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Abstract. Most computer-aided design frameworks rely upon building BDD rep-
resentations from netlist descriptions. In this paper, we present efficient algo-
rithms for building BDDs from netlists. First, we introduce a dynamic scheduling
algorithm for building BDDs for gates of the netlist, using an efficient hybrid of
depth- and breadth-first traversal, and constant propagation. Second, we introduce
a dynamic algorithm for optimally leveraging constraints and invariants as don 't-
cares during the building of BDDs for intermediate gates. Third, we present an
automated and complete case splitting approach which is triggered by resource
bounds. Unlike prior work in case splitting which focused upon variable cofac-
toring, our approach leverages the full power of our don’t-caring solution and
intelligently selects arbitrary functions to apply as constraints to maximally re-
duce peak BDD size while minimizing the number of cases to be explored. While
these techniques may be applied to enhance the building of BDDs for arbitrary
applications, we focus on their application within cycle-based symbolic simu-
lation. Experiments confirm the effectiveness of these synergistic approaches in
enabling optimal BDD building with minimal resources.

1 Introduction

Many applications in computer-aided design rely to some degree upon building BDD
representations from netlist descriptions, such as combinational and sequential equiva-
lence checking, bounded, unbounded, and inductive property checking, and design op-
timization and abstraction algorithms. Even modern satisfiability solvers, increasingly
finding applications in domains for which BDD-based techniques were long consid-
ered the only alternative (such as unbounded verification), are likely to use a hybrid-
algorithm scheme integrating BDDs for optimality [16, 15].

In this paper, we present an efficient set of synergistic algorithms for building BDDs
from a netlist. First, we present a new scheduling algorithm for optimal BDD building.
Our proposed resource-constrained interleaved depth-first and (modified) breadth-first
schedule heuristically converges upon an optimal schedule for building BDDs. The
scheme dynamically alternates between a depth-first and breadth-first schedule with
progressively increasing resources until all BDDs for the netlist nodes have been built.
Such a scheme combines the advantages of building BDDs with either of the two sched-
ules, and augments it further by doing so in a resource-constrained manner resulting in
a robust summation of their strengths. Furthermore the resource-constrained scheme
handles constant propagation very efficiently which is particularly effective in property
checking and equivalence checking frameworks.



Second, we present a novel method to take advantage of constraints and invari-
ants to optimize intermediate BDDs. Constraints arise as user-specified restrictions of
the environment, and also as a means to perform manual case splitting for computa-
tional efficiency. Essentially, constraints and invariants are applied as don’t-cares when
building BDDs in an attempt to optimize their size by heuristically factoring in the con-
straints early. This is closely intertwined with the scheduling algorithm described above
such as to realize its benefits at each step of the BDD building process. Additionally,
this is controlled by BDD size thresholds resulting in a tight and robust algorithm that
dynamically trades-off resources invested with the desired reduction in BDD sizes.

Third, we describe an automatic and complete case splitting strategy that decom-
poses the problem into smaller problems, thus enabling building BDDs of the netlist
without exceeding resources. In addition to case splitting on inputs, we present tech-
niques for case splitting on internal signals by constraining them to constant values,
and propagating these constraints to other BDDs. This is equivalent to restricting the
inputs in the support of the chosen internal signal to values that cause it to assume the
selected constant value. Note that this nicely interacts with the resource-constrained
BDD building and its efficient constant propagation, and with the don’t-care optimiza-
tion of intermediate node BDDs. We additionally present new heuristics to choose sig-
nals to case split upon. Completeness is ensured by applying all possible values to the
case split inputs and signals. The method gracefully degrades into underapproximate
analysis once global resources are exceeded by not exploring all case split branches.

In this paper we present the described algorithms in the context of a cycle-based
symbolic simulation (CBSS) [5] engine. A CBSS performs a cycle-by-cycle symbolic
simulation of the design under test, and thus extends the cycle simulation methodology
to symbolic values. The simulator essentially performs forward bounded symbolic sim-
ulation starting from the initial states. Symbolic values (represented as BDD variables)
are assigned to the inputs in every cycle and propagated through the circuit to the out-
puts and state variables. This technique enables simulating large input spaces in parallel
due to the inputs assuming symbolic values at each time-step. The bottleneck of the ap-
proach lies in the possible explosion of the BDD representations of the netlist nodes
and state variables; this is alleviated by our proposed BDD-building scheme, don’t-care
optimization, and case splitting strategy.

We briefly describe synergies of this engine with other transformation and verifi-
cation algorithms in a Transformation-Based Verification (TBV) [18] framework. By
utilizing a sequence of transformation engines we may achieve significant reductions
in the size of the design in a manner that benefits simulating it symbolically using the
described algorithm. Additionally, the simulator may be leveraged as a falsification and
proof algorithm in a number of settings.

