
Formal Verification of the VAMP Microprocessor
Project Status

Christoph Berg
�
, Sven Beyer, Christian Jacobi,

Daniel Kröning
��� ���

, and Dirk Leinenbach

Saarland University, Computer Science Department
66123 Saarbrücken, Germany�

cb,sbeyer,cj,kroening,dirkl � @cs.uni-sb.de
Tel. +49-681-302-4129, Fax -4290

September 10, 2002

1 Introduction

Microprocessors are in use in many safety-critical environments, such as cars or planes.
We therefore consider the correctness of such components as a matter of vital impor-
tance. Testing microprocessors is limited by the huge state space of modern micropro-
cessors. We therefore think formal verification is the sole way to obtain a correctness
guarantee.

At Saarland University, we are currently working on a project aiming to formally
verify the correctness of a complete microprocessor called VAMP. The VAMP (Veri-
fied Architecture Microprocessor) is a variant of the DLX processor [11]. It features a
Tomasulo-scheduled 5-stage pipeline, precise interrupts, delayed branch, virtual mem-
ory management, cache memory, and a fully IEEE compliant dual-precision floating
point unit that handles denormals and exceptions entirely in hardware. The specifica-
tion and verification is performed on the gate level using the PVS theorem proving
system [25]. Our group has developed a tool which automatically translates hardware
specifications from the PVS language to Verilog HDL. This enables us to translate the
VAMP to Verilog and synthesize it on a Xilinx FPGA [7].

This paper provides an overview of the VAMP project. We sketch the proof tech-
niques used in the verification of the different VAMP components.

Related Work. The designs verified in the VAMP project are based on [9, 23]. The
designs and paper-and-pencil proofs in [23] served as guidelines during the formal ver-
ification.

Processor scheduler and hardware verification is considered in [2, 3, 12, 13, 19, 27].
Our verification project is the first to prove the correctness of a gate level description of
a microprocessor of such high complexity. Other formalizations of the IEEE standard
using theorem provers are [10, 20]. Floating point hardware is verified in [1, 8, 21, 24,
26]. In contrast to our verification project, these do not treat denormal numbers and
exceptions.
�

Work supported by the DFG graduate program “Leistungsgarantien für Rechnersysteme”���
Currently at Carnegie Mellon University

2 Tomasulo Scheduler Verification

Out-of-order execution allows for high performance even in case of long latency in-
structions such as floating point or memory instructions. One of the most popular out-
of-order execution algorithm is the Tomasulo scheduling algorithm [28]. It provides CPI
rates down to 1.1 on a single-instruction issue machine [22]. The proof is described in
detail in [18], we only sketch the proof idea here.

GPR FPR SPR

ID

EX

IF

C

WB

ALU MEM FPU1 FPU2 FPU3

IM

Reservation Stations
PC environment

Producers

CDB

ROB

PC ′ DPC

IR.1

Fig. 1. VAMP microprocessor overview

Data Consistency. We show the cor-
rectness of a DLX implementation with
Tomasulo scheduler by defining an ab-
stract machine � � that processes one in-
struction with each transition. The config-
uration of this machine consists only of
the ISA registers ��� , register files, and
main memory. The proof is split in two
parts: 1) We show that a machine imple-
menting the Tomasulo protocol simulates
the abstract machine � � . This is the hard-
est part of the proof. 2) We then show that
the DLX implementation with Tomasulo
scheduler implements the Tomasulo pro-
tocol.

Scheduling Functions. We need a for-
mal way to state that “instruction ��� is be-
ing issued during cycle � ” or “instruction�	� is being dispatched during cycle � ”. We do this in analogy to [23] using a scheduling

function.

Issue. We recursively define a function
��
��
�
���� that maps a cycle � to the index � of
the instruction �	� that is in the issue stage. Since we issue in program order, that number
increases by one in case of an issue and stays unmodified otherwise. We start with
instruction �	� . Let the predicate ��
�
���������� denote the fact that we issue an instruction
during cycle � .

