Formal Verification of a Basic Circuits Library

Christoph Berg, Christian Jacobi, Daniel Kroening*
Saarland University, Computer Science Department
66123 Saarbriicken, Germany
{chb, cj, kroeni ng}@\y pserver.cs. uni -sb. de
Tel +49-681-302-4490, Fax -4290

Keywords: Architectures, Basic Circuits, Formal Verification, Theorem Proving

December 20, 2000

Abstract

We describe the results and status of a project aiming to
provide a provably correct library of basic circuits. We use
the theorem proving system PVS in order to prove circuits
such as incrementers, adders, arithmetic units, multipliers,
leading zero counters, shifters, and decoders. All specifica-
tions and proofs are available on the web.

1 Introduction

In large hardware design projects, standard hardware com-
ponents like adders and shifters are frequently used. The
correctness of the whole design depends on the correctness
of these standard components, and the correctness of the
glue between them.

At the University of Saarbriicken, we are currently work-
ing on the verification of a pipelined, out-of-order RISC
processor based on the DLX architecture [1], featuring a
dual precision floating point unit (FPU) [2]. In this paper,
we describe the formal verification of standard hardware
components that are used in this project. The verified com-
ponents are adders, arithmetic units, multipliers, shifters,
decoders, half decoders, leading zero counters, and paral-
lel prefix computations. The designs and the proof ideas
are taken from [3]. The designs are of arbitrary bit-width,
i.e., the user of the library can instantiate the circuits to any
number of bits. The verification is done on gate level.

We use the theorem proving system PVS [4, 5] as ver-
ification tool. The use of theorem proving is motivated
as follows: in order to prove the correctness of a sys-
tem as large as a complete microprocessor, we need a for-

*supported by the DFG graduate program ’Leistungsgarantien fiir
Rechnersysteme’

mal, mathematical specification of functional components.
From these, one successively derives larger circuits that are
correct with respect to a formal specification. In the end,
the correctness of the complete microprocessor is achieved.

It is impractical to use equivalence checking, since this
yields no mathematical specification of the component
(which is needed when using the module in a larger de-
sign) — unless the reference design had such a formally ver-
ified mathematical specification. Unfortunately, we were
unable to locate such specifications in published literature.
In this sense, we offer formally verified reference designs
for the most commonly used hardware components, which
can serve to other researchers in the field of hardware veri-
fication.

Another drawback of equivalence checking in compari-
son with theorem proving is that one cannot verify compo-
nents with variable size. However, in contrast to equiva-
lence checking, theorem proving usually requires a consid-
erable amount of user interaction. Of course, this was also
the case in our work.

Project status The verification of the most common
hardware components as listed above is completed, new
components are added as required by the DLX project. The
verification of the out-of-order integer core of the processor
employing a Tomasulo scheduler [6], as well as the verifi-
cation of the FPU is nearly finished. In order to obtain syn-
thesizable hardware, we aim towards a tool that will trans-
late our hardware specifications from the PVS language
into Verilog HDL.

Related work There is a vast amount of literature on the
formal verification of hardware. The verification of a sim-
ple adder and an ALU using PVS is reported in [7]. In our
verification project, we use the lemmas in the PVS bitvec-
tor library [8], which includes a carry chain adder. The

| component | inputwidth [cost | delay |
multiplexer n n 1
or tree n n logn
zero tester n n logn
equality tester n n logn
halfadder 1 1 1
fulladder 1 1 1
carry chain incrementer n n n
incrementer (generic) n n n
absolute value n n n
carry chain adder n n n
carry save adder n n 1
compound adder n n logn
generic parallel prefix n=2m n logn
carry lookahead adder n=2m n logn
adder (generic) n n n
arithmetic unit n n n
wallace tree n=2m n? logn
WT multiplier n=2m n? logn
decoder n 2n logn
half decoder n 2n n
leading zero counter n=2" n logn
barrel shifter n=2m nlogn | logn
logic left shifter n nlogn | logn
logic right shifter n nlogn | logn

Table 1: The components contained in the library in in-
creasing complexity

verification of an adder using various verification systems
is described in [9]. In [10], Bryant verifies fixed size arith-
metic circuits against a mathematical specification.

Given a reference design and assuming its correctness, it
is state-of-the-art to automatically verify equivalence with
a new design. There are several approaches to this, e.g.,
boolean equivalence checkers using BDDs or variations
[11-13]. In [14], Clarke et.al. use function abstraction and
BDDs for equivalence checking. In [15], Stanion proves
the equivalence of two fixed bit width multipliers.

2 The Library

Our circuit library consists of various components as listed
in table 1. Some circuits are limited to sizes that are powers
of two. Cost and delay are given as asymptotic measures,
i.e. n means O(n).

