts rn 6= 0. Hence, our assumption that X − a is a zero divisor in S [X]
was wrong. Therefore, X − a is not a zero divisor in S [X]. This proves Lemma 4.

Lemma 5. Let R be a commutative ring with unity. Let m ∈ N. In the
ring R [X1, X2, ..., Xm] (the polynomial ring over R in m indeterminates X1,
X2, ..., Xm), the element

∏
(i,j)∈{1,2,...,m}2;

i>j

(Xi −Xj) is not a zero divisor.

Proof of Lemma 5. We will first show that:

For any (i, j) ∈ {1, 2, ...,m}2 satisfying i > j, the element Xi −Xj

of the ring R [X1, X2, ..., Xm] is not a zero divisor. (2)

Proof of (2). Let R
[
X1, X2, ..., X̂i, ..., Xm

]
denote the sub-R-algebra of R [X1, X2, ..., Xm]

generated by the m − 1 elements X1, X2, ..., Xi−2, Xi−1, Xi+1, Xi+2, ..., Xm (that
is, the m elements X1, X2, ..., Xm except of Xi). (In other words, define a sub-R-

algebra R
[
X1, X2, ..., X̂i, ..., Xm

]
of R [X1, X2, ..., Xm] by R

[
X1, X2, ..., X̂i, ..., Xm

]
=

R [y1, y2, ..., ym−1] , where we define m−1 elements y1, y2, ..., ym−1 of R [X1, X2, ..., Xm]

by yj =

{
Xj, if j < i;
Xj+1, if j ≥ i

for every j ∈ {1, 2, ...,m− 1}.)

Consider the ring
(
R
[
X1, X2, ..., X̂i, ..., Xm

])
[X] (this is the polynomial ring over

the ring R
[
X1, X2, ..., X̂i, ..., Xm

]
in one indeterminate X).

It is known that there exists an R-algebra isomorphism φ :
(
R
[
X1, X2, ..., X̂i, ..., Xm

])
[X] →

R [X1, X2, ..., Xm] such that φ (X) = Xi and φ (Xk) = Xk for every k ∈ {1, 2, ...,m} \
{i}.

Since i > j yields j ∈ {1, 2, ...,m}\{i}, we have φ (Xj) = Xj and thus φ (X −Xj) =

φ (X)︸ ︷︷ ︸
=Xi

−φ (Xj)︸ ︷︷ ︸
=Xj

= Xi−Xj. Since X−Xj is not a zero divisor in
(
R
[
X1, X2, ..., X̂i, ..., Xm

])
[X]

(by Lemma 4, applied to S = R
[
X1, X2, ..., X̂i, ..., Xm

]
and a = Xj), it follows that

φ (X −Xj) is not a zero divisor in R [X1, X2, ..., Xm] (since φ is an R-algebra isomor-
phism). In other words, Xi − Xj is not a zero divisor in R [X1, X2, ..., Xm] (since
φ (X −Xj) = Xi −Xj). This proves (2).
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It is known that if we choose some elements of a ring such that each of these elements
is not a zero divisor, then the product of these elements is not a zero divisor. Hence,
(2) yields that the element

∏
(i,j)∈{1,2,...,m}2;

i>j

(Xi −Xj) of the ring R [X1, X2, ..., Xm] is not

a zero divisor. This proves Lemma 5.
Now comes a rather useful fact:

Theorem 6. Let R be a commutative ring with unity. Let m ∈ N. Con-
sider the ring R [X1, X2, ..., Xm] (the polynomial ring over R in m indetermi-
nates X1, X2, ..., Xm). Define a map X : {1, 2, ...,m} → R [X1, X2, ..., Xm]
by X (i) = Xi for every i ∈ {1, 2, ...,m}. Then,

det

((
(−1)m−j σm−j

(
X |{1,2,...,m}\{i}

))1≤j≤m

1≤i≤m

)
=

∏
(i,j)∈{1,2,...,m}2;

j>i

(Xi −Xj) .