Related Work Other researchers [20,21,23] have studied various scheduling tech-
niques (e.g., DFS, BFS, hybrid) for BDD operations inside a BDD package, eg. in which
order to traverse the BDD sub-graphs when ANDing two BDDs. The order of process-
ing in BDD operations themselves is a different (and independent) question from the
order in which BDDs for gates in a netlist are built. The latter question pertains to our
work, and has also been studied by Aloul et al. [2]. They propose the use of partitioning
and placement information to obtain a min-cut based scheduling for the gates, i.e. gates



which are close together in the circuit are scheduled close together as well. A drawback
of their method is that they spend a considerable amount of time obtaining a schedule.
Our method is more robust and dynamically adapts itself to different circuit topologies.

Rather then looking at a schedule for the whole netlist, Murgai et al. [19] delve into
finding an optimal schedule for combining BDDs at the inputs of a multi-input AND
gate when attempting to build the BDD for the gate output. They select which two BDDs
to combine next based on a size- and support-based analysis of the candidate BDDs.
Their approach is complementary to our approach and may easily be integrated into our
overall netlist schedule. DFS and BFS are commonly used schedules for building BDDs
for netlists. We extend these by proposing a hybrid DFS-BFS schedule for this task and
further optimize by building BDDs in a resource-constrained manner and propagating
constants efficiently.

Algorithms for optimizing BDDs with respect to don’t-care sets has been studied
in [10, 11]. We utilize and extend these algorithms by dynamically choosing the BDD-
minimization algorithm based on size thresholds. We additionally propose the novel
application of constraints as don’t-cares during intermediate BDD building which often
substantially reduces peak BDD size.

Wilson et al. [22] use ternary symbolic simulation (X-values) to abstract internal
nodes to deal with the computational complexity. They also briefly mention case split-
ting on input variables, but do not detail their algorithms for selecting case split nodes,
or the management of case splits. Our method extends their work by also being able
to split upon internal nodes and using different heuristics to select nodes to case split
upon. Completeness in our approach is ensured by symbolically simulating all possible
values of the case split inputs and signals, and is handled automatically unlike the man-
ual case splitting technique presented in [1]. In contrast to the approximating approach
presented by Bertacco et al. [5, 6] our approach is complete in that it checks the design
exhaustively.

A recent body of work addresses the generally exponential relation between the
number of variables in the support of a BDD and its size by reparameterizing the rep-
resentation onto a smaller set of variables, e.g. [4]. This technique has been extended
to cycle-based symbolic simulation by reparameterizing unfolded input variables [5, 6,
8]. Such approaches are complementary to the techniques presented in this paper. Our
techniques may be used to more efficiently compute the desired BDDs for the functions
to be reparameterized. After reparameterization, our approach may again be used to
continue the computations, seeded by the results of the reparameterization.

Organization The rest of the paper is organized as follows. The next section (Section 2)
introduces some notation used throughout the paper to aid in describing our approach.
Section 3 gives a high-level overview of the CBSS algorithm. In Section 4 we present
an optimal scheduling technique for building BDDs for gates in a netlist representation
of a design. Next we describe a method to optimally utilize constraints and invariants in
Section 5. Section 6 describes efficient techniques to perform case splitting to deal with
the complexity of symbolic analysis, and Section 7 delves into synergies of symbolic
simulation with other algorithms in a Transformation-Based Verification framework.
Lastly we present experimental results in Section 8, followed by concluding the paper.



2 Netlists: Syntax and Semantics

A netlist is a tuple N = ((V, E), G, Z) comprising a directed graph with nodes V" and
edges E C V xV.FunctionG : V — types represents a semantic mapping from nodes
to gate types, including constants, primary inputs (i.e., nondeterministic bits), registers
(denoted as the set R C V'), and combinational gates with various functions. Function
Z : R +— V is the initial value mapping Z (v) of each register v, where Z (v) may not
contain registers in its transitive fanin cone. The semantics of a netlist N are defined in
terms of traces: {0, 1} valuations to netlist nodes over time which are consistent with
G. We denote the value of gate v at time ¢ in trace p by p(v, 7).

Our verification problem is represented entirely as a netlist, and consists of a set of
targets T C V correlating to a set of properties AG(—t),Vt € T. We thus assume that
the netlist is a composition of the design under test, its environment (encoding input
assumptions), and its property automata. The goal of the verification process is to find
a way to drive a ‘1’ to a target node, or to prove that no such assertion of the target is
possible. If the former, a counterexample trace showing the sequence of assignments to
the inputs in every cycle leading up to the fail is generated.

A set of constraints C C V may be used to filter the stimulus that can be applied
to the design. In the presence of constraints, a target ¢ € T is defined to be hit in trace
p € P atcycle i if p(t,i) = 1 and p(c,i’) = 1forall ¢ € C,i' < i. A target is
unreachable if it cannot be hit along any path. Algorithmically, when searching for a
way to drive a ‘1’ to a target, the verification process must prune its search along paths
which violate constraints.

A set of invariants I C V specify properties inherent in the design itself. L.e. in-
variants will always evaluate to ‘1’ in every time-step along every trace, at least until a
constraint is violated. Invariants encode “truths” about a design that may be utilized as
constraints to tighten overapproximate techniques (such as induction) to enhance proof
capability. Invariants may be generated using a variety of mechanisms, e.g. the negation
of targets previously proven unreachable.