Trivial constructions are multiplexer, or tree, zero tester
and equality tester. Incrementers and various adders
are built from simple half and fulladders. The circuits
marked “(generic)” above are wrappers to hide the actual
adder/incrementer implementation. By changing the wrap-

per’s implementation the user can choose among the differ-
ent adder implementations. The generic parallel prefix can
be instantiated by any associative function; we use it for the
carry lookahead adder.

The “‘wallace tree’ is a wallace tree multiplier without the
final adder stage; making it available separately allows for
inserting a pipeline stage in a processor design. Decoder
and half decoder convert binary numbers to unary notation.
A Darrel shifter shifts its input cyclically to the left; the
logical shifter variants pad with zeros.

All circuits come with a correctness statement and the
corresponding PVS proof. Circuit specifications, imple-
mentations and proofs are available at our web site! and
may be used by other researchers in their projects.

As we aim to build hardware, all specifications use a
‘synthesizable’ subset of the PVS language. The circuit
library described in this paper provides the basic building
blocks for our DLX processor. We currently develop a
translation tool that will convert our PVS sources to Ver-
ilog HDL. When this tool is finished, we will have a run-
ning processor that is fully verified on the gate level. The
Verilog files will also be available on the web.

3 Circuit Verification

Exemplarily, we demonstrate the correctness proof for the
leading zero counter in this section. A leading zero counter
is a circuit that outputs the number of successive zero bits
at the left (most significant) side of its input; it is used
by floating point rounding units for instance. The formal-
ization of other circuits and their correctness criteria are
stated in a similar way, the methods used in the leading zero
counter example apply for the other circuits as well. Except
for one example, the definitions and theorems are not given
in the PVS language in this paper but in the mathemati-
cal notation for readability. These notations can be easily
translated to PV'S (or other theorem provers, as we believe).

3.1 Formal Specification of Functionality

Notations used A bitvector b of length n is indexed by
blé] with ¢ ranging from n — 1 to 0. For ¢ > 3, b[i,]
denotes the bit vector consisting of bits ¢ to j of b; o is the
concatenation operator. x* with x € {0, 1} denotes the bit
x repeated 4 times. The natural number represented by b is
denoted by (b) := > 2% - b[i].

1http: /[wwwwwj p. cs. uni -sb. de/ proj ects/verification/

Formal definition In order to prove a leading zero
counter implementation correct, we need a formal notion
of ‘leading zeros’. We define a function [zero on bitvec-
tors of length n:

lzero(b) =
max{i EN|i=0V (i <nAbn—1,n—i=0°%}

Since PVS provides a finite sets library featuring the
maximum function, the [zero function is easily defined in
the PVS language:

Izero(b):nat = max({ i:nat | i=0 OR
(i<=n AND b~(n-1, n-i) = Fill[i]J(FALSE)) })

We start with some lemmas on the lzero function. All
these lemmas are fairly obvious, but their proofs are tech-
nically complicated in PVS. We omit the proofs due to lack
of space.

Lemma 1 [zero essentially depends on the position of the
first 1-bit:?

1. lzero(b) =0 & b=10b[n—2,0]
2. Porall1 <i<mn—2:

lzero(b) =i < b=0"010bn—i—2,0]
3. lzerob) =n—-1&b=0"1o1
4. lzero(b) =n < b=0"
Lemma 2 [zero is bounded by n:

lzero(b) <n

Lemma 3 Leading zero concatenation: For all [€ N,/ >
1, it holds

Izero(0' o b) = 1 + lzero(b)

Lemma4 An inverter can be used to increment a bitvec-
tor’s value:

(b[n — 1] o b[n — 1] 0 b[n — 2,0]) = 2"~ + (b)

3.2 Circuit Implementation

Our circuit is defined recursively on bitvectors of length
n = 2™ as depicted in figure 1. Of course, one cannot

2The case split is necessary to avoid bitvectors of zero length.

m=0
b[0]

y[0]

Figure 1: leading zero counter

prove the correctness of a picture. We therefore have to for-
malize the implementation by means of a function Iz impl.
For m = 0, we simply set

lz_impl(b) := b[0]

Form > 0, letyg = lz_impl(bp) and yr, = lz_impl(br),
where by = b[2™ —1,2™ 1] and by, = b[2™ 1 —1,0]. We
set

yrlm — 1 oyr[m — 1] o yr[m — 2,0]
lz_impl(b) := if yer[m — 1]
Ooygy otherwise

This definition is easily translated to a hardware specifica-
tion language such as Verilog HDL.

