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Abstract. We consider machine-aided verification of suitably constructed
abstractions of security protocols, such that the verified properties are valid
for the concrete implementation of the protocol with respect to cryptographic
definitions. In order to link formal methods and cryptography, we show that
integrity properties are preserved under step-wise refinement in asynchronous
networks with respect to cryptographic definitions, so formal verifications of
our abstractions carry over to the concrete counterparts. As an example, we use
the theorem prover PVS to formally verify a system for ordered secure message
transmission, which yields the first example ever of a formally verified but
nevertheless cryptographically sound proof of a security protocol. We believe that
a general methodology for verifying cryptographic protocols cryptographically
sound can be derived by following the ideas of this example.
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1 Introduction

Nowadays, formal analysis and verification of security protocols is getting more and more
attention in both theory and practice. One main goal of protocol verification is to consider
the cryptographic aspects of protocols in order to obtain complete and mathematically
rigorous proofs with respect to cryptographic definitions. We speak of (cryptographi-
cally) sound proofs in this case. Ideally, these proofs should be performed machine-aided
in order to eliminate (or at least minimize) human inaccuracies. As formally verifying
cryptographic protocols presupposes abstractions of them, which are suitable for formal
methods, it has to be ensured that properties proved for these abstract specifications carry
over to the concrete implementations.

Both formal verification and cryptographically sound proofs have been investigated
very well from their respective communities during the last years. Especially the formal
verification has been subject of lots of papers in the literature, e.g., [20,13,21,1,16].
The underlying abstraction is almost always based on the Dolev-Yao model [7]. Here
cryptographic operations, e.g., E for encryption and D for decryption, are considered
as operators in a free algebra where only certain predefined cancellation rules hold,
† Work was done while both authors were affiliated with Saarland University.
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i.e., twofold encryption of a message m does not yield another message from the basic
message space but the term E(E(m)). A typical cancellation rule is D(E(m)) = m.

This abstraction simplifies proofs of larger protocols considerably. Unfortunately,
these formal proofs lack a link to the rigorous security definitions in cryptography.
The main problem is that the abstraction requires that no equations hold except those
that can be derived within the algebra. Cryptographic definitions do not aim at such
statements. For example, encryption is only required to keep cleartexts secret, but there
is no restriction on structure in the ciphertexts. Hence a protocol that is secure in the
Dolev-Yao framework is not necessarily secure in the real world even if implemented
with provably secure cryptographic primitives, cf. [17] for a concrete counterexample.
Thus, the appropriateness of this approach is at least debatable.

On the other hand, we have the computational view whose definitions are based on
complexity theory, e.g., [8,9,5]. Here, protocols can be rigorously proven with respect
to cryptographic definitions, but these proofs are not feasible for formal verification
because of the occurrence of probabilities and complexity-theoretic restrictions, so they
are both prone to errors and simply too complex for larger systems.

Unfortunately, achieving both points at the same time seems to be a very difficult
task. To the best of our knowledge, no cryptographic protocol has been formally verified
such that this verification is valid for the concrete implementation with respect to the
strongest possible cryptographic definitions, cf. the Related Literature for more details.

Our goal is to link both approaches to get the best overall result: proofs of crypto-
graphic protocols that allow abstraction and the use of formal methods, but retain a sound
cryptographic semantics. Moreover, these proofs should be valid for completely asyn-
chronous networks and the strongest cryptographic definitions possible, e.g., security
against adaptive chosen ciphertext attack [5] in case of asymmetric encryption.

In this paper, we address the verification of integrity properties such that these prop-
erties automatically carry over from the abstract specification to the concrete implemen-
tation. Our work is motivated by the work of Pfitzmann and Waidner which have already
shown in [18] that integrity properties are preserved under refinement for a synchronous
timing model. However, a synchronous definition of time is difficult to justify in the
real world since no notion of rounds is naturally given there and it seems to be very
difficult to establish them for the Internet, for example. In contrast to that, asynchronous
scenarios are attractive, because no assumptions are made about network delays and the
relative execution speed of the parties. Moreover, [18] solely comprises the theoretical
background, since they neither investigated the use of nor actually used formal proof
tools for the verification of a concrete example.

