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Abstract

The floating-point unit in the Synergistic Processor El-
ement of the 1st generation multi-core CELL Processor is
described. The FPU supports 4-way SIMD single precision
and integer operations and 2-way SIMD double precision
operations. The design required a high-frequency, low la-
tency, power and area efficiency with primary application
to the multimedia streaming workloads, such as 3D graph-
ics. The FPU has 3 different latencies, optimizing the per-
formance critical single precision FMA operations, which
are executed with a 6-cycle latency at an 11FO4 cycle time.
The latency includes the global forwarding of the result.

These challenging performance, power, and area goals
were achieved through the co-design of architecture and im-
plementation with optimizations at all levels of the design.
This paper focuses on the logical and algorithmic aspects
of the FPU we developed, to achieve these goals.

1 Introduction

The Synergistic Processor Element (SPE) of a CELL
Processor [4] is the first implementation of a new processor
architecture designed to accelerate media and data stream-
ing workloads. The SPE is a 32b, 4-way SIMD, high-
frequency design with an 11FO4 cycle time. Area and
power efficiency are key enablers for the multi-core design
of a CELL Processor that takes advantage of the parallelism
in the target workloads.

Real-time 3D graphics applications demand a single pre-
cision (SP) performance significantly exceeding that of con-
ventional processors and a competitive double precision
(DP) performance. The FPU of the SPE is therefore op-

timized for SP performance; SP multiply-add operations
are executed at maximum speed. Double precision oper-
ations and converts between integer and floating-point are
less performance critical; they can tolerate extra execution
cycles. The SPE therefore has a separate 4-way single pre-
cision FPU (SPfpu) and a double precision FPU (DPfpu),
rather than to support SP inside a DP FPU. The SPfpu also
supports 4-way SIMD integer multiply-shift instructions.

Early performance studies showed that real time graph-
ics applications achieved optimal performance with a 6-
cycle pipelined SPfpu when the cycle time is approximately
11fo4 [12]. This includes the 6FO4 latency for distributing
the result to the register file and all functional units of the
SPE. In an 11FO4 design that only leaves 60FO4 for logic
and latches. Conventional SP FPUs have a latency of about
100FO4 [17]. The key challenge of the SPfpu is to save
40FO4 and still be power and area efficient. That requires
optimizations at all levels of the design; system architecture,
micro architecture, logic, circuits, layout and floorplan have
to be carefully optimized and co-designed. The SPfpu ar-
chitecture and implementation are customized to the needs
of the target application, also trading infrequently used fea-
tures for overall performance. For example, with respect to
the SP operations, the target applications virtually only use
truncation rounding.

While the SPfpu is optimized for very high performance,
the DPfpu has different constraints. The major challenge
of the DPfpu is a state-of-art design with a very tight area
budget. In addition, its interface to the SPE has to be such
that it does not penalize the SPfpu performance. Both FPUs
are based on a conventional FMA pipeline.

This paper mainly describes architecture and logic op-
timizations. Physical design optimizations are addressed
as far as they have an impact on the architecture. Af-
ter discussing physical design considerations, we give an
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overview of the SPE FPU. We then discuss the major op-
timizations used in the SPfpu and DPfpu and address the
power saving concept.

2 Physical Design Considerations

The high performance, power and area efficient design
of the SPE FPU strongly hinges on optimizations of the cir-
cuit and physical design [15], some of which also have an
impact on the FPU architecture and logic design. The two
major aspects are described here:

Interface to the SPE To achieve the SPE’s 6FO4 global
result forwarding, physical considerations, such as wiring
and floorplan, have to be forced to the forefront. Register
file, forwarding network and all functional units are placed
in a bit stack, except for the DPfpu which is to the side
of the SPfpu due to area constraints. There are not enough
wiring resources to drive ten 128b operand and result busses
sidewise to the DPfpu or to allow for a global DPfpu result
bus. The DPfpu is therefore connected to the SPfpu; they
share a set of operand latches and a result bus.

Latch Types A latch insertion delay of 2 to 3FO4 occu-
pies 20 to 30% of the 11FO4 cycle. In order to minimize
this overhead, the CELL Processor uses a special set of
latches [16]. Mux latch and pulsed latch are the two ma-
jor types used in the FPU.