Proof of Theorem 6. Theorem 3 (applied to S = R [X1, X2, ..., Xm] and ai = Xi)
yields

det
((

Xj−1
i

)1≤j≤m

1≤i≤m

)
=

∏
(i,j)∈{1,2,...,m}2;

i>j

(Xi −Xj) . (3)

Let V =
(
Xj−1

i

)1≤j≤m

1≤i≤m
. Then, V

[
j
i

]
= Xj−1

i for every i ∈ {1, 2, ...,m} and

j ∈ {1, 2, ...,m}.
Since

(
Xj−1

i

)1≤j≤m

1≤i≤m
= V, the equation (3) becomes

det V =
∏

(i,j)∈{1,2,...,m}2;
i>j

(Xi −Xj) .

Let W =
(
(−1)m−j σm−j

(
X |{1,2,...,m}\{i}

))1≤j≤m

1≤i≤m
. Then, W

[
j
i

]
= (−1)m−j σm−j

(
X |{1,2,...,m}\{i}

)
for every i ∈ {1, 2, ...,m} and j ∈ {1, 2, ...,m}.

For every i ∈ {1, 2, ...,m} and j ∈ {1, 2, ...,m}, we can apply (1) to L = R [X1, X2, ..., Xm] ,
x = Xj, T = {1, 2, ...,m} \ {i} and a = X |{1,2,...,m}\{i}, and obtain

∏
`∈{1,2,...,m}\{i}

(
Xj −

(
X |{1,2,...,m}\{i}

)
(`)
)

=
m−1∑
k=0

(−1)k σk

(
X |{1,2,...,m}\{i}

)
X

(m−1)−k
j ,

because

|T | = |{1, 2, ...,m} \ {i}| = |{1, 2, ...,m}| − 1 (since i ∈ {1, 2, ...,m})
= m− 1.

Since
(
X |{1,2,...,m}\{i}

)
(`) = X (`) = X` and X

(m−1)−k
j = X

(m−k)−1
j , this becomes

∏
`∈{1,2,...,m}\{i}

(Xj −X`) =
m−1∑
k=0

(−1)k σk

(
X |{1,2,...,m}\{i}

)
X

(m−k)−1
j . (4)

4



Now, for every i ∈ {1, 2, ...,m} and j ∈ {1, 2, ...,m}, we have

(
WV T

) [ j
i

]
=

m∑
k=1

W

[
k
i

]
︸ ︷︷ ︸

=(−1)m−kσm−k(X|{1,2,...,m}\{i})

· V T

[
j
k

]
︸ ︷︷ ︸

=V

24 k
j

35=Xk−1
j

=
m∑

k=1

(−1)m−k σm−k

(
X |{1,2,...,m}\{i}

)
Xk−1

j

=
m−1∑
k=0

(−1)k σk

(
X |{1,2,...,m}\{i}

)
X

(m−k)−1
j

(here, we substituted k for m− k in the sum)

=
∏

`∈{1,2,...,m}\{i}

(Xj −X`) (by (4)) . (5)

Thus, if j 6= i, then

(
WV T

) [ j
i

]
=

∏
`∈{1,2,...,m}\{i}

(Xj −X`) = (Xj −Xj)︸ ︷︷ ︸
=0

·
∏

`∈({1,2,...,m}\{i})\{j}

(Xj −X`)

(since j ∈ {1, 2, ...,m} \ {i} , because j ∈ {1, 2, ...,m} and j 6= i)

= 0.

Hence, the matrix WV T is diagonal. Therefore,

det
(
WV T

)
=

m∏
i=1

(
WV T

) [ i
i

]
=

m∏
i=1

∏
`∈{1,2,...,m}\{i}

(Xi −X`)since (5), applied to j = i, yields
(
WV T

) [ i
i

]
=

∏
`∈{1,2,...,m}\{i}

(Xi −X`)


=

∏
i∈{1,2,...,m}

∏
`∈{1,2,...,m}\{i}

(Xi −X`)

=
∏

i∈{1,2,...,m}

∏
j∈{1,2,...,m}\{i}

(Xi −Xj) (here, we renamed ` as j in the second product)

