Problems from the Book — Problem 19.9

Let n € N. Let wy, ws, ..., w, be n reals. Prove the inequality
oy ()
- w'l
i=1 j=1 ity -1

Solution by Darij Grinberg

The following solution uses some linear algebra.
Notations.

e For any matrix A, we denote by A [ z } the entry in the j-th column and the
i-th row of A. [This is usually denoted by A;; or by A, ;]

e Let k be a field. Let v € N and v € N, and let a;; be an element of k for every
(i,7) € {1,2,...,u} x {1,2, ...,v} . Then, we denote by (a;;);==" the u x v matrix

1<i<u

A which satisfies A [ ‘Z } = a,; for every (i,j) € {1,2,...,u} x {1,2,...,v}.

e Let n € N. Let ty, to, ..., t, be n objects. Let m € {1,2,...,n}. Then, we let
(tl,tg, sty tn> denote the (n — 1)-tuple (t1, ta, -, b2 tmr—1, bt 2y -oos tn)
ti, if i < m;

o for
tiv1, ifi>m

(that is, the (n — 1)-tuple (s, S2, ..., Sp—1) defined by s; = {
allie{1,2,..,n—1}).

e Let L be a commutative ring with unity. Let 7" be a finite set. Let a : T" — L be
a map. Let & € N. We define an element oy (a) of L by

=Y J]etG

SCT; ieS
[ST=k

[Many readers will notice that if T'= {1,2,...,n} for some n € N, then oy (a) is
the k-th elementary symmetric polynomial evaluated at a (1), a(2), ..., a(n).]
The Viete theorem states that

[[—a@)=> (-1 or(a)a* (1)

for every x € L.

Theorem 1 (Sylvester). Let n € N, and let A € R™" be a symmetric
n x n matrix. Then, the matrix A is positive definite if and only if every

. 1<j<m
m € {1,2,...,n} satisfies det | [ A J > 0.
v 1/ 1<igm

1



For a proof of Theorem 1, see any book on symmetric or Hermitian matrices.

Theorem 2 (Cauchy determinant). Let k be a field. Let m € N. Let
ai, as, ..., a,, be m elements of k. Let by, by, ..., b,, be m elements of k.
Assume that a; # b; for every (4,7) € {1, 2, ...,m}2. Then,

I1 ((a; = a;) (b; — b;))
1 1<j<m (i7j)€{1'7274"'7m}2;
det ( ) = e
( aj —b; 1<i<m I1 (aj —b;)

(4,5)€{1,2,...,m}?

In the following, I attempt to give the most conceptual proof of Theorem 2. First
we recall a known fact we are not going to prove:

Theorem 3 (Vandermonde determinant). Let S be a commutative
ring with unity. Let m € N. Let a4, as, ..., a,, be m elements of S. Then,

det ((af_l)iis) = H (a; —aj) .

(i,5)€{1,2,....,m}?*;
©>7

Besides, a trivial fact:

Lemma 4. Let S be a commutative ring with unity. Let a € S. In the
ring S [X] (the polynomial ring over S in one indeterminate X'), the element
X — a is not a zero divisor.

Proof of Lemma 4. Assume that X — a is a zero divisor in S [X]. Then, there
exists a polynomial P (X) € S[X] such that (X —a)P(X) =0 and P(X) # 0. Let
n = deg P; then, there exist n + 1 elements rq, r1, ..., 7, of S such that r, # 0 and
P(X)=>Y}_,mX". Define r,41 € S by r,41 = 0. Define r_; € S by r_; = 0. Then,

n+1 n n n
> onXP = "n X b X =Y X4 0=) rXE = P(X)
k=0 k=0 7 k=0 k=0
and
n+l n+1 n+1 n+1
Zrklek: ro-1 X0+Z7”k71Xk:0+Z7’k71Xk:Z7’kf1Xk
k=0 =0 k=1 k=1 k=1
= Z T(k41)—1 Xt (here we substituted k + 1 for & in the sum)
k=0 _T' —XkX

=X nXt=XP(X).

k=0



Hence,

0=(X-a)P(X)= XP(X) —a P(X)

—— ——
= Zié re_1XF :ZZI& r Xk
n+1 n+1 n+1
_ k k_ k
= re1 X" —a re X" = (rp—1 —arg) X°.