The mux latches integrate a 4, 5 or 6-port mux with the
latch function, hiding the mux delay to a large extend. Most
functional FPU blocks, like aligner, adder and normalizer,
require some mux function. The FPU designs are therefore
optimized to end at least every other cycle in a mux latch.
The use of mux latches in the alignment and normalization
shifter comes natural. However, the logic in the adder, LZA
and exponent path need to be re-organized to make good
use of wide mux latches (Section 4).

The pulsed latches integrate an AND function and allow
to delay the latch point up to 1FO4. By carefully choos-
ing the latch points and adjusting them somewhat through
pulsed latches, the FPU achieves a maximum path delay
difference of only 3% between pipeline stages. Through
the careful use of these two latch types, we were able to
improve the latency of the SPfpu by about 10 to 12 fo4.

3 Overview of the SPE FPU

The FPU (Figure 1) consists of four 32b SPfpu cores,
a 64b DPfpu core, and a 128-bit wide frontend which pro-
vides the operands. The frontend has two sets of operand
latches. Each operand latch is a 5- or 6-port MUX latch
which selects the most recent copy of the operand among
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Figure 1. Overview of the SPE FPU
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the forwarded results and the data provided by the register
file and the forwarding network.

The primary set of operand latches feed the SPfpu cores.
The SPfpu is a fully pipelined, fused multiply-add design
with 2 pipeline stages for aligner and multiplier, 2 for adder
and LZA, and 2 for normalizer, rounder and result forward-
ing (Figure 2).

The second set of operand latches feeds the DPfpu and a
SP formatter stage. The formatter is used for integer multi-
ply instructions, for converts and for the interpolate instruc-
tion. It pre-processes the operands such that the SPfpu core
can execute these 7-cycle instructions as special multiply-
add operations without penalizing the performance critical
SP multiply and add type instructions (6-cycle). In par-
allel to the normalizer, the SAT macro performs the post-
processing for the integer multiply instructions and the sat-
uration for the converts. A port of the SPfpu result mux is
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used to merge in the integer result.
The DP instructions are 2-way SIMD. Due to tight area

constraints, only one 64-bit DPfpu core is instantiated. The
FPU breaks the DP instruction in 2 64-bit operations, which
the 9-cycle DPfpu processes in a pipelined fashion, i.e., the
DPfpu is half-pumped. Since the DPfpu is located to the
side of the SPfpu, an extra cycle is required to transfer the
operands to the DPfpu and to transfer the result back to the
SPfpu. For the sake of a fast SPfpu result mux, DP and
integer results share a port; both results get merged in the
cycle prior to the result mux. This interface adds a 4-cycle
overhead to the latency of DP instructions.

3.1 Single Precision FPU Architecture

The main instruction class of the SPfpu are fused-
multiply-add instructions A � B � C and derivatives like
A�B and A�B, which have a 6-cycle latency. The SPfpu
also implements support-instructions for computing ��A
and ��

p
jAj explained below, conversions between integers

and floating point numbers, and various integer multiply-
add instructions. Floating point compares are executed in
the fixed point unit.

To achieve the high performance needed for the tar-
get application and to meet their special architecture re-
quirements, the SPfpu deviates from the IEEE standard [8]
in some points: First, denormal operands and results are
forced to zero. This speeds up the FPU pipe, as will be ex-
plained later. The same kind of saving can for example be
obtained by trapping on denormal numbers, as several FPU
designs do.

Second, numbers with exponent e � ��� are treated as
normal numbers in the binade of �����bias; in the IEEE stan-
dard these values represent either infinity or Not-a-number
(NaN). In media applications, infinity and NaN usually have
no real meaning; on the other hand, the extra binade of nor-
mal numbers is very useful. Note that this modification has
no impact on the latency of the SPfpu. Operations which
produce an overflow are saturated to the maximum repre-
sentable number instead of infinity. The SPfpu sets a spe-
cial exception flag, when forcing a denomal number to zero
or encountering a number in the extended range.