Technically, the first part of our work can be seen as an extension of the results
of [18] to asynchronous scenarios as presented in [19]. This extension is not trivial since
synchronous time is much easier to handle; moreover, both models do not only differ
in the definition of time but also in subtle, but important details. The second part of
this paper is dedicated to the actual verification of a concrete cryptographic protocol:
secure message transmission with ordered channels [4]. This yields the first example of
a machine-aided proof of a cryptographic protocol in asynchronous networks such that
the proven security is equivalent to the strongest cryptographic definition possible.

Related Literature. An extended version of this work is available as an IBM Research
Report [3]. The goal of retaining a sound cryptographic semantics and nevertheless



Cryptographically Sound and Machine-Assisted Verification 677

provide abstract interfaces for formal methods is pursued by several researchers: our
approach is based on the model for reactive systems in asynchronous networks recently
introduced in [19], which we believe to be really close to this goal. As we already
mentioned above, Pfitzmann and Waidner have shown in [18] that integrity properties
are preserved for reactive systems, but only under a synchronous timing model and they
have neither investigated the use of formal methods nor the verification of a concrete
example. Other possible ways to achieve this goal have been presented in [20,21,13,16,
12,1], e.g., but these either do not provide abstractions for using formal methods, or they
are based on unfaithful abstractions – following the approach of Dolev and Yao [7] – in
the sense that no secure cryptographic implementation of them is known.

In [2], Abadi and Rogaway have shown that a slight variation of the standard Dolev-
Yao abstraction is cryptographically faithful specifically for symmetric encryption. How-
ever, their results hold only for passive adversaries and for a synchronous timing model,
but the authors already state that active adversaries and an asynchronous definition of
time are important goals to strive for. Another interesting approach has been presented
by Guttman et. al. [11], which starts adapting the strand space theory to concrete cryp-
tographic definitions. However, their results are specific for the Wegman-Carter system
so far. Moreover, as this system is information-theoretically secure, its security proof
is much easier to handle than asymmetric primitives since no reduction proofs against
underlying number-theoretic assumptions have to be made.

2 Reactive Systems in Asynchronous Networks

In this section we briefly sketch the model for reactive systems in asynchronous net-
works from [19]. All details not necessary for understanding are omitted. Machines
are represented by probabilistic state-transition machines, similar to probabilistic I/O
automata [14]. For complexity we consider every automaton to be implemented as a
probabilistic Turing machine; complexity is measured in the length of its initial state,
i.e., the initial worktape content (often a security parameter k in unary representation).

2.1 General System Model and Simulatability

A system consists of several possible structures. A structure is a pair (M̂ ,S ) of a set M̂
of connected correct machines and a subset S of the free ports1, called specified ports.
Roughly, specified ports provide certain services to the honest users. In a standard
cryptographic system, the structures are derived from one intended structure and a trust
model. The trust model consists of an access structure ACC and a channel model χ.
Here ACC contains the possible sets H of indices of uncorrupted machines (among the
intended ones), and χ designates whether each channel is secure, reliable (authentic but
not private) or insecure. Each structure can be completed to a configuration by adding
an arbitrary user machine H and adversary machine A. H connects only to ports in S
and A to the rest, and they may interact. The general scheduling model in [19] gives each
connection c a buffer, and the machine with the corresponding clock port c�! can schedule
a message when it makes a transition. In real asynchronous cryptographic systems, all

1 A port is called free if its corresponding port does not belong to a machine in M̂ . These ports
are connected to the users and the adversary.
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connections are typically scheduled by A. Thus a configuration is a runnable system,
i.e., one gets a probability space of runs and views of individual machines in these runs.
For a configuration conf , we denote the random variables over this probability space by
runconf ,k and viewconf ,k, respectively. For a polynomial l, we further obtain random
variables for l-step prefixes of the runs, denoted by runconf ,k,l(k). Moreover, a run r
can be restricted to a set S of ports which is denoted by r�S .