Since r,_1 — ary, € S for every k € {0,1,...,n + 1}, this yields ry_y — ary = 0 for every
ke {0,1,...,n+1}. For k = n+ 1, this yields rg41)-1 — arp41 = 0. Thus,

0=7(nt1)-1 =0T ni1 =7Tn —a-0 =17y,
—— ~

=Tn =0

what contradicts r, # 0. Hence, our assumption that X — a is a zero divisor in S [X]
was wrong. Therefore, X — a is not a zero divisor in S [X]. This proves Lemma 4.

Lemma 5. Let R be a commutative ring with unity. Let m € N. In the

ring R [ X1, Xs, ..., X;n] (the polynomial ring over R in m indeterminates X,

X2, ..y Xpm), the element I (X; — Xj) is not a zero divisor.
(i,j)e{ifj,'...,m}Q;

Proof of Lemma 5. We will first show that:

For any (i,7) € {1,2,...,m}* satisfying i > j, the element X; — X;
of the ring R [X;, Xo, ..., X;,,] is not a zero divisor. (2)

—~

Proof of (2). Let R [Xl, Xor oo Xy oo, Xm} denote the sub-R-algebra of R [X1, X, ..., X,n]

generated by the m — 1 elements X, Xo, ..., X; o, X; 1, X1, Xite, ..., X, (that
is, the m elements X;, Xs, ..., X,, except of X;). (In other words, define a sub-R-

—~

algebra R [Xl,XQ,...,)?Z-,...,Xm} of R[X1, Xo, ... X,n] by R [XI,X2,...,Xi,...,Xm] -
Ry1,Y2, s Ym—1] , where we define m — 1 elements y1, 42, ..., Ym—1 of R[X1, X, ..., Xp]

X, ifg<i; .
by y; = Xy, it > i for every j € {1,2,....,m —1}.)

Consider the ring (R [Xl, Xo, ..., E(\i, s XmD [X] (this is the polynomial ring over

o~

the ring R [Xl, D CHD. ¢ ...,Xm] in one indeterminate X).

It is known that there exists an R-algebra isomorphism ¢ : (R [Xl,XQ, ...,5(\1-, ...,XmD (X] —
R[X1, X, ..., X},] such that ¢ (X) = X; and ¢ (X)) = X}, for every k € {1,2,....m} \
{i}.
Since i > jyields j € {1,2,...,m}\{i}, we have ¢ (X;) = X, and thus ¢ (X — X;) =
¢ (X)—¢(X;) = X;—X;. Since X—X is not a zero divisor in (R [Xl,Xg, X ...,XmD [X]
—— N —

=X; =X;
(by Lemma 4, applied to S = R [Xl,XQ, ...,5(\1-, ...,Xm] and a = Xj), it follows that
¢ (X — Xj) is not a zero divisor in R [X;, Xo, ..., X,,] (since ¢ is an R-algebra isomor-

phism). In other words, X; — X is not a zero divisor in R [Xj, X>,..., X,,] (since
¢ (X — X;) = X; — Xj). This proves (2).



It is known that if we choose some elements of a ring such that each of these elements
is not a zero divisor, then the product of these elements is not a zero divisor. Hence,

(2) yields that the element 11 (X; — Xj) of the ring R [ X1, X, ..., X;,| is not

(1.4)€{1,2,...m}%;
i>j
a zero divisor. This proves Lemma 5.
Now comes a rather useful fact:

Theorem 6. Let R be a commutative ring with unity. Let m € N. Con-
sider the ring R [X7, X5, ..., X,] (the polynomial ring over R in m indetermi-
nates X1, Xo, ..., X;n,). Define amap X : {1,2,...m} — R[X1, X5, ..., X;)]
by X (i) = X; for every i € {1,2,...,m}. Then,

det (((—1)mj Om—j (X {12, m}\{i})>1<j<m) = H (X, — X;).