=
∏

i∈{1,2,...,m}

∏
j∈{1,2,...,m};

j 6=i

(Xi −Xj) =
∏

(i,j)∈{1,2,...,m}2;
j 6=i

(Xi −Xj)

=
∏

(i,j)∈{1,2,...,m}2;
j>i

(Xi −Xj) ·
∏

(i,j)∈{1,2,...,m}2;
i>j

(Xi −Xj)

(
since the set

{
(i, j) ∈ {1, 2, ...,m}2 | j 6= i

}
is the union of the two disjoint sets{

(i, j) ∈ {1, 2, ...,m}2 | j > i
}

and
{
(i, j) ∈ {1, 2, ...,m}2 | i > j

} )
.
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But on the other hand,

det
(
WV T

)
= det W · det

(
V T
)

= det W ·
∏

(i,j)∈{1,2,...,m}2;
i>j

(Xi −Xj)

since det
(
V T
)

= det V =
∏

(i,j)∈{1,2,...,m}2;
i>j

(Xi −Xj)

 .

Hence,

det W ·
∏

(i,j)∈{1,2,...,m}2;
i>j

(Xi −Xj) = det
(
WV T

)
=

∏
(i,j)∈{1,2,...,m}2;

j>i

(Xi −Xj) ·
∏

(i,j)∈{1,2,...,m}2;
i>j

(Xi −Xj) .

But since the element
∏

(i,j)∈{1,2,...,m}2;
i>j

(Xi −Xj) of the ring R [X1, X2, ..., Xm] is not a

zero divisor (according to Lemma 5), this yields

det W =
∏

(i,j)∈{1,2,...,m}2;
j>i

(Xi −Xj) .

Since W =
(
(−1)m−j σm−j

(
X |{1,2,...,m}\{i}

))1≤j≤m

1≤i≤m
, this becomes

det

((
(−1)m−j σm−j

(
X |{1,2,...,m}\{i}

))1≤j≤m

1≤i≤m

)
=

∏
(i,j)∈{1,2,...,m}2;

j>i

(Xi −Xj) .

Thus, Theorem 6 is proven.
Next, we show:

Theorem 7. Let R be a commutative ring with unity. Let m ∈ N. Let a1,
a2, ..., am be m elements of R. Let b1, b2, ..., bm be m elements of R. Then,

det

 ∏
`∈{1,2,...,m}\{i}

(aj − b`)

1≤j≤m

1≤i≤m

 =
∏

(i,j)∈{1,2,...,m}2;
i>j

((ai − aj) (bj − bi)) .

Proof of Theorem 7. Consider the ring R [X1, X2, ..., Xm] (the polynomial ring
over R in m indeterminates X1, X2, ..., Xm). Define a map X : {1, 2, ...,m} →
R [X1, X2, ..., Xm] by X (i) = Xi for every i ∈ {1, 2, ...,m}.

Let Ṽ =
(
aj−1

i

)1≤j≤m

1≤i≤m
. Then, Ṽ

[
j
i

]
= aj−1

i for every i ∈ {1, 2, ...,m} and j ∈

{1, 2, ...,m}. Besides,

det Ṽ = det
((

aj−1
i

)1≤j≤m

1≤i≤m

)
=

∏
(i,j)∈{1,2,...,m}2;

i>j

(ai − aj) (by Theorem 3) .
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Let W =
(
(−1)m−j σm−j

(
X |{1,2,...,m}\{i}

))1≤j≤m

1≤i≤m
. Then, W

[
j
i

]
= (−1)m−j σm−j

(
X |{1,2,...,m}\{i}

)
for every i ∈ {1, 2, ...,m} and j ∈ {1, 2, ...,m}.