We map all designs into a netlist representation containing only primary inputs,
one “constant zero” node, 2-input AND gates, inverters, and registers, using straight-
forward logic synthesis techniques to eliminate more complex gate types [16]. Inverters
are represented implicitly as edge attributes in the representation.

3 Background

A Cycle-based Symbolic Simulator (CBSS) [5] performs a cycle-by-cycle symbolic
simulation of the design under test, typically using BDDs. It applies symbolic values at
the inputs in every cycle, and propagates those to the state-variables and targets. Hence,
state-variables and targets are always expressed in terms of symbolic input values, i.e.,
as Boolean functions of the symbolic inputs applied in the current and all prior cycles. If
a target is hit, counterexample traces are generated by simply assigning concrete values
to the symbolic input values in the cycles leading up to the fail.

Figure 1 gives an outline of the algorithm. The algorithm applies symbolic inputs in
the form of new BDD variables at the inputs in every cycle, in function create_ variables.
At the outset, BDDs for the initial-states of the state-variables are computed and stored
at the respective state-variables via function update_state_variables. Next, BDDs for



Algorithm cycle_sym(num_cycles) {
for (cycle_num = 0; cycle_num < num_cycles; cycle_num++) {
create_variables(inputs); // Create new BDD variables for inputs in the current cycle
if (cycle_num == 0) {
build_node_bdds(initial_state_fns); // Build BDDs for the initial states
update_state_variables(initial_state_fns); // Initialize the design

}

build_node_bdds(constraints); // Build BDDs for the constraints
build_node_bdds(targets); // Build BDDs for the targets
constrain_node_bdds(targets, constraints); // Constrain target BDDs
check_targets(targets); // Check targets for being hit

if (all_targets_solved(targets)) return;
build_node_bdds(next_state_fns); // Build BDDs for the next-functions
update_state_variables(next_state_fns); // Update state-vars

Fig. 1. Generic cycle-based symbolic simulation algorithm

the constraints and targets are obtained by evaluating the combinational logic of the
netlist starting with the new BDD variables at the inputs and the current BDDs at
the state-variables. The computation of the constraints ANDs the constraint valuations
(BDDs) from the previous cycles to the BDDs obtained for the constraint nodes in the
current cycle. These “accumulated” constraint BDDs are then ANDed with the target
BDDs (function constrain_node_bdds) before the targets are checked for being hit
in function check_targets to ensure that the target valuations are consistent with the
care set defined by the constraints. Thereafter, the combinational next-state logic of the
state-variables is evaluated (again starting at the current BDD variables of the primary
inputs and current state-variable BDDs), followed by updating the state-variables with
the valuations obtained at the respective next-state functions. The process is iterated
until all targets are solved (i.e. hit) or the design has been simulated symbolically for
the specified maximum number of cycles.

4 Dynamic BDD Scheduling Algorithm

The bulk of the time during symbolic simulation is spent building BDDs for nodes in
a netlist graph (function build_node_bdds in Fig. 1). A set of nodes whose BDDs
are required to be built at each step, called “sinks,” are identified. Sinks correspond to
targets, constraints, invariants, initial-state and next-state functions of state variables.
BDDs of some netlist nodes are available at the beginning of each cycle, namely those
of the current content of state-variables, and new BDD variables created for the primary
inputs (function create_variables in Fig. 1). The BDD building task is to compute
BDDs for the sink nodes, starting at nodes for which BDDs exist, according to the
semantics of the gates in the underlying combinational network.

It is known that different schedules for building BDDs for nodes of a netlist lead
to significantly different peak numbers of BDD nodes [19,2]. It is of utmost impor-
tance that this peak number be kept as low as possible. A large number of BDD nodes
results in bad memory and cache performance, and severely degrades performance of
expensive optimization algorithms such as Dynamic Variable Reordering (DVO) and



Garbage Collection. Optimal DVO has an impractically high computational complexity
in the worst case (the problem is known to be NP-Hard [7]). Practical DVO approaches
look for local minima based on time or memory limitations. They are likely to find
better variable orderings when they are called on smaller number of active BDD nodes.

The BDDs for the sink nodes are built topologically starting at the inputs and state-
variables, nodes for which BDDs exist at the beginning of a cycle. Two standard and
commonly used schedules for building BDDs are depth-first (DFS) traversal of the
netlist starting at the sink nodes, and breadth-first (BFS) traversal starting at the inputs
and state-variables. Each of the two schedules have certain advantages and drawbacks
depending on the structure of the netlist. Intuitively, when a netlist has many “indepen-
dent components” which do not fan out to other parts of the netlist, DFS is often more
efficient. This is because it builds BDDs for the components successively, hence only
has the intermediate BDDs of a single component “alive” at any time. The algorithm is
able to free BDDs for nodes in the component as soon as BDDs of their fanouts have
been built. In contrast, the levelized nature of BFS builds BDDs of all components si-
multaneously causing many intermediate BDDs to be “alive” at the same time. But if a
netlist node n has many fanouts, each processed by DFS along separate branches, the
levelized BES schedule is likely to perform better. The BDD for n can be freed as soon
as all fanout gates of n are built, which often happens sooner with BES particularly
when the fanouts of n are level-wise close to n. This reduces the average “lifetime” of
BDDs thus reducing the peak number of alive nodes. The experimental results in Sec-
tion 8 demonstrate that each method outperforms the other method on some examples.