��
��
�
��������������
�� "! �#�$� !
��#��
�
��%�&���('*)��,+$)-�#��
�
.���&�/�0'0)��
��#��
�
��%�&���('*)�� � otherwise

Reservation Stations. We also desire a way to define the instruction in a given reser-
vation station 12
 during a given cycle � . We do this by defining a schedule function
���3 � �/12

45�6� for the reservation stations. Instructions are put in a reservation station
during issue. In case an instruction is issued into reservation station 12
 , we take the

2

value of
��#��
�
��%�&�/�*'*)�� . Otherwise, the value of
��
3 � ��12
#4 ��� remains unchanged.

���3 � �/12

45��� � �
�� "! �2�$� !
��
��
�
����&�/�('*)�� �2��
�
��%�&�/�0'0)�� into reservation station 12

���3 � �/12

45� '*)�� � otherwise

We define similar functions for the reorder buffer entries, for the FUs and for the
producers. Furthermore, we define a function that provides the index of the instruction
on the CDB.

Proving the Forwarding Correct. The most important part of the data consistency
proof is proving the forwarding correct. Forwarding is done by reading from the CDB
or from the ROB. Both the ROB and the CDB use tags to identify the results. The first
step is to show the following property on the tag that is used to identify the instruction
that produces the desired result: the tag is shown to be the tag of the last instruction that
wrote the register to be forwarded. The next step is to show the following central claim:
Consider two instructions ��� and � � that are already issued but not terminated yet. Let
those instructions have the same tag. Then the instructions are the same. This allows
concluding that the data we read is the result of the last instruction writing the desired
register.

Liveness. We propose the following liveness criterion for the Tomasulo machine with
reorder buffer: we will show that all instructions will eventually terminate. We omit the
details due to lack of space and refer the reader to [18].

3 Memory Management Unit

The VAMP includes a memory management unit (MMU) with virtual memory and
parameterized � -way data and instruction caches. The cache verification is finished, the
MMU will be completed within the next months [6]. We omit the details due to lack of
space.

4 Floating Point Unit

To exploit the benefits of the Tomasulo scheduler, there are three FPUs in the VAMP
processor. We have one FPU that handles addition/subtraction, one that handles multi-
plication/division, and one for conversion and other instructions. Figure 2 depicts the
overall structure of the floating point units. Special cases, e.g., operations on ��� ,
are handled separately and bypass the computation unit, where the actual operation
is implemented. The results of the operations are passed to the rounder, where they are
rounded to representable IEEE numbers.

The verification of the FPU is split into two independent parts: the correctness of the
combinatorial data paths (unpacker, the computation unit implementing the operation
to be performed, and the rounder), and the correctness of the pipeline control for the

3

different units. The combinatorial design of the FPU is taken from [23]. The paper-
and-pencil proofs in [23] served as guidelines for the formal verification in PVS. We
describe the formal verification in detail in [4].

Combinatorial FPU Data Paths. The FPU is correct if it obeys the IEEE standard 754
[14]. This standard is an informal description of floating point arithmetic. We therefore
have to give a formal version of the standard that can be used for theorem proving. We
have formalized the standard in PVS [4, 15]. The formalization of the IEEE standard
bases on [9, 20, 23].

COMPUTATION UNIT

ROUND

FPOp a

UNPACK

PACK

FPOut f

FPOp b

SPECIAL CASES

Fig. 2. The FPU data paths

For each of the different rounding and precision
modes in the standard, we define a function 1�� that
rounds real numbers to values representable within the
IEEE floating point format. The correctness criterion
we prove using PVS then is: for each operation ���� + 4.' 4�� 4	��
 on numbers � and � (including denor-
mals), the FPU output is
 �$1�� � � ��� � .