For every i ∈ {1, 2, ...,m} and j ∈ {1, 2, ...,m}, we can apply (1) to L = R [X1, X2, ..., Xm] ,
x = aj, T = {1, 2, ...,m} \ {i} and a = X |{1,2,...,m}\{i}, and obtain

∏
`∈{1,2,...,m}\{i}

(
aj −

(
X |{1,2,...,m}\{i}

)
(`)
)

=
m−1∑
k=0

(−1)k σk

(
X |{1,2,...,m}\{i}

)
a

(m−1)−k
j ,

because

|T | = |{1, 2, ...,m} \ {i}| = |{1, 2, ...,m}| − 1 (since i ∈ {1, 2, ...,m})
= m− 1.

Since
(
X |{1,2,...,m}\{i}

)
(`) = X (`) = X` and a

(m−1)−k
j = a

(m−k)−1
j , this becomes

∏
`∈{1,2,...,m}\{i}

(aj −X`) =
m−1∑
k=0

(−1)k σk

(
X |{1,2,...,m}\{i}

)
a

(m−k)−1
j . (6)

Now, for every i ∈ {1, 2, ...,m} and j ∈ {1, 2, ...,m}, we have

(
WṼ T

)[ j
i

]
=

m∑
k=1

W

[
k
i

]
︸ ︷︷ ︸

=(−1)m−kσm−k(X|{1,2,...,m}\{i})

· Ṽ T

[
j
k

]
︸ ︷︷ ︸

=eV
24 k

j

35=ak−1
j

=
m∑

k=1

(−1)m−k σm−k

(
X |{1,2,...,m}\{i}

)
ak−1

j

=
m−1∑
k=0

(−1)k σk

(
X |{1,2,...,m}\{i}

)
a

(m−k)−1
j

(here, we substituted k for m− k in the sum)

=
∏

`∈{1,2,...,m}\{i}

(aj −X`) (by (6)) .

Hence,

WṼ T =

 ∏
`∈{1,2,...,m}\{i}

(aj −X`)

1≤j≤m

1≤i≤m

.
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Thus,

det


 ∏

`∈{1,2,...,m}\{i}

(aj −X`)

1≤j≤m

1≤i≤m︸ ︷︷ ︸
=W eV T

 = det
(
WṼ T

)
= det W · det

(
Ṽ T
)

=
∏

(i,j)∈{1,2,...,m}2;
j>i

(Xi −Xj) ·
∏

(i,j)∈{1,2,...,m}2;
i>j

(ai − aj)


since det W = det

((
(−1)m−j σm−j

(
X |{1,2,...,m}\{i}

))1≤j≤m

1≤i≤m

)
=

∏
(i,j)∈{1,2,...,m}2;

j>i

(Xi −Xj)

by Theorem 6 and det
(
Ṽ T
)

= det Ṽ =
∏

(i,j)∈{1,2,...,m}2;
i>j

(ai − aj)


=

∏
(j,i)∈{1,2,...,m}2;

i>j

(Xj −Xi) ·
∏

(i,j)∈{1,2,...,m}2;
i>j

(ai − aj)

(here, we renamed i and j as j and i in the first product)

=
∏

(i,j)∈{1,2,...,m}2;
i>j

(Xj −Xi) ·
∏

(i,j)∈{1,2,...,m}2;
i>j

(ai − aj)

(
since (j, i) ∈ {1, 2, ...,m}2 is equivalent to (i, j) ∈ {1, 2, ...,m}2)

=
∏

(i,j)∈{1,2,...,m}2;
i>j

((Xj −Xi) (ai − aj)) =
∏

(i,j)∈{1,2,...,m}2;
i>j

((ai − aj) (Xj −Xi)) .

Both sides of this identity are polynomials over the ring R in m indeterminates X1, X2,
..., Xm. Evaluating these polynomials at X1 = b1, X2 = b2, ..., Xm = bm, we obtain

det

 ∏
`∈{1,2,...,m}\{i}

(aj − b`)

1≤j≤m

1≤i≤m

 =
∏

(i,j)∈{1,2,...,m}2;
i>j

((ai − aj) (bj − bi)) .

This proves Theorem 7.