1<i<m 5
(5.9)€{L,2,....,m}5;
7>

Proof of Theorem 6. Theorem 3 (applied to S = R[X1, Xs, ..., X;] and a; = X;)

yields
i—1\1<j<m
det ((Xg 1)19@) - I (x-x). (3)
(i.1)€{1,2,...m}%
1>)
_ (yi-nisism J| _ it ,

Let V = (X} )1<i<m. Then, V [ ; 1 = X/ for every i € {1,2,...,m} and
je{L2,...,m}.

Since (XZ]_I)Ef:; =V, the equation (3) becomes

det V = 11 (X — X;).
(i.1)€{1,2,...m}%
1>

i 1<j<m

Let W= ((—1) om—i (X lgr2... m}\{z’}))

for every i € {1,2,...,m} and j € {1,2,...,m}.
Forevery: € {1,2,....,m}and j € {1,2,...,m}, we can apply (1) to L = R[X1, Xo, ..., Xin] ,

r=X;, T={12,...,m}\{i}anda=X |{1’27 mh\{i}, and obtain

J m—j
. Then, W [ ; ] = (-1) JUm—j (X |{1,2 ----- m}\{i})

1<i<m

RAaS]

m—1
k m—1)—k
11 (X5 = (X Jppmpgy) (0) = D (=1 or (X Ja2mpn) X307
0e{1,2,....mM\{i} k=0
because
T|=H{1,2,....m}\ {i}| = {1,2,....,m}| — 1 (since i € {1,2,...,m})

=m — 1.

Since (X |(12..mpgy) (€) = X (€) = X, and X;m_l)_k = X;m_k)_l, this becomes

—_

m—k)—
H (X = X0)=> (-1 or (X [g2.mpi) X]( =1 (4)
tef1,2, . mp\ (i} 0

3
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Now, for every i € {1,2,...,m} and j € {1,2,...,m}, we have

NE
=
~. o~
S
~
=~

wo[ -

|
|

_(_1\ym—k .
=(-1) Um—k(X\{1,2 ,,,,, m}\{z}) :V[ k} }:X’?l
j J

m—k —
(=)™ ok (X |p120mpgiy) XJ 7

Il
I

3
L

k (m—k)—1
= > (=)o (X lpa.mpviy) X;

e
Il
o

(here, we substituted k for m — k in the sum)

= H (X; — Xo) (by (4))- (5)

0e{1,2,..,m\{i}
Thus, if j # 4, then
(wvh) { Z } = ]I &-X)=x-x) 11 (X; — Xo)
0€{1,2,..,m}\{i} ~ 0e({1,2,m P\ i\ {5}
(since j € {1,2,...,m} \ {i}, because j € {1,2,....m} and j # 17)
= 0.

Hence, the matrix WV7 is diagonal. Therefore,

det (WVT) = ﬁ (wvTh) “ } = ﬁ I @-x0

i=1 i=10e{1,2,....m}\{i}

since (5), applied to j = i, yields (WV7) [ i } = H (X; — Xo)

0e{1,2,...m¥\{i}
= 11 [ &i-x

i€{1,2,...m} £e{1,2,...mH\{i}

= H H (X; — Xj) (here, we renamed ¢ as j in the second product)

1€{1,2,...,m} je{1,2,... m}\{i}

= ]I I xi-x)= 11 (Xi — X))

ie{1,2,..,m} je{1,2,...m}; (i,5)e{1,2,....,m}>;
JF JF#i
= 11 (X; — X;) - 1T (Xi — Xj)
(i.)€{1,2,...m}?; (i.)€{1,2,...m}?;
7> 1>)

since the set {(,7) € {1,2, ..., m}> | j# i} is the union of the two disjoint sets
{G,7) € {1,2,....,m}* | j>i} and {(i,j) € {1, 2,...m}* | i>j} '