We extend the standard DFS- and BFS-based BDD building algorithms by applying
them in a resource-constrained manner, using the algorithm of Figure 2. The algorithm
builds BDDs for netlist nodes per the chosen schedule, but builds BDDs for gates in the
netlist only up to a certain BDD size limit, i.e. it gives up building the BDD for a node
if it exceeds an imposed size limit. After all node BDDs within this limit have been
built, the limit is increased and the algorithm is applied again. We extend this further
by alternating between DFS- and BFS-based schedules. Once all node BDDs within the
current size limit have been built, the algorithm increases the size limit and switches to
the other BDD building schedule. Such an interleaved hybrid DFS-BFS scheme brings
together both a DFS and a BFS scheme in a tight and robust integration combining the
advantages of both, and alleviating some of their drawbacks. The new scheme works in
a “push-pull” manner by going back and forth between the two schedules. The DFS or
the “pull” scheme uncovers any paths building BDDs along which may suffice to build
the BDD for a sink node. The “push” or the levelized BFS traversal causes BDDs to
be propagated quickly from the inputs toward the outputs with a tight control on the
consumed resources.The resource limits further ensure that the overall algorithm does
not get stuck in any one computation that does not contribute to the final result.

Building BDDs iteratively in a resource-constrained manner has several advantages
over conventional approaches. First, since we restrict the BDD sizes at each iteration,
DVO algorithms are able to converge on a good variable order when BDDs are small,
causing larger BDDs that are computed later to be more compact and smaller. Sec-
ond, the resource-constrained scheme ensures that nodes that have small BDDs can be
computed and gotten out of the way early (and subsequently freed), to “make way” for



Algorithm build_node_bdds(sink_nodes) {
/I Compute DFS and BFS schedules for nodes in the cone-of-influence
df s_schedule = compute_dfs_schedule(sink_nodes);
bfs_schedule = compute_bfs_schedule(sink_nodes);
bdd_size_limit = INITIAL_BDD_SIZE _LIMIT;
while (1) {
/I Attempt building BDDs within the current bdd-size-limit using a DFS schedule
build_node_bdds_aux(df s_schedule, bdd_size_limit);
if (all_sink_node_bdds_built(sink_nodes))
return SUCCESS;
if (bdd_size_limit > MAX_BDD_SIZE_LIMIT))
return INCOMPLETE;
bdd_size_limit = bdd_size_limit + DELTA_BDD_SIZE LIMIT;
/I Attempt building BDDs within the current bdd-size-limit using a BES schedule
build_node_bdds_aux(bfs_schedule, bdd_size_limit);
if (all_sink_node_bdds_built(sink_nodes)
return SUCCESS;
if (bdd_size_limit > MAX_BDD_SIZE_LIMIT)
return INCOMPLETE;
bdd_size_limit = bdd_size_limit + DELTA_BDD_SIZE_LIMIT;

Fig. 2. Interleaved DFS-BFS resource-constrained BDD building algorithm

larger BDDs later. Third, the resource-constrained algorithm can uncover and propagate
constants very effectively. Note that if an input to an AND gate evaluates to a constant
‘0’ there is no need to evaluate its other input function. Traditional BDD building ap-
proaches may spend a large amount of time and memory computing the BDD of that
other fanin node function. Our resource-bounded scheme will effectively iterate be-
tween evaluating the function of both the fanin nodes under increasing size limits. If
BDD size limits along either branch are exceeded, the scheme gives up building the
BDD for this branch and moves on to the next node in the schedule, heuristically dis-
covering the constant without the need to evaluate the more complex branch. This situ-
ation arises frequently in real designs, e.g. at multiplexers where some multiplexer data
input functions may have significantly higher BDD complexity than the others and the
selector signal is a constant, thus enabling the multiplexer to be evaluated by sampling
the simpler data input. Once we discover a constant at a node we recursively propagate
it along all the fanouts of this node.

We generalize this further to efficiently derive constants at partially evaluated multi-
input AND (and OR) gates. It is frequently the case that the BDD for such a gate cannot
be computed due to exceeding BDD size limits on some of the inputs, but the available
BDDs together already imply a constant for the gate output, for example due to compli-
mentary inputs along two branches. We recognize and exploit this situation by building
a “partial” BDD for the multi-input AND structure by successively combining BDDs
of the available fanin nodes within the current BDD size limit. If this evaluates to a
constant at any point, we don’t need to build the BDDs for the remaining fanin nodes,
and instead we trigger constant propagation as described above.



5 Dynamic Don’t Caring under Constraints and Invariants

Constraints are often used in verification to prune the possible input stimulus of the
design. Semantically, the verification tool must discard any states for which a constraint
evaluates to a ‘0’. In that sense, constraints impose “hard restrictions” on the evaluations
performed by the verification tool, splitting the input space into two parts - the “valid”
or the “care” set, and the “invalid” or the “don’t-care” set. In the CBSS algorithm this
is achieved by ANDing the accumulated constraints of the current and past cycles to
the targets before they are checked for being hit. Recall that, during overapproximate
search, our framework treats invariants as constraints.