Proof of Theorem 2. Let Q =
(∏

`∈{1,2,...,m}\{i} (aj − b`)
)1≤j≤m

1≤i≤m
. Then, Q

[
j
i

]
=∏

`∈{1,2,...,m}\{i} (aj − b`) for every i ∈ {1, 2, ...,m} and j ∈ {1, 2, ...,m}. Also,

det Q = det

 ∏
`∈{1,2,...,m}\{i}

(aj − b`)

1≤j≤m

1≤i≤m

 =
∏

(i,j)∈{1,2,...,m}2;
i>j

((ai − aj) (bj − bi)) (by Theorem 7) .

Let P =

({ ∏
`∈{1,2,...,m} (ai − b`) , if i = j;

0, if i 6= j

)1≤j≤m

1≤i≤m

. Then,
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P

[
j
i

]
=

{ (∏
`∈{1,2,...,m} (ai − b`)

)−1

, if i = j;

0, if i 6= j
for every i ∈ {1, 2, ...,m} and j ∈

{1, 2, ...,m}. Thus, P is a diagonal matrix, so that

det P =
m∏

j=1

P

[
j
j

]
=

∏
j∈{1,2,...,m}

P

[
j
j

]
︸ ︷︷ ︸

=(
Q

`∈{1,2,...,m}(aj−b`))
−1

,

since j=j

=
∏

j∈{1,2,...,m}

 ∏
`∈{1,2,...,m}

(aj − b`)

−1

=

 ∏
j∈{1,2,...,m}

∏
`∈{1,2,...,m}

(aj − b`)

−1

=

 ∏
(`,j)∈{1,2,...,m}2

(aj − b`)

−1

=

 ∏
(i,j)∈{1,2,...,m}2

(aj − bi)

−1

(here, we renamed ` as i in the product) .

Now, for every i ∈ {1, 2, ...,m} and j ∈ {1, 2, ...,m}, we have

(QP )

[
j
i

]
=

m∑
k=1

Q

[
k
i

]
P

[
j
k

]
=

∑
k∈{1,2,...,m}

Q

[
k
i

]
P

[
j
k

]

=
∑

k∈{1,2,...,m}\{j}

Q

[
k
i

]
P

[
j
k

]
︸ ︷︷ ︸
=0, since

k∈{1,2,...,m}\{j}
yields k 6=j

+
∑

k∈{j}

Q

[
k
i

]
P

[
j
k

]
︸ ︷︷ ︸

=Q

24 j
i

35P

24 j
j

35
=

∑
k∈{1,2,...,m}\{j}

Q

[
k
i

]
· 0︸ ︷︷ ︸

=0

+Q

[
j
i

]
P

[
j
j

]

= Q

[
j
i

]
︸ ︷︷ ︸

=
Q

`∈{1,2,...,m}\{i}(aj−b`)

P

[
j
j

]
︸ ︷︷ ︸

=(
Q

`∈{1,2,...,m}(aj−b`))
−1

,

since j=j

=
∏

`∈{1,2,...,m}\{i}

(aj − b`) ·

 ∏
`∈{1,2,...,m}

(aj − b`)

−1

=
∏

`∈{1,2,...,m}\{i}

(aj − b`) ·

(aj − bi) ·
∏

`∈{1,2,...,m}\{i}

(aj − b`)

−1

since
∏

`∈{1,2,...,m}

(aj − b`) = (aj − bi) ·
∏

`∈{1,2,...,m}\{i}

(aj − b`)


= (aj − bi)

−1 =
1

aj − bi

.
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Thus,

QP =

(
1

aj − bi

)1≤j≤m

1≤i≤m

.

Hence,

det


(

1

aj − bi

)1≤j≤m

1≤i≤m︸ ︷︷ ︸
=QP

 = det (QP ) = det Q · det P

=
∏

(i,j)∈{1,2,...,m}2;
i>j

((ai − aj) (bj − bi)) ·

 ∏
(i,j)∈{1,2,...,m}2

(aj − bi)

−1

since det Q =
∏

(i,j)∈{1,2,...,m}2;
i>j

((ai − aj) (bj − bi)) and det P =

 ∏
(i,j)∈{1,2,...,m}2

(aj − bi)

−1


=

∏
(i,j)∈{1,2,...,m}2;

i>j

((ai − aj) (bj − bi))

∏
(i,j)∈{1,2,...,m}2 (aj − bi)

.