But on the other hand,
det (WVT) = det W - det (V)

= det W - H (Xi — Xj) since det (V') =detV = H (X; — Xj)
(6.)€{1,2,...m}?; (i) €{1,2,..om}?;
1>) 1>]
Hence,
detW-  J[  (Xi—X;) =det (WVT)
(1) €41,2,...m}%:
1>
= II &-xp- [ x-x.
(i.5)€{1,2,...m}% (i.7)€{1,2,...m}%
7>t 1>]
But since the element II (X; — X;) of the ring R[X;,X>,..., X,,] is not a
(ivj)e{l'fv""’m}2§
>3

zero divisor (according to Lemma 5), this yields

det W= [ &i-x).
(i.)€{1,2,...m}?;
7>
q j 1<j<m
ince W = ((=1)"7 oy (X [ 2,mprgiy) ) __ o this b
ince (—)" 7o j( l{1,2,..m\{ }) i is becomes

det (((—1)m_j T (X |12, m}\{i}))1§j§m> - ]I @x-x).

1<i<m )
(1,5)€{1,2,...,m}~;
j>i

Thus, Theorem 6 is proven.
Next, we show:

Theorem 7. Let R be a commutative ring with unity. Let m € N. Let a,

as, ..., a4, be m elements of R. Let by, bs, ..., b,, be m elements of R. Then,
1<j<m
det IT (-t = I (ei—a),—0)).
86{172 7777 m}\{z} 1<i<m (i,j)e{l,Q,'...,m}z;
- 1>)

Proof of Theorem 7. Consider the ring R[X7, Xs, ..., X;,] (the polynomial ring
over R in m indeterminates X;, Xs, ..., X,;,). Define a map X : {1,2,...m} —
R[X1, X, ..., X;n] by X (i) = X; for every i € {1,2,...,m}.

Let V = (af_l)if:: Then, V {‘Z ] = ag_l for every i € {1,2,....m} and j €
{1,2,...,m}. Besides,

det V = det ((aj_l)ifg) = H (a; — aj) (by Theorem 3).

KA
(i,4)€{1,2,...,m}?%;
i>j

6



1<j<m

Let W = ((—l)m_j Om—j (X |{1,2 77777 m}\ﬁ}))
for every i € {1,2,...,m} and j € {1,2,...,m}.

Foreveryi € {1,2,...,m}and j € {1,2,...,m}, wecan apply (1) to L = R[Xy, Xs, ..., Xin] ,
r=a;,T=1{1,2,..m}\{i} and @ = X |(1,2,._m}\{s}, and obtain

1<i<m

. Then, W “ ] = (=1)"" oy (X [ 2emp\(i})

m—1
E m—1)—k
I (6= X lpaempm) 0) =Y (=D or (X lpzmps) 67
0e{1,2,...mM\{i} k=0
because
T|=H{1,2,...m}\ {i}| = {1,2,....,m}| — 1 (since i € {1,2,...,m})

=m — 1.
Since (X |(12..mp ) (€) = X (€) = X, and ag»m*l)*k = ag-m*k)*l, this becomes
k m—k)—1
H (a; — Xo) = (—1)" % (X lgr2,mpgiy) a§ -1, (6)
0e{1,2,...m}\{i} p

Now, for every i € {1,2,...,m} and j € {1,2,...,m}, we have

(w%)[”:i W[H .VT['

k=1 —— N—
:(—1)’”*’“am_k(X\{1,2 AAAAA m}\{i}) ‘7[ k } k—1
= j —aj
m—Fk -
= Z (-1) Om—k (X ’{172 ----- m}\{z}) CL;? '
k=1
m—1

m—k)—1

k
(=1)" o (X [1.2,mp\(i}) a§

i
o

(here, we substituted k for m — k in the sum)