We have found that constraints may be efficiently exploited as don’t-cares to opti-
mize intermediate BDDs during the course of the overall computation. This is achieved
by modifying the intermediate BDDs in a manner such that they evaluate to the same
Boolean values within the care set, but they are free to assume values in the don’t-care
set towards the goal of minimizing the size of the BDD [10, 11]. In some applications of
constraints, like manual case splitting [13], or automatic case splitting (cf. Sect. 6), this
minimization is key to the successful completion of the symbolic simulation without
memory explosion.

We present a technique to exploit constraints and invariants optimally in a symbolic
simulation setting. At each time-step of the symbolic simulation process BDDs for the
constraints and invariants are computed and subsequently applied as don’t-cares when
building BDDs for the netlist nodes. This is done in a manner that ensures BDD sizes
do not increase as a result of the don’t-caring. The don’t-caring is done by using one
of the BDD constrain [10], restrict [10] and compact [11] operations. These algorithms
ensure that the BDD valuations within the care set are unchanged, but for all values
outside the care set they freely choose a ‘0’ or a ‘1’ value to minimize the BDD size.

Intuitively, don’t-caring heuristically factors in the constraints early, and doing so
helps to reduce the BDD representation of the intermediate nodes. The behaviors added
by the intermediate application of the don’t-cares will ultimately be eliminated before
targets are checked for being hit (function constrain_node_bdds in Fig. 1). In a sense,
our scheme rules out and/or adds behaviors precluded by the constraints early on by
application of the constraints when building intermediate BDDs, as opposed to doing
this only at the end once all the exact BDDs have been built.

Exact minimization is known to be NP-hard [11]; the constrain, restrict, and com-
pact operators are therefore heuristic minimization algorithms. In the listed order, they
are increasingly powerful in minimizing BDD sizes, at the cost of (often dramatically)
increased runtime. Therefore, in our symbolic simulation algorithm we apply the cheap-
est, or the least computationally expensive, operation constrain first, and depending on
size thresholds automatically switch to more expensive algorithms. This ensures a dy-
namic compromise between time and memory requirements. Also, this threshold-based
scheme applies the cheap and fast minimization operation to the many small BDDs, and
applies the more expensive operations to the only (hopefully) few large BDDs.

Note that some verification problems use constraints only for restricting the input
stimulus, and have only minimal BDD reduction potential. Applying the expensive min-
imization algorithms to such designs will only marginally decrease the BDD size, but



Algorithm dont_care_node_bdd(node_bdd, constraint_bdds) {
if (bdd_size(node_bdd) < BDD_SIZE.THRESHOLD_CONSTRAIN)
return node_bdd; // return if too small
foreach (constraint_bdd in constraint_bdds) {
if (supports_intersect(node_bdd, constraint_bdd)) {
res_bdd = bdd_constrain_threshold(node_bdd, constraint_bdd); // constrain
if (bdd_size(res_bdd) > BDD_SIZE_THRESHOLD_RESTRICT)
res_bdd = bdd_restrict_threshold(node_bdd, constraint_bdd); // restrict
if (bdd_size(res_bdd) > BDD_SIZE_THRESHOLD_COMPACT)
res_bdd = bdd_compact(node_bdd, constraint_bdd); // compact
node_bdd = res_bdd,

}

return node_bdd,;

}

Fig. 3. Algorithm for optimizing node BDDs using don’t-cares

may have a severe impact on runtime. For such problems it is best to set the thresholds
of the expensive operations very high. The constrain operator is so fast that it usually is
worthwhile even on such examples.

Figure 3 gives an outline of the algorithm. Whenever a BDD for a netlist node has
been built, the BDD is optimized by applying all the constraint BDDs as don’t-cares,
in function dont_care_node_bdd.! If the BDD size is below the threshold for the ap-
plication of the constrain operator, the function immediately returns. Otherwise, any
don’t-caring first checks for the intersection of the cone-of-influence of the BDDs of
the constraints with that of the node (function supports_intersect), and applies only
those constraints that have some overlap. Functions bdd_constrain_threshold and
bdd_restrict_threshold apply the constrain and restrict operators respectively, but ad-
ditionally ensure that the size of the resultant BDD is no greater than the argument BDD
by returning the argument BDD if the application of these operators causes the BDD
size to increase (which is possible [10]).

It may be noted that the BDD for a constraint in any time-step is a conjunction of the
BDD obtained for it in the current and all previous time-steps. If at any point the BDD
for the constraint becomes a zero BDD, it implies that the design does not have a legal
state-space beyond this time-step and any unsolved targets are trivially unreachable.

6 Automated Case Splitting

In this section we describe automated case splitting strategies to ameliorate the BDD
explosion which may occur during symbolic simulation. The described method ensures
that the total number of BDD nodes does not exceed a specified limit, ultimately en-
abling symbolic simulation to complete computations which otherwise would be prone
to memory-out conditions. In our proposed method we address the memory blow-up
when computing intermediate BDDs as follows:

! Note that we cannot use don’t-care minimization when building BDDs for the constraint nodes
themselves; if we did, we could alter their care set.