Third, the SPfpu supports only the round-towards-zero
rounding mode. This speeds-up the fraction datapath since
sticky-bit computations are simpler and no fraction round-
ing is needed. However, it puts more pressure on the ex-
ponent logic which now becomes timing critical, as will be
explained in Section 4. In addition, the SPfpu does not sup-
port trapping on exceptions, to allow for a simpler and faster
SPE control.

The fused-multiply-add instruction in the SPE is defined
as A � B � C, while the PowerPC architecture [1] defines
it as A � C � B. This subtle difference can be exploited to

reduce the logic depth (Section 4).

The VMX architecture [2] supports estimate instructions
for divide and square-root. These instructions are usually
composed of a lookup- and interpolate-step. When im-
plemented with reasonable overhead, they tend to have a
longer latency than the standard FMA instruction. In the
SPE architecture these two steps are defined as separate in-
structions: there are two estimate instructions for ��A and
��
p
jAj; these return a base and a slope value which are

stored together in the fraction field of the result. This re-
sult can then be fed into an interpolate instruction which
increases the precision of the estimate by linear approxima-
tion. The result of the interpolate step can further be refined
by means of a Newton-Raphson step (exploiting the FMA
instruction). Note that splitting the estimate and interpolate
step into two instructions has twofold benefit for the appli-
cation programmer: (i) the hardware can be better exploited
through software pipelining, and (ii) the result of the esti-
mate instruction can be used as a fast approximation if the
low-precision is sufficient. This is also the reason why the
SPE does not support atomic divide instructions, but leaves
this to software. The two estimate instructions are executed
in the FXU; the interpolate instruction is executed in the
SPfpu.

The last instruction class supported by the SPfpu are
signed and unsigned integer-multiply-adds. Various �� �
��-bit multiplications are supported, for example Alo �
Blo � C, Ahi � Blo, or Ahi � Blo � C. Software can
combine the �����-bit multiplications to perform �����-
bit multiplications. The hardware restriction to ��� ��-bit
multiplications allows the reuse of the single-precision mul-
tiplier without penalizing the floating-point performance.

3.2 Double-Precision FPU Architecture

The DPfpu is IEEE-compliant except for the following
aspects: (i) denormal operands are treated as zero (de-
normal results are computed compliant to the standard),
and (ii) NaN operands are not propagated to the result,
instead a generic NaN is computed whenever a NaN re-
sult occurs. The DPfpu supports all four IEEE rounding
modes for the standard set of fused-multiply-add instruc-
tions, add/subtract, multiplication, and conversions between
single and double precision. Like the SPfpu, the DPfpu also
goes for the option in the IEEE standard to only support
non-trapping exception handling.

For the rare cases, that an application requires single pre-
cision add/subtract or multiplication with a non-truncation
rounding mode, the conversions in the DPfpu allow for
an efficient emulation using a code sequence of extend-to-
double, double precision operation, and round-to-single.
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4 Design of the Single Precision FPU

The SPfpu is optimized for SP multiply-add operations
with truncation rounding and trap disabled execution. De-
normal operands and results are forced to zero. In order
to fit the SP multiply-add function in 5.5 11FO4 cycles,
each 2-cycle functional block has to be improved by at least
5FO4, some even by 15FO4 (Figure 2).

The latency reductions in multiplier, LZA and normal-
izer are mainly due to highly customized circuits and phys-
ical design. Considerable logic optimizations are applied
to frontend, aligner, adder, and exponent rounder, described
below.

4.1 Optimizing the Operand Formatter

The formatter pre-processes the operands so that the later
pipeline stages can process all instructions in a uniform way
as special multiply-add.

The single precision multiply and add type instructions
require little formatting: the unpacking of packed floating
point data and the selection of the operands in order to sup-
port A*B+C as well as A*B and A+B. With the optimiza-
tions described below, this formatting can be combined with
the aligner logic hiding its delay.

The integer multiply, convert and interpolate instructions
require a more extensive operand formatting. This is done
in an extra formatting stage, such that these instructions
have a 7-cycle latency.