Simulatability essentially means that whatever can happen to certain users in the real
system can also happen to the same users in the ideal (abstract) system: For every structure
struc1 = (M̂1,S1) of the real system, every user H, and every adversary A1 there exists
an adversary A2 on a corresponding ideal structure struc2 = (M̂2,S2), such that the
view of H in the two configurations is indistinguishable, cf. Figure 1. Indistinguishability
is a well-defined cryptographic notion from [22]. We write this Sys real ≥sec Sys id and

HH

A2

A1

S S

Mu Mv THM3

∀ ∀
∃

Real configuration Ideal configuration

M1
^

∈ f(M1, S)
^

M2
^

Fig. 1. Overview of the simulatability definition. The view of H must be indistinguishable in the
two configurations. In this example, H = {1, 2}.

say that Sys real is at least as secure as Sys id. In general, a mapping f may denote
the correspondence between ideal and real structures and one writes ≥f

sec, but with the
further restriction that f maps identical sets of specified ports. An important feature
of the system model is transitivity of ≥sec, i.e., the preconditions Sys1 ≥sec Sys2 and
Sys2 ≥sec Sys3 together imply Sys1 ≥sec Sys3 [19].

In a typical ideal system, each structure contains only one machine TH called trusted
host, whereas structures of real systems typically consist of several machines Mi, one
for each honest user.

3 Integrity Properties

In this section, we show how the relation “at least as secure as” relates to integrity
properties a system should fulfill, e.g., safety properties expressed in temporal logic.
As a rather general version of integrity properties, independent of the concrete formal
language, we consider those that have a linear-time semantics, i.e., that correspond to a
set of allowed traces of in- and outputs. We allow different properties for different sets
of specified ports, since different requirements of various parties in cryptography are
often made for different trust assumptions.
Definition 1 (Integrity Properties). An integrity property Req for a system Sys is a
function that assigns a set of valid traces at the ports in S to each set S with (M̂ ,S ) ∈ Sys .
More precisely such a trace is a sequence (vi)i∈N of values over port names and Σ∗, so
that vi is of the form vi :=

⋃
p∈S{p : vp,i} and vp,i ∈ Σ∗. We say that Sys fulfills Req
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a) perfectly (written Sys |=perf Req) if for any configuration conf = (M̂ ,S ,H,A) ∈
Conf(Sys), the restrictions r�S of all runs of this configuration to the specified ports
S lie in Req(S ). In formulas, [(runconf ,k�S )] ⊆ Req(S ) for all k, where [·] denotes
the carrier set of a probability distribution.

b) statistically for a class SMALL (Sys |=SMALL Req) if for any configuration conf =
(M̂ ,S ,H,A) ∈ Conf(Sys), the probability that Req(S ) is not fulfilled is small, i.e.,
for all polynomials l (and as a function of k),

P (runconf ,k ,l(k)�S �∈ Req(S )) ∈ SMALL.

The class SMALL must be closed under addition and contain any function g′ less
than or equal to any function g ∈ SMALL.

c) computationally (Sys |=poly Req) if for any polynomial configuration conf =
(M̂ ,S ,H,A) ∈ Confpoly(Sys), the probability that Req(S ) is not fulfilled is negli-
gible, i.e.,

P (runconf ,k�S �∈ Req(S )) ∈ NEGL.

For the computational and statistical case, the trace has to be finite. Note that a) is normal
fulfillment. We write “|=” if we want to treat all three cases together. �

Obviously, perfect fulfillment implies statistical fulfillment for every non-empty class
SMALL and statistical fulfillment for a class SMALL implies fulfillment in the compu-
tational case if SMALL ⊆ NEGL.

We now prove that integrity properties of abstract specifications carry over to their
concrete counterparts in the sense of simulatability, i.e., if the properties are valid for a
specification, the concrete implementation also fulfills concrete versions of these goals.
As specifications are usually built by only one idealized, deterministic machine TH,
they are quite easy to verify using formal proof systems, e.g., PVS. Now, our result im-
plies that these verified properties automatically carry over to the (usually probabilistic)
implementation without any further work.