— If the total number of BDD nodes exceed a certain threshold, we select a netlist
node to case split on, and a constant value to be applied to the selected node.

— Upon case splitting the BDD sizes drop significantly and we continue with the
symbolic analysis. Note that we may case split on any number of netlist nodes at
different steps and stages of the symbolic simulation.

— Once the symbolic analysis completes, i.e. the design has been symbolically sim-
ulated for the required number of time-steps, we “backtrack” to the last case split
(and the time-step in which it was applied) and set the selected netlist node to the
other constant, and complete the symbolic analysis on this branch. This is continued
until all case splits are covered, ensuring completeness.

All case splits are entered onto a stack that snapshots BDDs for the non-chosen
value of the case split node (and discards the current BDDs at the node) to enable back-
tracking to this case split. The case splitting decomposes the problem into significantly
smaller subproblems each of which is then individually discharged. Expensive BDD op-
erations such as DVO benefit greatly from such a decomposition due to the subproblems
being much smaller, and the fact that they can be solved independently of the others;
in particular, DVO can apply different variable orderings along different branches of
the case splits. A parallel may be drawn between case splitting and satisfiability (SAT)
approaches with the case split nodes representing decision variables - the BDDs encode
all possible solutions of the netlist nodes for the particular value of the case split node
as opposed to SAT systematically exploring the solutions one-by-one.

We propose two techniques to select the netlist node or nodes to case split upon. We
have found these to be very effective in managing space complexity of BDD operations.
We describe these in the context of selecting a single node to case split upon, but they
can be easily extended to case split on multiple nodes in one step:

— Case split on the “fattest” variable(s). The fattest variable, at a given point in time,
is defined as a variable that has the largest number of BDD nodes in all the live
BDDs. Hence, setting this variable to a constant causes the largest reduction in the
number of BDD nodes.

— Case split on an internal node via constraining. Here we select a netlist node other
than inputs to case split upon based on algorithmic analysis. The analysis may in-
clude the reduction potential by examining the netlist graph and BDDs available
for internal nodes. Next, the BDD for the selected case split node or its inverse is
treated as a constraint, which is then added to the list of constraints as a derived
constraint. The new constraint is subsequently used for minimizing all other BDDs
by means of don’t-caring as described in the previous section. The derived con-
straint is later removed from the list of constraints when the algorithm backtracks.
For the other branch of the split, the inverse of the case split BDD is applied as a
constraint. As an example, we may try don’t-caring all live BDDs with the BDD for
each node, and select the one that gives maximal reduction. Note that a constraint is
effectively a restriction on the variables in its support and divides the input space ac-
cording to the constraint BDD. Essentially, case splitting on an internal netlist node
in a certain cycle of the symbolic simulation is equivalent to removing the logic in
the cone-of-influence of this node up to the current time-step in an unfolded ver-



sion of the netlist - and then using the Boolean consequences of this reduction for
minimizing other BDDs.

If the global resources are exhausted this case splitting gracefully degrades into
underapproximate analysis by not exploring all branches. In underapproximate analysis,
at every case split the algorithm heuristically chooses the branch to explore next, which
enables semi-formal analysis. For example, the case split algorithm can be configured to
always select the simpler branch first (i.e. the smaller one after case splitting) in order to
reach very deep into the state space. Using underapproximate symbolic simulation thus
balances the benefits of standard binary simulation (reaching very deep) with the power
of symbolic simulation, effectively simulating a large number of input combinations in
parallel, hence visiting a large number of states.

7 Transformation Synergies

Here we briefly sketch scenarios and interactions of this engine with other algorithms
that we have found to be useful. We have deployed the symbolic simulator as an engine
in the IBM internal TBV [18] system SixthSense. Such a system is capable of maximally
exploiting the synergy of the transformation and verification algorithms encapsulated in
the system as engines against the verification problem under consideration.

Approaches that build BDDs from netlist representations tend to benefit dramati-
cally from prior simplifying transformations applied to the netlist. For example, redun-
dancy removal and logic rewriting algorithms [16] that reduce the number of gates in
the netlist reduce the number of distinct BDDs that need to be built, and may even re-
duce the cutwidth of the netlist implying a need for fewer live BDD nodes. In a CBSS
approach, reductions to the sequential netlist are particularly useful, as they reduce the
complexity of every subsequent time-frame of the symbolic evaluation. In particular, we
have found the input reductions enabled by structurally abstracting the netlist through
reparameterization [4] to be very beneficial to symbolic simulation, often times improv-
ing performance by orders of magnitude. Note that this is complementary to traditional
approaches that reparameterize state sets during symbolic simulation [1, 5, 6, 8]. In fact,
both these can be combined into a powerful two-step process that reparameterizes the
structural sequential netlist, followed by reparameterizing the next-state BDDs at every
time-step of the symbolic simulation.