Thus, Theorem 2 is proven.

Theorem 8. Let n ∈ N. Let a1, a2, ..., an be n pairwise distinct reals. Let
c be a real such that ai + aj + c > 0 for every (i, j) ∈ {1, 2, ..., n}2. Then,

the matrix

(
1

ai + aj + c

)1≤j≤n

1≤i≤n

∈ Rn×n is positive definite.

Proof of Theorem 8. Let A =

(
1

ai + aj + c

)1≤j≤n

1≤i≤n

. Then, A

[
j
i

]
=

1

ai + aj + c

for every i ∈ {1, 2, ...,m} and j ∈ {1, 2, ...,m}.

Thus, A ∈ Rn×n is a symmetric n × n matrix (since A

[
j
i

]
=

1

ai + aj + c
=

1

aj + ai + c
= A

[
i
j

]
for every i ∈ {1, 2, ...,m} and j ∈ {1, 2, ...,m}).

Define n reals b1, b2, ..., bn by bi = −ai − c for every i ∈ {1, 2, ..., n} .
Let m ∈ {1, 2, ..., n}. Then, aj 6= bi for every (i, j) ∈ {1, 2, ...,m}2 (since aj − bi =

aj − (−ai − c) = ai + aj + c > 0 yields aj > bi). Thus, Theorem 2 (applied to k = R)
yields

det

((
1

aj − bi

)1≤j≤m

1≤i≤m

)
=

∏
(i,j)∈{1,2,...,m}2;

i>j

((ai − aj) (bj − bi))

∏
(i,j)∈{1,2,...,m}2

(aj − bi)
.
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Thus, every m ∈ {1, 2, ..., n} satisfies

det

((
A

[
j
i

])1≤j≤m

1≤i≤m

)
= det

((
1

aj − bi

)1≤j≤m

1≤i≤m

)
(

since A

[
j
i

]
=

1

ai + aj + c
=

1

aj − (−ai − c)
=

1

aj − bi

)

=

∏
(i,j)∈{1,2,...,m}2;

i>j

((ai − aj) (bj − bi))

∏
(i,j)∈{1,2,...,m}2

(aj − bi)
=

∏
(i,j)∈{1,2,...,m}2;

i>j

(ai − aj)
2

∏
(i,j)∈{1,2,...,m}2

(ai + aj + c) since (ai − aj) (bj − bi) = (ai − aj) ((−aj − c)− (−ai − c))︸ ︷︷ ︸
=−aj−c+ai+c=ai−aj

= (ai − aj)
2

and aj − bi = aj − (−ai − c) = ai + aj + c


> 0

(since (ai − aj)
2 > 0 for every (i, j) ∈ {1, 2, ...,m}2 satisfying i > j (because a1, a2, ...,

an are pairwise distinct, so that ai 6= aj, thus ai− aj 6= 0 and therefore (ai − aj)
2 > 0),

and ai + aj + c > 0 for every (i, j) ∈ {1, 2, ...,m}2).
Hence, according to Theorem 1, the symmetric matrix A is positive definite. Since

A =

(
1

ai + aj + c

)1≤j≤n

1≤i≤n

, this means that the matrix

(
1

ai + aj + c

)1≤j≤n

1≤i≤n

is positive

definite. Thus, Theorem 8 is proven.

Corollary 9. Let n ∈ N. Let a1, a2, ..., an be n pairwise distinct reals.
Let c be a real such that ai + aj + c > 0 for every (i, j) ∈ {1, 2, ..., n}2. Let

v1, v2, ..., vn be n reals. Then, the inequality
∑n

i=1

∑n
j=1

vivj

ai + aj + c
≥ 0

holds, with equality if and only if v1 = v2 = ... = vn = 0.