The actual proof will be done by contradiction, i.e., we will show that if the real
system does not fulfill its goals, the two systems can be distinguished. However, in
order to exploit simulatability, we have to consider an honest user that connects to all
specified ports. Otherwise, the contradiction might stem from those specified ports which
are connected to the adversary, but those ports are not considered by simulatability. The
following lemma will help us to circumvent this problem:

Lemma 1. Let a system Sys be given. For every configuration conf = (M̂ ,S ,H,A) ∈
Conf(Sys), there is a configuration confs = (M̂ ,S ,Hs,As) ∈ Conf(Sys) with S ⊆
ports(Hs), such that runconf �S= runconfs�S , i.e., the probability of the runs restricted
to the set S of specified ports is identical in both configurations. If conf is polynomial-
time, then confs is also polynomial-time. �

We omit the proof due to space constraints and refer to [3].

Lemma 2. The statistical distance ∆(φ(vark), φ(var′k)) between a function φ of two
random variables is at most ∆(vark, var′k). �

This is a well-known fact, hence we omit the easy proof.
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Theorem 1 (Conservation of Integrity Properties). Let a system Sys2 be given that
fulfills an integrity property Req , i.e., Sys2 |= Req , and let Sys1 ≥f

sec Sys2 for an
arbitrary mapping f . Then also Sys1 |= Req . This holds in the perfect and statistical
sense, and in the computational sense if membership in the set Req(S ) is decidable in
polynomial time for all S . �

Proof. Req is well-defined on Sys1, since simulatability implies that for each (M̂1,S1) ∈
Sys1 there exists (M̂2,S2) ∈ f(M̂1,S1) with S1 = S2. We will now prove that if
Sys1 does not fulfill the property, the two systems can be distinguished yielding a
contradiction.

Assume that a configuration conf 1 = (M̂1,S1,H,A1) of Sys1 contradicts the theo-
rem. As already described above, we need an honest user that connects to all specified
ports. This is precisely what Lemma 1 does, i.e., there is a configuration conf s,1 in which
the user connects to all specified ports, with runconf s,1

�S1= runconf 1
�S1 , so conf s,1

also contradicts the theorem. Note that all specified ports are now connected to the honest
user; thus, we can exploit simulatability.2 Because of our precondition Sys1 ≥f

sec Sys2,
there exists an indistinguishable configuration conf s,2 = (M̂ ,S ,Hs,A2) of Sys2, i.e.,
viewconf s,1

(Hs) ≈ viewconf s,2
(Hs). By assumption, the property is fulfilled for this

configuration (perfectly, statistically, or computationally). Furthermore, the view of Hs
in both configurations contains the trace at S := S1 = S2, i.e., the trace is a function �S
of the view.

In the perfect case, the distribution of the views is identical. This contradicts the
assumption that [(runconf s,1,k�S )] �⊆ Req(S ) while [(runconf s,2,k�S )] ⊆ Req(S ).

In the statistical case, let any polynomial l be given. The statistical distance
∆(viewconf s,1,k,l(k)(Hs), viewconf s,2,k,l(k)(Hs)) is a function g(k) ∈ SMALL. We ap-
ply Lemma 2 to the characteristic function 1v�S �∈Req(S) on such views v. This gives
|P (runconf s,1,k,l(k)�S �∈ Req(S )) − P (runconf s,2,k,l(k)�S �∈ Req(S ))| ≤ g(k). As
SMALL is closed under addition and under making functions smaller, this gives the
desired contradiction.

In the computational case, we define a distinguisher Dis: Given the view of ma-
chine Hs, it extracts the run restricted to S and verifies whether the result lies in
Req(S ). If yes, it outputs 0, otherwise 1. This distinguisher is polynomial-time (in
the security parameter k) because the view of Hs is of polynomial length, and mem-
bership in Req(S ) was required to be polynomial-time decidable. Its advantage in dis-
tinguishing is |P (Dis(1k, viewconf s,1,k) = 1) − P (Dis(1k, viewconf s,2,k) = 1)| =
|P (runconf s,1,k�S �∈ Req(S )) − P (runconf s,2,k�S �∈ Req(S ))|. Since the second term
is negligible by assumption, and NEGL is closed under addition, the first term also has
to be negligible, yielding the desired contradiction.