4.1.1 Fast Unpacking for 6-cycle Instructions

The FPU receives the operands in the packed format. The
operands get unpacked into a sign bit, an exponent, and a
mantissa.

In the SPfpu, denormal inputs and results are forced to
zero. That simplifies the unpacking. The SPfpu assumes
that the input is a normalized number, setting the integer
bit of the mantissa to 1 without inspecting the exponent.
In case of a Zero or denormal operand, a late correction
is performed forcing special values into the aligner output,
using the timing uncritical bypass path:

� For a Zero addend the aligner output is forced to zero
or all ones depending on the effective operation.

� For a Zero product the addend is forced into the most
significant 25 bits of the aligner output; these bits do
not overlap with the product. Adder and normalizer
are set to only use the most significant 25b of the inter-
mediate fractions.

� If addend and product are zero, the rounder forces a
true zero based on a special select signal.

Table 1. Operand assignment for the single
precision multiply and add type instructions
in SPE and PowerPC format.

instruction class SPE PowerPC

add, subtract A � � �B A � � �B

multiply A �B � � A �B � �

multiply-add A �B � C A � C �B

The exponent check is off the critical path, since it is done
in parallel to the aligner.

4.1.2 Operand Order for 6-cycle Instructions

There are two ways to express a multiply-add either as
A*B+C or as A*C+B. Unlike the PowerPC, the SPE uses
the first format, because it allows to hide the formatting
latency for all 6-cycle instructions. Table 1 depicts the
operand assignment for both formats. Forcing a zero ad-
dend is covered by the late zero correction. For power sav-
ing, the multiplier is bypassed on add and subtract. Thus,
only multiplies and aligns with non-constant operand have
to be considered.

Three paths are impacted by the operand selection: the
multiplier inputs, the aligner shift-amount computation, and
the aligner fraction path. The first two are equally timing
critical; the timing of the third is somewhat relaxed.

With the PowerPC format, the multiplier either computes
A*B or A*C and therefore needs a multiplexer on one of
its operands. Even for Booth multipliers, both inputs are
equally time critical; while one operand gets re-coded, the
other operand gets amplified and distributed to all the partial
product generation macros. Thus, the mux adds to the over-
all delay of the multiplier. The aligner receives the fraction
of B, and its shift amount equals

sha � ea� ec� eb�K�

where K is a design specific constant (a pre-shift correction
minus bias); ec is forced to zero in biased format for fadd
and fsub. Thus, the aligner needs no operand muxing. The
PowerPC format penalizes the multiplier over the aligner.

With the SPE format, the multiplier always computes
A*B; no muxing on the multiplier inputs is needed, allow-
ing for a faster multiplier path. The aligner gets either the
fraction of C or B. Since this is not the critical path of the
aligner, the muxing of the fraction causes no extra delay.

The alignment shift amount now equals

sha �

�
ea� ’0’ � eb�K for add type
ea� eb� ec�K for multiply-add type

The shift amount for add operations can also be expressed as
ea�eb��eb�K. The exponent muxing is done in parallel
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to the 3:2 compression of ea� eb�K, hiding the mux delay.
Thus, the SPE operand order allows for a faster multiplier
without penalizing the aligner latency.

4.2 Alignment Shifter

The alignment shifter (Figure 3) consists of the exponent
selection described before, an adder-decoder block which
computes the decoded shift amount, the actual shifter which
is partitioned into 4 mux stages, and the bypass logic and
control which handles special operands and shift saturation.
The last mux stage is integrated in a 6-port mux latch; it
performs the wide shift, recomplements the addend in case
of an effective subtraction, and merges in the result of the
bypass logic.

The shift amount computation is on the critical path of
most aligner designs. In a conventional design, exponents
ea� eb� ec and constant K get compressed into a carry-save
representation �s� t� of the shift amount. A 7-bit adder pro-
duces the binary representation sha which gets decoded
into hot-1 mux select signals. Our implementation uses a
special sum-addressed shifter which removes the 7b adder
from the critical path:

1) Vectors s and t are partitioned into 2-bit segments.
For each segment s�� t�, we compute the unary decode sel of
s� � t� ignoring the carry-in from previous segments. Each
bit position adds up to a value v in f�� �� �g represented by
standard kill, propagate, generate signals. Signals sel are
obtained from v by simple AOI functions.