In a semi-formal setting when performing a directed search of the state-space of the
design, symbolic simulation performs a broad simulation of the design within speci-
fied resources. The engine thus uncovers large portions of the state space, and allows
for probabilistically uncommon scenarios to be exposed that cause the fail events to
be hit. When performing an exhaustive k-step bounded model check of the design, the
symbolic simulator often outperforms SAT-based bounded model checking [16], partic-
ularly when the number of inputs is not too large or for small values of k. Additionally,
we have found this engine to be very useful when attempting proofs via k-step BDD-
based induction. Furthermore, the engine may be used to obtain proofs in conjunction
with an engine that computes a diameter estimate of the design [3].

Localization [17] augmented with counterexample-guided abstraction refinement [9]
has been shown to be an effective technique for obtaining proofs. Such paradigms rely
upon exhaustive bounded search to provide counterexamples from which to refine the



Design Size

S.No. Design #Inputs | #Registers | #Gates | #Targets | #Constraints | #Cycles

1 FPU_ADD | 440 5025 79105 84 5 26

2 FPU_FMA | 452 5785 72272 82 4 18

3 IBM_03 25 119 2460 1 2 33

4 IBM_06 37 140 3157 1 2 32

5 SLB 57 692 3754 1 0 8

6 CHI 112 92 732 1 0 9

7 SCU 71 187 810 1 0 23

Table 1. Details of examples used in the experiments
DFS Res. DFS BFS Res. BFS DFS-BFS
S.No. | T(s) | N(10°%) | T(s) | N(10°) | T(s) | N(10°%) | T(s) | N(10°%) | T(s) | N(10°)

1 inf inf 40.06 | 0.17 inf inf | 4546| 024 | 4022 | 0.17
2 inf inf 14580 | 101.14 | inf inf inf inf 10399 | 96.78
3 572 | 3.12 54.7 314 | 59.1 | 3.5 58.1 3.68 52.1 3.14
4 7392 | 96.56 | 7916 | 111.39 | 8991 | 129.79 | 8150 | 118.23 | 7897 | 106.60
5 1901 | 329.44 | 2094 | 291.84 | 1982 | 304.73 | 1976 | 291.84 | 1832 | 291.83
6 1000 | 91.26 907 83.85 | 1019 | 89.27 | 1021 | 88.57 910 85.94
7 112 6.58 91 6.18 120 | 74.31 113 | 74.08 84 6.28

Table 2. BDD node count and runtimes for the different schedules without DVO

abstracted design. A symbolic simulation engine is apt for performing such bounded
analysis of the localized design. Additionally, the exhaustive representation using BDDs
may be inherently exploited to derive minimally sized refinements.

8 Experimental Results and Conclusions

In order to gauge the effectiveness of various aspects of our symbolic simulation algo-
rithm we chose a diverse set of industrial designs to conduct our experiments on (see
Table 1). All experiments were run on an IBM pSeries computer with POWER4 proces-
sors running at 1.4GHz using the IBM internal verification tool SixthSense. All designs
were put through reductions using a BDD-based combinational redundancy removal en-
gine [16] before the symbolic simulator was applied. FPU_ADD and FPU_FMA are the
verification problems of the dataflow for a floating-point “add” and “fused-multiply-
add” instruction respectively [13]. IBM_03 and IBM_06 are examples from the IBM
Formal Verification Benchmarks [12]. These were randomly chosen from among those
with constraints. SLB is a Segment Lookaside Buffer, CHI is a Channel Interface and
SCU is a Storage Control Unit. SLB, CHI, and SCU are optimized control intensive
circuits that have been put through a number of design transformations.

We ran experiments to measure the resources (time/memory) required to symboli-
cally simulate the above designs with all three scheduling schemes, namely BFS, DFS
and DFS-BFS, in different settings. In order to show the benefits of resource constrain-
ing, we ran the DFS and BFS schemes with and without resource constraints. The results
are given in Table 2. A value of “inf” indicates that the particular run exploded (> 500



DFS Res. DFS BFS Res. BFS DFS-BFS
S.No. [ T(s) [N0®) | T(s) [NA0") [ TG [NA0Y) | T(s) [NA0") [ T(s) [ NI0")
3 236 | 254 | 239 | 265 | 168 | 298 | 172 | 297 | 215 | 2.64
4 | 24507 | 94.13 | 25135 | 100.19 | 26979 | 100.91 | 26103 | 101.47 | 24369 | 100.01
5 648 77 | 577 | 680 | 1122 | 1478 | 1127 | 7.68 | 631 | 681
6 | 2643 | 6139 | 1346 | 53.43 | 3042 | 16.86 | 2270 | 25.66 | 2000 | 30.69
7 382 | 59.66 | 398 | 5557 | 582 | 69.35 | 524 | 67.48 | 311 | 56.40

Table 3. BDD node count and runtimes for the different schedules with DVO

Without don’t-caring With don’t-caring
S.No. | Time(s) | Nodes(10%) | Time(s) | Nodes(10°)

1 inf inf 40.22 0.17
2 inf inf 10399 96.78
3 48.44 3.50 52.11 3.14
4 7990 109.40 7897 106.60