In order to apply this theorem to integrity properties formulated in a logic, e.g., temporal
logic, we have to show that abstract derivations in the logic are valid with respect to the
cryptographic sense. This can be proven similar to the version with synchronous time,
we only include it for reasons of completeness (without proof).

2 In the proof for the synchronous timing model, this problem was avoided by combining the
honest user and the adversary to the new honest user. However, this combination would yield
an invalid configuration in the asynchronous model.
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Theorem 2.
a) If Sys |= Req1 and Req1 ⊆ Req2, then also Sys |= Req2.
b) If Sys |= Req1 and Sys |= Req2, then also Sys |= Req1 ∩ Req2.

Here “⊆” and “‘∩” are interpreted pointwise, i.e., for each S . This holds in the perfect
and statistical sense, and in the computational sense if for a) membership in Req2(S ) is
decidable in polynomial time for all S . �

If we now want to apply this theorem to concrete logics, we have to show that the
common deduction rules hold. For modus ponens, e.g., if one has derived that a and
a → b are valid in a given model, then b is also valid in this model. If Reqa etc. denote
the semantics of the formulas, i.e., the trace sets they represent, we have to show that

(Sys |= Reqa and Sys |= Reqa→b) implies Sys |= Reqb .

From Theorem 2b we conclude Sys |= Reqa ∩ Reqa→b . Obviously, Reqa ∩ Reqa→b =
Reqa∧b ⊆ Reqb holds, so the claim follows from Theorem 2a.

4 Verification of the Ordered Channel Specification

In this section we review the specification for secure message transmission with ordered
channels [4], and we formally verify that message reordering is in fact prevented.

4.1 Secure Message Transmission with Ordered Channels

Let n and M := {1, . . . , n} denote the number of participants and the set of indices
respectively. The specification is of the typical form Sysspec = {({THH},SH)|H ⊆
M}, i.e., there is one structure for every subset of the machines, denoting the honest
users. The remaining machines are corrupted, i.e., they are absorbed into the adversary.

The ideal machine THH models initialization, sending and receiving of messages.
A user u can initialize communications with other users by inputting a command of
the form (snd init) to the port inu? of THH. In real systems, initialization corresponds
to key generation and authenticated key exchange. Sending of messages to a user v is
triggered by a command (send, m, v). If v is honest, the message is stored in an internal
array deliver spec

u,v of THH together with a counter indicating the number of the message.
After that, a command (send blindly, i, l, v) is output to the adversary, l and i denote the
length of the message m and its position in the array, respectively. This models that the
adversary will notice in the real world that a message has been sent and he might also be
able to know the length of that message. Because of the underlying asynchronous timing
model, THH has to wait for a special term (receive blindly, u, i) or (rec init, u) sent by
the adversary, signaling, that the message stored at the ith position of deliver spec

u,v should
be delivered to v , or that a connection between u and v should be initialized. In the first
case, THH reads (m, j) := deliver spec

u,v [i] and checks whether msg out spec
u,v ≤ j holds

for a message counter msg out spec
u,v . If the test is successful the message is delivered at

outv ! and the counter is set to j + 1, otherwise THH outputs nothing. The condition
msg out spec

u,v ≤ j ensures that messages can only be delivered in the order they have been
received by THH, i.e., neither replay attacks nor reordering messages is possible for the
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adversary; cf. [4] for details. The user will receive inputs of the form (receive, u, m)
and (rec init, u), respectively. If v is dishonest, THH will simply output (send, m, v)
to the adversary. Finally, the adversary can send a message m to a user u by sending a
command (receive, v, m) to the port from advu? of THH for a corrupted user v, and he
can also stop the machine of any user by sending a command (stop) to a corresponding
port of THH, which corresponds to exceeding the machine’s runtime bound in the real
world.