2) In parallel to step 1, a carry network computes the
group carries to be added to each of the segments.

3) Finally the group carries are used to correct the select
signals of step 1. Since the signals sel are in a decoded
form, adding a 1 corresponds to rotating sel left by one bit
position using a 2-port mux.
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Figure 4. SPfpu Fraction Adder. The timing
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With this optimization and with highly tuned circuits and
the fast mux latch, we were able to fit the aligner in 21FO4.

4.3 Fraction Adder

The fraction adder (Figure 4) computes the sum or ab-
solute difference of its inputs using the end-around-carry
concept. Let x and y be two numbers, and let eac be the
carry-out of x��y, where !y indicates the one’s complement
of y. The sum or absolute difference r of x� y can then be
expressed as

r �

��
�

x� y for add
x��y � � for sub with eac=1
��x��y� for sub with eac=0

A 3:2 adder compresses the main part of the aligned ad-
dend and the two partial products. The intermediate results
are passed to a carry-look-ahead compound adder which
computes sum (sum0) and sum+1 (sum1). The alignment,
the operation, the sticky bit, and the carry-out of the adder
determine whether sum0 or sum1 is chosen, and whether a
recomplement of the result is needed.

The msb bits I of the addend are passed to an incrementer
which computes I and I+1, and recomplements both results
on an effective subtraction. The carry-out of the adder se-
lects between these two results I0 and I1. The msb bits I
only matter when the exponent of the addend is larger than
the exponent of the product.

The selection of sum0, sum1,!sum0 and of I0, I1 gets
combined with the first stage of the normalizer, which per-
forms a 25b left shift if I0 is all zero. By using 5-port mux
latches, the delay of this muxing is hidden by the latch in-
sertion delay.
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The computation of the select signals based on the carry-
out signal cout is the critical path of any fraction adder. An
extra carry-only network is used to speed up signal cout.
The alignment information, operation type and sticky bit are
still available before signal cout. The adder control logic
therefore pre-computes 2 sets of select signals for cout be-
ing 0 and 1 and selects between them before controlling the
adder result mux.

4.4 SPfpu Backend

To meet the performance target, the normalizer and
rounder stages have to be improved by 15 to 20FO4. The
key enabler for this big saving is SPfpu’s special floating
point architecture: Denormal results are forced to zero,
the binade for e=255 is used as normalized numbers, only
round towards zero and non-trap exception handling are
supported. The latter means that no exponent wrapping is
needed.

Consequently, the fraction is just truncated saving a 24b
incrementer on the fraction path. The correction of the LZA
error is integrated in the result mux, which also merges in
the special results Zero and Xmax and the integer or double
precision result. Thus, the fraction rounding is reduced to a
single 4-port mux.

The exponent rounder ERND (Figure 5) also profits from
the simplified rounding but much less than the fraction path,
so that ERND becomes timing critical. ERND adjusts the
exponent by the number of leading zeros lz predicted by
the LZA and generates the select signals for the result mux;
this involves the checking for overflow, underflow and zero
result:

er �

�
e � � � � lz for lzaerr=0
e � � � � lz for lzaerr=1

OV F � er � emax � ���

UNF � er � emin � �

Zero � UNF or fracZero or specialZero;

e is the exponent corresponding to the adder result.
To match the fast fraction rounder, the exponent round-

ing is improved by using the following logic optimizations
in addition to highly tuned circuits and a dynamic result
mux which speeds up the select path:

(1) The previous pipeline stages pre-compute multiple
exponent values e� e� � e � �� e� � e � � by using a 3-
way compound adder. That saves ERND to increment the
exponent, so that none of its adders and checkers requires a
carry-in.