3.3 Proof

The implementation is correct if our implementation counts
the number of leading zeros for all inputs:

Theorem 1 Forallm € N,b € {0,1}*" :
(lz_4mpl (b)) = lzero(b)

Proof As the recursive construction suggests, the proof is
by induction on m. The induction base m = 0,n = 20 is
easily proven using lemmas 1.4 and 2. The induction step
first does a case split on bit y [— 1]. When set, it follows
that

21 < (lzZimpl(by)).

The induction hypothesis and lemma 2 yield
2m=1 < Jzero(bg) < 2™,
which implies equality. Lemma 1.4 leads to

by =02""".

By lemma 3, and the induction hypothesis we have

1

lzero(0*" ™ oby)
= 2™ ' L lzero(br)
2™~ 4 (1z_impl(br)).

lzero(b)

With lemma 4, the output y of the multiplexer satisfies

lzero(b) = 2™ ! + (lz_impl(br)) = (y).

The other case is handled analogous.

4 Conclusion

We implemented a library of basic circuits required for
microprocessor design and verified the gate level correct-
ness with respect to a mathematical specification using a
theorem proving system. The circuits are designed to be
reusable and are available at our web site. We therefore
encourage designers to incorporate our library in larger
projects, as we do in the DLX verification project.

The verification of such circuits using theorem proving
systems involved more manual work than required by using
equivalence checking instead. However, we think that this
extra effort pays off since we can provide generic circuits
and proceed using a mathematical specification. Thus, we
reach a high level of abstraction hiding the gate level. This
abstraction level enables us to prove the correctness of suc-
cessively larger circuits, up to complete floating point units
and processors.

References

[1] J. L. Hennessy and D. A. Patterson. Computer Ar-
chitecture: A Quantitative Approach. Morgan Kauf-
mann, San Mateo, CA, second edition, 1996.

[2] Christian Jacobi and Daniel Kroening. Proving the
correctness of a complete microprocessor. In Gl
Jahrestagung 2000. Springer, 2000.

[3] Silvia M. Mueller and Wolfgang J. Paul. Computer
Architecture. Complexity and Correctness. Springer,
2000.

[4] S. Owre, N. Shankar, and J. M. Rushby. PVS: A
prototype verification system. In 11th International
Conference on Automated Deduction (CADE), vol-
ume 607 of Lecture Notes in Artificial Intelligence,
pages 748-752. Springer, 1992.

[5] Judy Crow, Sam Owre, John Rushby, Natarajan
Shankar, and Mandayam Srivas. A tutorial intro-
duction to PVS. In Proceedings of the Workshop on
Industrial-Strength Formal Specification Techniques,
Baco Raton, Florida, 1995.

[6] R. M. Tomasulo. An efficient algorithm for exploiting
multiple arithmetic units. In IBM Journal of Research

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

and Development, volume 11 (1), pages 25-33. IBM,
1967.

D. Cyrluk, S. Rajan, N. Shankar, and M. K. Srivas.
Effective theorem proving for hardware verification.
In 2nd International Conference on Theorem Provers
in Circuit Design, volume 901 of LNCS, pages 203—
222. Springer, 1994,

Ricky Butler, Paul Miner, Mandayam Srivas, and
Dave Greve. A bitvectors library for PVS. Technical
Report TM-110274, NASA Langley Research Center,
1996.

V. Stavridou, H. Barringer, and D.A. Edwards. For-
mal specification and verification of hardware: A
comparative case study. In Proceedings of the 25th
ACMI/IEEE conference on Design Automation, pages
197-204, 1988.

Y. Chen and R. Bryant. ACV: An arithmetic circuit
verifier. In In Proc. of IEEE ICCD ’96, pages 361—
365. IEEE, 1996.

R. E. Bryant. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Transactions on Com-
puters, C-35(8):677-691, August 1986.

R. E. Bryant and Y.-A. Chen. Vrification or Arith-
metic Circuits with Binary Moment Diagrams. In
32nd ACM/IEEE Design Automation Conference,
Pittsburgh, June 1995. Carnegie Mellon University.

E. M. Clarke, M. Fujita, and X. Zhao. Hybrid de-
cision diagrams overcoming the limitations of MTB-
DDs and BMDs. In ICCAD, pages 159-163, Los
Alamitos, Ca., USA, November 1995. IEEE Com-
puter Society Press.

Somesh Jha, Yuan Lu, Marius Minea, and Ed-
mund M. Clarke. Equivalence checking using abstract
BDDs. In Proc. of IEEE ICCD ’98, pages 332-337.
IEEE, 1997.

Ted Stanion. Implicit verification of structurally dis-
similar arithmetic circuits. In Proc. of IEEE ICCD
’99, pages 46-50. IEEE, 1999.