= 11 (a; — Xy) (by (6)) -
ee{1,2,...m}\{i}

Hence,
1<j<m

wvT = I (-x0

£e{1,2,... m}\{i} 1<i<m



Thus,

1<j<m
det I (-x) — det (WVT) — det W - det (V/T>
0e{1,2,...m}\{i} I<icm
Wi
= I &i-x) I  (u-a)
(i,j)€{1‘,2,4...,m}2; (ivj)€{1'727"“’m}2§
7> 1>7
; 1<j<m
since det W = det (((—1)m] Tm—j (X 12, m}\{z‘})) ‘ ) = I1 (Xi — Xj)
lsism (i,j)6{1‘,2,‘...,m}2;
1>
by Theorem 6 and det (VT> =detV = I1 (a; — aj)
(z‘J)e{l@;--m}%
i>]

= II (X; — Xi) - 1T (a; — a;)

(G)e{1,2,..m}>% (1,5)€{1,2,...,m}?;
i>j i>j

(here, we renamed ¢ and j as j and ¢ in the first product)
= I «-x) | )
(i,4)€{1,2,...,m}?%; (i,4)€{1,2,...,m}?%;
i>j i>j
(since (4,7) € {1,2,...,m}? is equivalent to (4, 5) € {1,2,...,m}?)
= 11 (X = Xi) (@i — ay)) = 1T ((a; — a;) (X; — X3)) -
(3,5)€{1,2,...,m}?; (i.)€{1,2,....m}?;

1>7 1>J

Both sides of this identity are polynomials over the ring R in m indeterminates X;, X5,
ooy Xpn. Evaluating these polynomials at X; = by, X5 = b, ..., X,,, = b,,,, we obtain

1<j<m
det T (@-u = 11 ((a; — a;) (bj — bi)) -
te{1,2,..,mp\{i} 1<i<m (i:)€{1,2,....m}?;
- - 1>)

This proves Theorem 7.

1<j<m ]
_ o J | _
Proof of Theorem 2. Let Q = (Hee{l,Q ..... (i) (a; be))gz’gm' Then, Q [ ; ] =
Hee{l,Q 77777 i) (a; — by) for every i € {1,2,...,m} and j € {1,2,...,m}. Also,
1<j<m
det @ = det H (a; — by) = H ((a; —a;) (b; — b;)) (by Theorem 7).
66{172 7777 m}\{l} 1<i<m (z,j)e{l,Q ..... m}2
== i>j
e\ 1<j<m
Let P = ({ e my (0= be) i = J; ) . Then,
0, it # j 1<i<m



-1

P {‘7 } = (er{L? ~~~~~ my (@i _b£)> it =7 for every i € {1,2,...,m} and j €
g 0, ifi #j

{1,2,...,m}. Thus, P is a diagonal matrix, so that

T o j

det P = Pl | = P~

melf]- ol

Jj=1 je{1,2,....m} N
Z(Hze{1,2 ..... m}(aj—b[)>717

since j=j
-1 -1

= ] II @-b)] = 11 I (&-b)

je{1,2,...m} \¢€{1,2,....m} je{1,2,....m} Le{1,2,....,m}

= I (-w I (@-u

(£,)e{1,2,...,m}? (i,5)e{1,2,....,m}>

(here, we renamed ¢ as i in the product).

Now, for every i € {1,2,...,m} and j € {1,2,...,m}, we have

enli]-xelt]r[i]- T eli]r[i]
:ke{L?rZw:m}\{j}Q{l;} M +k€Z{;}Q{§}P[£}

=0, since g

ke{1,2,...m}\{y ] )
e{yields k;;ij\{J} :Q|: J :|P|: J :|

o Ea ol el L]

ke{1,2,...mN\{j}

-0
_ J J
- o[i] at
—— ——
=Ilecqr,,..., m}\{i}(ajibé):(HZE{LQ““”n}(ajfbg))il
since j=j
-1
= I (a—=b- I (&-t
£e{1,2,....m}\{i} e{1,2,....m}
-1
= (aj=b)- (s =b)-  J[  (a;—b)
te{1,2,.., m}\{ 3 te{1,2,....m3\{i}
since (a; — b)) = (a; — b;) - H (a; — be)
ZE{l 2,...,m} e{1,2,.... mI\{:}
—b)
b