To allow the computation units to be implemented
independently of the rounding mode, we introduce an
equivalence relation ��� , where two numbers � and �
are equivalent iff they round to the same value [9, 23].
This includes denormal numbers. The computation unit
then computes a value that is � -equivalent to the pre-
cise result which the rounder rounds to the correct out-
put. The concept of � -equivalence allows us to reduce
significantly the complexity of the verification because
computation unit and rounder can be verified independently.

The circuit hierarchy is verified in a bottom-up approach. On the gate level, the
smallest modules consist of a few gates. In PVS, the correctness criterion is proved
using a combination of induction and automatic case analysis [5]. The modules are
combined to form ever larger modules, whose correctness is a consequence of the cor-
rectness criteria of the components. At the end, the correctness of the whole unit is
achieved with a practicable complexity of the proof structure.

Pipelining the FPUs. In order to implement the units with reasonable cycle time, one
has to insert pipelining registers. The pipelined units are then incorporated into the
Tomasulo CPU. In order to work properly in the Tomasulo framework, the FUs have to
obey the following correctness properties:

Liveness. Each instruction dispatched into the FU has to complete eventually, and
the data is computed correctly. Formally, this means if tag ��� is dispatched at time � ,
then the tag ��� is output at some later time ������� , and the data output at time ��� is correct
with respect to the data input at time � .

Consistency. Each tag ��� which the FU outputs at some time must have been dis-
patched into the unit at some time earlier, and the tag ��� must not have been returned by
the unit in the intermediate time. Consistency depends on the tag uniqueness property:
the Tomasulo scheduler must not issue an instruction with tag ��� that is currently in

4

use, i.e., that has been dispatched but not yet returned. Tag uniqueness is proved during
the verification of the Tomasulo scheduling algorithm. Together, liveness and consis-
tency guarantee that for each instruction dispatched into the FU, there exists exactly
one return, and the data returned is correct.

The FUs may process multiple instructions simultaneously, and instructions need
not be returned in the same order they were dispatched. All of our FPUs use these fea-
tures. For example, operations on special operands (e.g., ���) bypass the computation
unit and may leave the FU after only one cycle, while other instructions dispatched
before are still processed in the computation unit (see fig. 2).

We have developed a new methodology for the verification of complex pipelines
using a combination of theorem proving and model checking [16,17]. We are not aware
of any other verification projects where pipelined datapaths with branches and cycles in
the pipeline structure the are formally verified.

5 Translation to Verilog HDL

Our group has implemented a translation tool that converts the PVS hardware specifi-
cation to Verilog HDL [7]. This tool has been used to implement the VAMP FPU on
a Xilinx FPGA (hosted on a PCI board). We have tested the implementation with sev-
eral hundred thousand test vectors without encountering a bug in the VAMP FPU. The
complete VAMP processor will be implemented on the FPGA within a few weeks.

References

1. M. D. Aagaard and C.-J. H. Seger. The formal verification of a pipelined double-precision
IEEE floating-point multiplier. In ICCAD, pages 7–10. IEEE, Nov. 1995.

2. Arvind and X. Shen. Using term rewriting systems to design and verify processors. IEEE Mi-
cro Special Issue on Modeling and Validation of Microprocessors, 19(3):36–46, May 1999.

3. S. Berezin, A. Biere, E. Clarke, and Y. Zhu. Combining symbolic model checking with
uninterpreted functions for out-of-order processor verification. In G. Gopalakrishnan and
P. Windley, editors, FMCAD, volume 1522 of LNCS, pages 369–386. Springer-Verlag, 1998.

4. C. Berg and C. Jacobi. Formal verification of the VAMP floating point unit. In CHARME
2001, volume 2144 of LNCS, pages 325–339. Springer, Sept. 2001.

5. C. Berg, C. Jacobi, and D. Kröning. Formal verification of a basic circuits library. In IASTED
International Conference on Applied Informatics. ACTA Press, Feb. 2001.