(2) The LZA error lzaerr is detected late in the normal-
ization cycle. ERND therefore computes result exponents
for lzaerr being 0 and 1:

er� � e� � � lz er� � e� � � lz�

The result mux then selects the proper exponent.
(3) ERND also computes two sets of select signals for

er� and er� and selects the proper set based on lzaerr be-
fore latching it. The exponents are 10b two’s complement
numbers with a 127 bias; this format simplifies the OVF and
UNF check. OVF is detected by checking the 2 msb of er�
and er� for ’01’. UNF is detected by checking the sign of
the decremented exponent, i.e.:

er� � � � sign�e � � lz�

er� � � � sign�e� � � lz� � sign�er���

5 Design of the Double Precision FPU

The DPfpu core has a 9-cycle computation pipeline. Cy-
cles 1–3 comprise a radix-4 Booth-multiplier and the align-
ment shifter. The alignment shift is done in a sum-addressed
fashion similar to the SPfpu. Cycles 4 and 5 comprise the
incrementer, end-around-carry adder, and the LZA. The re-
sult is fed into the 4-cycle combined normalization shifter
and rounder.

The main challenge in the design of the DPfpu was the
tight height and width constraints. The floorplan of the
SPE allocates only 60 bits to the fraction datapath, which
is not enough to accommodate the full 160 bit intermedi-
ate results. Most of the intermediate fractions are therefore
folded into 2 to 3 rows. The multiplier outputs its 106-bit
product in a carry-save format �S� T � folded into two rows.
The aligner outputs its 160-bit aligned addend ALN folded
into three rows; the most-significant row ALNhi is sent to
the incrementer, the lower two rows ALNmid� ALNlo are
added to the product �S� T � in the end-around-carry adder.

Folding the aligner and the multiplier has benefits and
drawbacks at the same time. It increases the height of the
macros and also causes some long horizontal wires, e.g.,
where a signal in the multiplier 3:2-reduction-tree has to
cross the boundary between low-order and high-order bits.
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On the other hand, some other wires become shorter, e.g.,
where a select line in the shifter now has to cross only half
the width. In the adder, the biggest problem due to fold-
ing are the propagate/generate lines which cross the bound-
aries of the two rows. The carry-lookahead structure was
slightly rebalanced to account for the different wire delays.
The LZA edge vector E is computed as described in [6].
As the inputs to the computation are folded, the edge vec-
tor E is also folded. Every bit of E is determined from 3
consecutive bits of ALNmid�lo� S� T . In order to avoid long
horizontal wires at the folding-boundaries, the three vectors
have the 2 bits at the folding boundary replicated at both
sides.

The incrementer and adder outputs are put onto a nor-
malization shifter which is usually build as a standard
barrel-shifter. Such a barrel shifter is usually addressed by
a binary shift amount and hence shifts by powers of 2 in
each shift stage. This approach without adjustment to the
folded design would create many long horizontal wires. In-
stead we exploit the folding for the normalization shifter,
which decreases wire length and thereby improves timing.
The following description refers to Figure 6.

1. The first shift-stage selects between “INC,ADDhi” or
“ADDhi,Addlo” vectors, as in the SPfpu. This first
shift can be done without any horizontal wires, since
the three parts are aligned horizontally due to the fold-
ing. The selection for this first shift depends only on
the exponent difference which is known early. The
multiplexer for this first shift stage is combined with
the end-around-carry mux of the adder using a 6-port
mux-latch; that saves a whole latch row.

2. The second shift stage is implemented as a shift by 54,
which again can be done without any horizontal wiring
due to the folding. The select signal for this shift stage
is obtained by checking whether the high-part of the
folded edge vector is all ’0’. This would mean that the
LZA anticipates that there are at least 54 zeros in front
of the intermediate result, so the 54-bit shift must be
performed. Otherwise the leading one appears to be
in the first 54 bits, so this shift-stage does not shift.
We will explain below how the possible error in the
anticipation can be corrected.

3. To finish the normalization after the first two shift
stages, we use a standard binary barrel shifter. This
shifter has a maximum shift distance of 55 (i.e., 54
plus one position for a possible LZA error), and hence
has considerably less wires than a full width shifter.
The shift amount for this shifter is obtained from sep-
arate leading zero counters (LZC) for each of the two
edge rows. Depending on the selection in the second
shift stage, either the high- or the low-LZC output is
chosen.