In contrast to the concrete implementation, which we will review later on, the machine
THH is completely deterministic, hence it can be expressed very well within a formal
proof system, which supports the required data structures.

4.2 The Integrity Property

The considered specification has been designed to fulfill the property that the order of
messages is maintained during every trace of the configuration. Thus, for arbitrary traces,
arbitrary users u, v ∈ H, u �= v, and any point in time, the messages from v received
so far by u via THH should be a sublist of the messages sent from v to THH aimed for
forwarding to u. The former list is called receive-list, the latter send-list.

In order to obtain trustworthy proofs, we formally verify the integrity property in the
theorem proving system PVS [15]. This will be described in the following. For reasons
of readability and brevity, we use standard mathematical notation instead of PVS syntax.
The PVS sources are available online.3

The formalization of the machine THH in PVS is described in [4]. We assume that
the machine operates on an input set ITHH (short I), a state set StatesTHH (short S ), and
an output set OTHH (short O). For convenience, the transition function δTHH : I ×S →
S × O is split into δ : I × S → S and ω : I × S → O, which denote the next-state and
output part of δTHH , respectively. The function δTHH is defined in PVS’s specification
language, which contains a complete functional programming language. PVS provides
natural, rational, and real numbers, arithmetic, lists, arrays, etc. Furthermore, custom
datatypes (including algebraic abstract datatypes) are supported.

In order to formulate the property, we need a PVS-suited, formal notation of (infinite)
runs of a machine, of lists, of what it means that a list l1 is a sublist of a list l2, and we
need formalizations of the receive-list and send-list.

Definition 2 (Input sequence, state trace, output sequence). Let M be a machine
with input set IM, state set StatesM, output set OM, state transition function δ, and
output transition function ω. Call sinit ∈ StatesM the initial state. An input sequence
i : N → IM for machine M is a function mapping the time (modeled as the set N) to
inputs i(t) ∈ IM. A given input sequence i defines a sequence of states si : N → StatesM
of the machine M by the following recursive construction:

si(0) := sinit,

si(t + 1) := δ(i(t), si(t)).

The sequence si is called state-trace of M under i. The output sequence oi : N → O of
the run is defined as

oi(t) := ω(i(t), si(t)).
3 http://www.zurich.ibm.com/∼mbc/OrdSecMess.tgz
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We omit the index i if the input sequence is clear from the context. For components x of
the state type, we write x(t) for the content of x in s(t), e.g., we write deliver spec

u,v (t) to
denote the content at time t of the list deliver spec

u,v , which is part of the state of THH. �

These definitions precisely match the model-intern definition of views, cf. [19]. In the
context of THH, the input sequence i consists of the messages that the honest users
and the adversary send to THH. In the following, a list l1 being a sublist of a list l2 is
expressed by l1 ⊆ l2, l1 being a sublist of the k-prefix of l2 by l1 ⊆k l2.

Lemma 3. Let l1, l2 be lists over some type T , let k ∈ N0. It holds:

k < length(l2) ∧ l1 ⊆k l2 =⇒ append(nth(l2, k), l1) ⊆k+1 l2,

that is, one may append the kth element (counted from 0) of l2 to l1 while preserving the
prefix-sublist property. �

Definition 3 (Receive- and send-list). Let i be an input sequence for machine THH,
and let s and o be the corresponding state-trace of THH and the output sequence,
respectively. Let u, v ∈ H. The receive-list is obtained by appending a new element
m whenever v receives a message (receive, m, u) from THH. The send-list is obtained
by appending m whenever u sends a message (send, m, v) to THH. Formally, this is
captured in the following recursive definitions:

recvlistiu,v(t) :=






null if t = −1,

append(m, recvlistiu,v(t − 1)) if t ≥ 0 ∧ oi(t) = (receive, m, u)
at outv !.

recvlistiu,v(t − 1) otherwise

sendlistiu,v(t) :=






null if t = −1,

append(m, sendlistiu,v(t − 1)) if t ≥ 0 ∧ i(t) = (send, m, v)
at inu?.