6. S. Beyer. Formal verification of a cache memory interface. Submitted for publication, 2002.
7. S. Beyer, C. Jacobi, D. Kröning, and D. Leinenbach. Correct hardware by synthesis from

PVS. Submitted for publication, 2002.
8. Y.-A. Chen and R. E. Bryant. Verification of floating point adders. In CAV’98, volume 1427

of LNCS, 1998.
9. G. Even and W. J. Paul. On the design of IEEE compliant floating point units. In Proceedings

of the 13th Symposium on Computer Arithmetic. IEEE Computer Society Press, 1997.
10. J. Harrison. A machine checked theory of floating point arithmetic. In TPHOL ’99, volume

1690 of LNCS. Springer, 1999.
11. J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. Mor-

gan Kaufmann, San Mateo, CA, second edition, 1996.

5

12. T. A. Henzinger, S. Qadeer, and S. K. Rajamani. You assume, we guarantee: Methodology
and case studies. In CAV’98, volume 1427 of LNCS, pages 440–451. Springer-Verlag, 1998.

13. R. Hosabettu. Systematic Verification of Pipelined Microprocessors. PhD thesis, University
of Utah, Department of Computer Science, 2000.

14. Institute of Electrical and Electronics Engineers. ANSI/IEEE standard 754–1985, IEEE Stan-
dard for Binary Floating-Point Arithmetic, 1985.

15. C. Jacobi. Formal verification of a theory of ieee rounding. In Suppl. Proc. TPHOLs 2001,
2001. Informatics Research Report EDI-INF-RR-0064, Univ. Edinburgh, UK.

16. C. Jacobi. Formal verification of complex out-of-order pipelines by combining model-
checking and theorem-proving. Submitted for publication, 2002.

17. C. Jacobi. Formal Verification of a Fully IEEE Compliant Floation Point Unit. PhD thesis,
Saarland University, Computer Science Department, April 2002.

18. D. Kröning. Formal Verification of Pipelined Microprocessors. PhD thesis, Saarland Uni-
versity, Computer Science Department, 2001.

19. K. L. McMillan. Circular compositional reasoning about liveness. In L. Pierre and T. Kropf,
editors, Correct Hardware Design and Verification Methods: IFIP WG 10.5 Advanced Re-
search Working Conference, CHARME ’99, pages 342–345. Springer-Verlag, 1999.

20. P. S. Miner. Defining the IEEE-854 floating-point standard in PVS. Technical Report TM-
110167, NASA Langley Research Center, 1995.

21. J Moore, T. Lynch, and M. Kaufmann. A mechanically checked proof of the AMD5K86
floating point division program. IEEE Transactions on Computers, 47(9):913–926, 1998.

22. S. M. Mueller, H. Leister, P. Dell, N. Gerteis, and D. Kroening. The impact of hardware
scheduling mechanisms on the performance and cost of processor designs. In 15th GI/ITG
Conference ’Architektur von Rechensystemen’ ARCS’99, pages 65–73. VDE Verlag, 1999.

23. S. M. Mueller and W. J. Paul. Computer Architecture. Complexity and Correctness. Springer,
2000.

24. J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger. Formally verifying IEEE compliance of
floating-point hardware. Intel Technology Journal, Q1, 1999.

25. S. Owre, N. Shankar, and J. M. Rushby. PVS: A prototype verification system. In CADE’92,
volume 607 of LNAI, pages 748–752. Springer, 1992.

26. D. M. Russinoff. A mechanically checked proof of IEEE compliance of the floating point
multiplication, division and square root algorithms of the AMD-K7 processor. LMS Journal
of Computation and Mathematics, 1:148–200, 1998.

27. J. Sawada and W. A. Hunt. Results of the verification of a complex pipelined machine model.
In L. Pierre and T. Kropf, editors, Correct Hardware Design and Verification Methods: IFIP
WG 10.5 Advanced Research Working Conf., CHARME ’99, pages 313–316. Springer, 1999.

28. R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. In IBM
Journal of Research and Development, volume 11 (1), pages 25–33. IBM, 1967.

6