Proof of Corollary 9. Define a vector v ∈ Rn by v =


v1

v2

...
vn

. Then,

vT

(
1

ai + aj + c

)1≤j≤n

1≤i≤n

v =
n∑

i=1

n∑
j=1

1

ai + aj + c
vivj =

n∑
i=1

n∑
j=1

vivj

ai + aj + c
. (7)

Also, obviously,

v = 0 holds if and only if v1 = v2 = ... = vn = 0. (8)

Now, since the matrix

(
1

ai + aj + c

)1≤j≤n

1≤i≤n

∈ Rn×n is positive definite (by Theorem

8), we have vT

(
1

ai + aj + c

)1≤j≤n

1≤i≤n

v ≥ 0, with equality if and only if v = 0. According

to (7) and (8), this means that
∑n

i=1

∑n
j=1

vivj

ai + aj + c
≥ 0, with equality if and only if

v1 = v2 = ... = vn = 0. Thus, Corollary 9 is proven.
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Corollary 10. Let n ∈ N. Let a1, a2, ..., an be n pairwise distinct reals.
Let c be a real such that ai + aj + c > 0 for every (i, j) ∈ {1, 2, ..., n}2. Let

w1, w2, ..., wn be n reals. Then, the inequality
∑n

i=1

∑n
j=1

aiajwiwj

ai + aj + c
≥

−c (
∑n

i=1 wi)
2

holds, with equality if and only if (c + a1) w1 = (c + a2) w2 =
... = (c + an) wn = 0.

Proof of Corollary 10. Define n reals v1, v2, ..., vn by vi = (c + ai) wi for every
i ∈ {1, 2, ..., n} .

Then,

n∑
i=1

n∑
j=1

aiajwiwj

ai + aj + c
−

−c

(
n∑

i=1

wi

)2


=
n∑

i=1

n∑
j=1

aiajwiwj

ai + aj + c
+ c

(
n∑

i=1

wi

)2

=
n∑

i=1

n∑
j=1

aiajwiwj

ai + aj + c
+ c

n∑
i=1

n∑
j=1

wiwjsince

(
n∑

i=1

wi

)2

=
n∑

i=1

wi ·
n∑

i=1

wi =
n∑

i=1

wi ·
n∑

j=1

wj =
n∑

i=1

n∑
j=1

wiwj


=

n∑
i=1

n∑
j=1

(
aiajwiwj

ai + aj + c
+ cwiwj

)
=

n∑
i=1

n∑
j=1

(
aiaj

ai + aj + c
+ c

)
wiwj

=
n∑

i=1

n∑
j=1

aiaj + (ai + aj + c) c

ai + aj + c
wiwj =

n∑
i=1

n∑
j=1

(c + ai) (c + aj)

ai + aj + c
wiwj(

since aiaj + (ai + aj + c) c = aiaj + aic + ajc + c2 = (c + ai) (c + aj)
)

=
n∑

i=1

n∑
j=1

(c + ai) wi (c + aj) wj

ai + aj + c

=
n∑

i=1

n∑
j=1

vivj

ai + aj + c
(since (c + ai) wi = vi and (c + aj) wj = vj) .

Hence,

n∑
i=1

n∑
j=1

aiajwiwj

ai + aj + c
≥ −c

(
n∑

i=1

wi

)2

holds if and only if
n∑

i=1

n∑
j=1

vivj

ai + aj + c
≥ 0.

(9)
Also, clearly,

v1 = v2 = ... = vn = 0 holds if and only if (c + a1) w1 = (c + a2) w2 = ... = (c + an) wn = 0.
(10)

By Corollary 9, the inequality
∑n

i=1

∑n
j=1

vivj

ai + aj + c
≥ 0 holds, with equality if

and only if v1 = v2 = ... = vn = 0. According to (9) and (10), this means that∑n
i=1

∑n
j=1

aiajwiwj

ai + aj + c
≥ −c (

∑n
i=1 wi)

2
, with equality if and only if (c + a1) w1 =

(c + a2) w2 = ... = (c + an) wn = 0. Thus, Corollary 10 is proven.
The problem follows from Corollary 10 (applied to c = −1 and ai = i).
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