Thus,

1\ 1<ism
QP — ( ) |
aj — b 1<i<m

Hence,

1 1<j<m
det < > =det (QP) =detQ - det P

aj — b 1<i<m

N J/

57

-1

= I w-aye-on-[ I (@-w

(1,5)€{1,2,...;m}?%; (i,5)€{1,2,...,m}?
1>
-1
since det Q = 11 ((a; — a;) (b; — b)) and det P = IT (-1
(i,j)e{lf,,...,m}Q; (,5)€{1,2,...,;m}?
i>]

11 ((a; — a;) (bj — b;))
()E1 20 m?;
1>

H(i,j)e{1,2 ..... m}? (a; —b;)

Thus, Theorem 2 is proven.

Theorem 8. Let n € N. Let ay, ao, ..., a, be n pairwise distinct reals. Let
¢ be a real such that a; + a; + ¢ > 0 for every (7,7) € {1, 2, ...,n}2. Then,

1 1<j<n
the matrix (—) € R™ " is positive definite.

ai—f-aj—kc 1<i<n
Proof of Theorem 8. Let A = (—) . Then, A [‘7 } = —
a; +a;+c 1<i<n ? a; +a;+c
for every i € {1,2,...,m} and j € {1,2,...,m}.
j 1
Thus, A € R™" is a symmetric n X n matrix (since A Tl —— =
[/ CL1'+CLJ' +c
1 7
—— =A| . | foreveryi€{1,2,....m} and j € {1,2,...,m}).
A | ooy i (2m) and € (1.2,

Define n reals by, by, ..., b, by b; = —a; — ¢ for every i € {1,2,....,n}.
Let m € {1,2,...,n}. Then, a; # b; for every (i,7) € {1, 2, ...,m}” (since a; — b, =
aj — (—a; — ¢) = a; + a; + ¢ > 0 yields a; > b;). Thus, Theorem 2 (applied to & = R)

yields
[1 ((ai —a;) (b — bi))
1 1<j<m (i7j)€{1'7274"'7m}2;
det ( ) = 27
a;j —b; 1<i<m I1 (aj —b:)

(i,5)e{1,2,....,m}?

10



Thus, every m € {1,2,...,n} satisfies

. 1<j<m 1 1<j<m
det A ] = det
t 1<i<m aj —b; 1<i<m

1 1 1
since A J = = =
i ai+aj—|—c aj—(—a;—c) a;—b
I1 ((a; — az) (bj — b;)) I1 (@i — a;)°
(i,5)€{1,2,...m}%; (i,5)€{1,2,...m}%;
. 1> _ 1>]

I1 (a; — b;) I1 (a; +a;+c)

(6,5)€{1,2,...,m}? (4,5)€{1,2,...,m}?
since (a; — a;) (b — b;) = (@i — ;) ((=a; = ¢) = (—a; — ¢)) = (a; — @;)°

TV
=—aj—cta;+c=a;—a;

and a; —b; =a; — (—a; —c¢) =a;+a; + ¢
>0

(since (a; — )2 > 0 for every (i,7) € {1,2, ... m}2 satisfying i > j (because aq, as, ...,
a, are pairwise distinct, so that a; # a;, thus a; —a; # 0 and therefore (a; — a;)* > 0),

andaz+a3+c>0forevery(zj)e{l2 m}?).
Hence, according to Theorem 1, the symmetrlc matrix A is positive definite. Since

1 1=jzn 1<j<n
A= (—) , this means that the matrix (—)
ai~|—aj~|—c 1<i<n ai+aj—|—c 1<i<n
definite. Thus, Theorem 8 is proven.