So, in order to exploit the folding for the normalization
shifter, we do not use a single 106 bit wide LZC, but use
two separate smaller counters. The high-order LZC also
provides the zero indication for the high part. However,
care must be taken because this zero-high indication can be
wrong due to an LZA error, i.e., the edge vector may over-
estimate the number of leading zeros by one. Hence it may
happen that the leading one is actually in the LSB of the
high-order row of the sum, but the edge vector anticipates
the leading one wrongly to be at the MSB of the low-order
row. In this case the zero-high indication spuriously causes
the 54-bit shift in the second stage. To solve this problem,
the input to the third stage is simply prefixed with either ’0’
or the LSB of the sum-high row in order to prevent losing
the leading one at that position.

If the addend is larger than the product, the normaliza-
tion shift amount is usually determined from the exponent
logic. It is simple to adjust the exponent logic to produce the
correct shift-amount signals for the described normalization
method.

6 Power Saving

The CELL processor is a multiprocessor chip with mul-
tiple SPEs. Since the FPUs are replicated for each SPE,
their power consumption considerably contributes to the
overall chip power consumption. Therefore a lot of effort
was put into power-reduction mechanisms, such as clock-
gating. Clock-gating turns off latches when they are not
used; this decreases power consumption in two ways: first,
the switching of the latches and the connected clock-wires is
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prevented; second, since the latch content does not change
if clocking is gated, the combinational logic in the fanout
cone of gated latches does not switch either.

The FPUs described in this paper use three levels of
clock gating: first, the complete FPU can be shut down by
means of a global clock gating signal; this is used to shut-
down most of the SPE when no active process is running.
Second, during pipelined execution of instructions, only
those pipeline stages are activated which contain valid in-
structions. Third, and most complex, we have implemented
opcode- and data-dependent clock-gating. Only those parts
within a pipeline stage are activated which are actually used
for the operation. For example, the multiplier is disabled
for add-instructions; incrementer and compound adder are
disabled based on the alignment of addend and product.

7 Related Work

Multimedia extensions to microprocessors are available
in most architectures nowadays. For example, IBM calls
their extension to the PowerPC architecture VMX [17],
which is also known as Freescale’s AltiVec [2]. Intel ex-
tended their x86 architecture with SSE, and SSE-2 [20] and
now SSE-3. AMD developed their 3DNow! multimedia
extensions [14]. The floating-point architecture of those
extensions usually closely follows the IEEE standard [8].
For example, VMX supports denormal numbers, but the ar-
chitecture allows that these are executed slower than other
operations. Only the round-to-nearest mode is supported
in VMX. Intel’s SSE supports denormal numbers and all 4
rounding-modes. In contrast, our FPU architecture is tuned
to the target application in order to improve performance as
much as possible. It only supports truncation rounding and
does not handle denorms, NaNs and infinity.

The FPU of the Emotion Engine of the PlayStation
2 [7, 10], only supports truncation rounding and normal-
ized numbers. It supports a fused-multiply-accumulate in-
struction with 2 operands for the multiply and a fixed ac-
cumulate register which is used as addend and as result. In
contrast, our FPU supports 3-operand FMA operations that
return their results into an arbitrary register in the register
file. The Emotion Engine does not support double preci-
sion.

Several other publications describe designs of fused-
multiply-add FPUs. The first FMA FPU was described
in [13]; successors of this FPU are described in [5, 9].
Schwarz et al.[18] discuss FMA FPUs supporting denormal
numbers in hardware. In this paper we have described some
optimizations to the common FMA implementations; some
of these optimizations are only possible in our application-
tailored architecture, while others are applicable to any
FMA FPU design.

Derivations from the common FMA design are proposed

by Lang and Bruguera in [11] and Seidel in [19], reduc-
ing the latency by merging the addition and rounding of the
fraction. Both designs focus on the fraction data path of a
double precision multiply-add with normalized operands.

As shown in [19], the designs proposed by Seidel re-
quire fewer logic levels than that of Lang and Bruguera.
In the following, we therefore compare our 6-cycle SPfpu
core with a single-precision version of the Seidel’s designs.
The optimizations in the SPfpu frontend mainly target the
efficient support of non-FMA operations such as estimates,
converts and integer multiply operations. Those optimiza-
tions are, of course, also applicable to the Seidel’s designs
when extending the FMA pipe to a full FPU.