Table 4. BDD node count and runtimes with and without don’t-caring using constraints

million) in the number of BDD nodes. The “#Nodes” in the tables is the peak number
of BDD nodes reported by the BDD package [14]. In the first set of experiments we
turned Dynamic Variable Reordering (DVO) off to get a true comparison since DVO
can skew results due to its heuristic nature. The table also compares and contrasts the
three scheduling techniques. The benefits of resource constraining are amply clear from
the results. It is indispensable for the FPU designs where we see the runs explode with-
out any resource constraining, and go through easily with resource constraining. This
is likely due to the propagation of a large number of constants which resource con-
straining specializes in taking advantage of, in particular when many such constants
are created due to constraints [13]. The effects are somewhat less pronounced in some
other examples due to the fact that they have symbolic initial values or are highly opti-
mized, causing less constants to propagate. Note that resource constraining is inherent
in the hybrid DFS-BFS interleaved scheme as it enables switching between the two
underlying schemes. It is clear that each of DFS and BFS outperforms the other on
different examples. The hybrid DFS-BFS scheme clearly stands out as the most robust,
and nicely combines the individual benefits of DFS and BFS schedules. By and large it
has a peak number of BDD nodes that is close to or less than the lower of the peaks of
the two underlying schemes, and runtime that is close to or better than the faster one.

We repeated the above experiment this time with DVO enabled (Table 3). We ob-
served a somewhat similar pattern, though things varied a bit more. We attribute this to
the heuristic nature of DVO, and the fact that we used low effort DVO. The heuristic
nature of DVO is clearly demonstrated by the FPU examples that explode now in both
non-resource-constrained as well as in the resource-constrained case. The hybrid DFS-
BFS scheme again comes across as the best overall and shows consistent performance
in different scenarios re-enforcing our claim. It provides the benefits of both resource
constraining as well as a summation of the strengths of DFS and BFS schedules result-
ing in a powerful and robust approach that works for all cases.



No case splitting | Case split on fattest variables
Design | Target Status | T(s) | N(10°) | T(s) | N(10°) | #Cases Evaluation

2 Reachable | 57.11 3.48 40.07 1.06 4(0) Underapprox
4 Reachable | 7897 106.6 | 16097 | 11.70 5(4) Underapprox
5 Unreachable | 631 6.81 570 6.24 3 Complete
6 Unreachable | 910 85.94 806 36.44 4 Complete

Table 5. BDD node count and runtimes with and without case splitting using constraints

Next we measured the impact of handling constraints as don’t-cares during inter-
mediate BDD building. The hybrid DFS-BFS scheme was used for the purposes of
this experiment. The results are summarized in Table 4. Only designs containing con-
straints were used for this experiment. The intermediate don’t-caring using constraints
(cf. Section 5) is absolutely essential to get the FPU examples through - the runs simply
explode otherwise. The impact of factoring in constraints early can have a significant
impact on reducing intermediate BDD sizes, or it may not depending on the nature of
the constraints and the design. If a constraint prunes a fair amount of the input stimulus
it may be very effective in reducing BDD sizes, but on the other hand if the BDDs of the
internal nodes are already optimized then it may not do much. Hence, in our scheme
we use threshold based don’t-caring that is cheap for the most part, and apply more
aggressive but computationally complex don’t-caring only for very large BDDs. Such
an approach was essential to automatic verification of FPUs as described in [13].

Lastly, we ran those designs with a large number of nodes with case splitting enabled
(Table 5). The results are a mix of underapproximate evaluation (with some backtracks)
for designs in which the targets were hittable, and others for which complete case split-
ting was done to prove that the targets are not hittable boundedly. The benefits of case
splitting in both cases is clear. It helps to hit the reachable targets much sooner while
visiting a large number of states of the design and within resources bounds, and enables
completing exhaustive bounded checks on designs with unreachable targets without ex-
ploding in memory. Essentially, it trades-off complexity in memory with time, but is a
compromise that is worth it to complete analysis on a design which otherwise may not
- though for example #6 the overall performance is much better possibly due to a re-
duced number of BDD nodes to deal with. The numbers in parenthesis in the “#Cases”
column indicates the number of case splits for which the other branch was evaluated as
well. Hence, in the case of example #4, 4 of the 5 case splits were fully evaluated. Case
splitting on internal nodes was necessary to verify FPU designs using formal methods
in a fully-automated manner, as detailed in [13].

Conclusion We presented a robust set of algorithms for building BDDs efficiently for
netlists. We presented a scheduling scheme that dynamically converges upon a heuris-
tically optimal schedule for computing BDDs using an efficient hybrid of depth- and
breadth-first search called out in an interleaved manner under resource constraints. We
introduced a dynamic algorithm, tightly integrated with the scheduling scheme, to opti-
mally leverage constraints and invariants as don’t-cares when building BDDs for inter-
mediate gates in the netlist. Additionally, we described an automatic and complete case
splitting approach that is triggered and controlled by resource bounds to decompose the
overall problem into simpler parts which are then solved individually. The presented



approach takes advantage of the full power of our don’t-caring solution and smartly
selects arbitrary functions to apply as constraints to maximally reduce peak BDD size
while minimizing the number of cases to be explored.
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