is positive

Corollary 9. Let n € N. Let ay, as, ..., a, be n pairwise distinct reals.
Let ¢ be a real such that a; + a; + ¢ > 0 for every (i,5) € {1,2, ...,n}2. Let
ViV;
v1, Vs, ..., U, be n reals. Then, the inequalit —7 >0
1, U2 q yZ“ZJ laz—i—a]—kc_
holds, with equality if and only if v; = vy = ... = v, = 0.
U1
Proof of Corollary 9. Define a vector v € R" by v = 2. Then,
Un,
1 1<j<n n n 1 n n Vi
T iUj
v _— v = ViV = . 7
(ai+aj+c>1<i<n izljzla +a;+c Z,lezlai—kaj—l—c (7)

Also, obviously,
v = 0 holds if and only if v; = vy = ... = v, =0. (8)

1<j<n

1

Now, since the matrix (—) € R™ " is positive definite (by Theorem
ai+aj+c 1<i<n

1 1<j<n

8), we have v <—> v > 0, with equality if and only if v = 0. According
ai+a;+¢/ ey

V;V;

to (7) and (8), this means that > 7, 7 P
a;+a; +c

vy = vy = ... = v, = 0. Thus, Corollary 9 is proven.

> 0, with equality if and only if

11



Corollary 10. Let n € N. Let aq, as, ..., a, be n pairwise distinct reals.
Let ¢ be a real such that a; + a; + ¢ > 0 for every (i,7) € {1,2,...,n}". Let

Wy, Wy, ..., w, be n reals. Then, the inequality Y71, >7" % >
a; +aj+c

—c (320, w;)? holds, with equality if and only if (¢ + ay) wy = (¢ + ag) wy =

= (c+ a,)w, =0.
Proof of Corollary 10. Define n reals vy, vs, ..., v, by v; = (c+ a;) w; for every
i€f{1,2,..,n}.

Then,
. 2
S5t e (Sm)
n n n 2 n n n n
= Z Z a?liﬂé”xjijc + (Z wz> = Zl Z aaliJ;Uz:‘iﬂc 02 Z wiw,

i=1 j=1 Jj=1 =1 j=1

n n

n n n n
since E w; = E w;j E w; = E w;j - E w; = E E W;W;
i=1 =1 j=1

i=1 j=1 i=1 j=

= Z Z (a(jlj_];u ,l_U‘_]C —+ Cwiwj) Z 2; (CLZ _flaa]]_{_ c + C> wW; Wy

i=1 j=1 =1 j

"= aa; + (a; +a;+c)e = (c+a;) (c+ aj)
:ZZ a—l—a +]c Z a; + a; —|—c] Wity

i=1 j=1 i=1 j=1 v J

(since a;a; + (a; + a; + ¢) ¢ = a;a; + a;c + aje + ¢ = (c+ a;) (¢ + a;))

B " (c+ a;) w; (c+ a;) w;

=1 =1 a; +a;+c

n n Vi, .
= i) w; = v; and ) w; = ;).

izljzla+a]+c (since (c+ a;)w; =v; and (c+ a;) w; = v;)

Hence,

| ;a;Ww; e O
E JE: Gita o> > —c ( E w,) holds if and only if ; 1 ngl G ta; T c
(9)

Also, clearly,

V] = vy = ... = v, = 0 holds if and only if (¢ + a1)w; = (c+ ag) wy = ... = (¢ + a,) w, = 0.
(10)

Uity > 0 holds, with equality if

=la;+a;+c
and only if v; = v = ... = v, = 0. According to (9) and (10), this means that
n n ;45 W; W5
Zi:l Zj:l a; + a; +c
(c+ay)wy =...= (c+ a,) w, = 0. Thus, Corollary 10 is proven.
The problem follows from Corollary 10 (applied to ¢ = —1 and a; = 7).

By Corollary 9, the inequality Y ;" >

> —c (X0, w)?, with equality if and only if (¢ +a))w, =
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