Seidel’s designs are an adaptation of Farmwald’s dual
path algorithm for addition [3] to fused-multiply-add FPUs.
Depending on the alignment of addend and product, he dis-
tinguishes five cases which can be implemented with dif-
ferent latencies. In the ”far-out” path, the addend is so
much larger than the product that the fractions of addend
and product do not overlap. This is the fastest case which
only requires a third of the latency of the slow near-path. In
the near-path, addend and product have roughly the same
exponent; an effective subtraction can cause massive can-
cellation.

This design is suited for processors which can benefit
from a variable-latency FPU, e.g. out-of-order processors.
Seidel also proposes a design with a fixed latency, which
is better suited for in-order designs such as the SPE. There
are two parallel data paths: one implements the four faster
cases and the other one implements the slow near-path.

The delay of the fraction data path for the near case is
the sum of the delays of the following components: a full-
size �� � �� multiplier with an extra term for the aligned
addend, a 50-bit adder with integrated rounding function,
a re-complement stage, a 50-bit normalization shifter, and
the result mux with select logic which performs the post-
normalization and merges in special results and the result
from the second data path.

In the SPfpu it turned out that the exponent rounding
dominates the delay of the normalization-round stage of a
single-precision FPU, when removing the fraction round-
ing. A similar effect is to be expected in a single-precision
dual-path design which merges the fraction rounding with
the adder. When applying the SPfpu optimizations for
speeding-up the exponent rounding and result selection, the
normalization-round stage of the SPfpu and of the dual-path
design are equally fast. Any latency difference therefore has
to result from the multiplier/aligner and adder stage.

Like in the dual-path design, the SPfpu has a full size
�� � �� multiplier. The 96-bit aligner is in parallel to the
multiplier. Due to several optimizations the aligner keeps
up with the multiplier latency.

The timing critical path of the SPfpu adder stage goes
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through a full-adder, a 48-bit carry-tree, a 2-port mux, and
then selects the adder result. The adder result-mux inte-
grates the re-complement and the 1st stage of the normal-
ization shift, saving two mux stages. That partially compen-
sates for the FA delay. The SPfpu adder is totally in parallel
to the LZA. The dual-path design uses an adder with inte-
grated rounder, which requires extra hardware and latency
for the leading-zero prediction. Thus, the adder stages of
the two designs have roughly the same latency.

When looking at the logic levels, the two FPU cores have
about the same delay. The dual-path FPU requires two full-
size multipliers and adders. That increases the area of a
single-precision FPU by about 50%; for a double precision
design, this increase is even larger. Such a large area over-
head increases the power of the FPU, results in a non-trivial
placement problem, and adds extra wire and transfer delay.
The operands have to be distributed to the two data paths,
and their results have to be collected; that easily accounts
for 5fo4.

The SPfpu design has a significantly lower area and
power at the same (or better) latency. It is optimized for its
target applications, which mainly demand single-precision
operations with truncation rounding. Single-precision op-
erations with the other rounding modes are emulated in the
DPfpu at a lower performance. The dual-path FPU supports
all four rounding modes at the same latency. This additional
functionality comes at a 50% larger area. Such a severe area
penalty is not acceptable for an area and power efficient SPE
design, especially since SPE is a building block of a multi-
core CELL processor.

8 Summary

The vector FPU presented here occupies �mm�, fabri-
cated in the IBM 90nm SOI-low-k process. Correct oper-
ation has been observed up to 5.6GHz at 1.41V of supply
voltage and ��

�C, delivering a single precision peak per-
formance of 44.8Gflops.

The key enablers for this high-frequency low-latency
power and area efficient FPU design are threefold: (1) Ar-
chitecture and implementation are optimized for the target
applications, such as real-time 3D graphics, trading uncrit-
ical function for performance. (2) Architecture, logic, cir-
cuits, and floorplan have been co-designed. (3) The pipeline
stages are carefully balanced, achieving a maximal path de-
lay difference of only 3%.
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