sendlistiu,v(t − 1) otherwise

�

We now are ready to give a precise, PVS-suited formulation of the integrity property we
are aiming to prove:

Theorem 3. For any THH input sequence i, for any u, v ∈ H, u �= v, and any point in
time t ∈ N, it holds

recvlistiu,v(t) ⊆ sendlistiu,v(t). (1)

In the following, we omit the index i. �

Proof (sketch). The proof is split into two parts: we prove recvlistu,v(t − 1) ⊆
deliver spec

u,v (t) and deliver spec
u,v (t) ⊆ sendlistu,v(t − 1). The claim of the theorem then

follows from transitivity of sublists.
The claim deliver spec

u,v (t) ⊆ sendlistu,v(t − 1) is proved by induction on t. Both
induction base and step are proved in PVS by the built-in strategy (grind), which
performs automatic definition expanding and rewriting with sublist-related lemmas.
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The claim recvlistu,v(t−1) ⊆ deliver spec
u,v (t) is more complicated. The claim is also

proved by induction on t. However, it is easy to see that the claim is not inductive: in case
of a (receive blindly, u, i) at from advv?, THH outputs (receive, m, u) to outv !, where
(m, j) := deliver spec

u,v [i], i.e., m is the ith message of the deliver spec
u,v list (cf. Section 4.1,

or [4] for more details). By the definition of the receive-list, the message m is appended
to recvlistu,v . In order to prove that recvlistu,v ⊆ deliver spec

u,v is preserved during this
transition, it is necessary to know that the receive list was a sublist of the prefix of the
deliver spec

u,v list that does not reach to m. It would suffice to know that

recvlistu,v(t − 1) ⊆i deliver spec
u,v (t).

Then the claim follows from Lemma 3.
We therefore strengthen the invariant to comprise the prefix-sublist property.

However, the value i in the above prefix-sublist relation stems from the input
(receive blindly, u, i), and hence is not suited to state the invariant. To circumvent this
problem, we recursively construct a sequence last rcv blindlyu,v(t) which holds the pa-
rameter i of the last valid (receive blindly, u, i) received by THH on from advv?; then

recvlistu,v(t − 1) ⊆l deliver spec
u,v (t) with l = last rcv blindlyu,v(t)

is an invariant of the system. We further strengthen this invariant by asserting that
last rcv blindlyu,v(t) and the j’s stored in the deliver spec

u,v list grow monotonically. To-
gether this yields the inductive invariant. We omit the details and again refer the to the
PVS files available online.3

Applying Definition 1 of integrity properties, we can now define that the property Req
holds for an arbitrary trace tr if and only if Equation 1 holds for all u, v ∈ H, u �= v,
and the input sequence i of the given trace tr. Thus, Theorem 3 can be rewritten in the
notation of Definition 1 as [(runconf ,k�S )] ⊆ Req(S ) for all k, i.e., we have shown that
the specification Sysspec perfectly fulfills the integrity property Req .

4.3 The Concrete Implementation

For understanding it is sufficient to give a brief review of the concrete implementation
Sys impl, a detailed description can be found in [4]. Sys impl is of the typical form Sys impl =
{(M̂H,SH) | H ⊆ M}, where M̂H = {Mu | u ∈ H}, i.e., there is one machine for each
honest participant. It uses asymmetric encryption and digital signatures as cryptographic
primitives, which satisfy the strongest cryptographic definition possible, i.e., security
against adaptive chosen-ciphertext attack in case of encryption (e.g., [6]) and security
against existential forgery under adaptive chosen-message attacks in case of digital
signatures (e.g., [10]).

A user u can let his machine create signature and encryption keys that are sent to
other users over authenticated channels. Messages sent from user u to user v are signed
and encrypted by Mu and sent to Mv over an insecure channel, representing a real
network. Similar to THH each machine maintains internal counters used for discarding
messages that are out of order. The adversary schedules the communication between
correct machines and it can send arbitrary messages m to arbitrary users.
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Now the validity of the integrity property of the concrete implementation immedi-
ately follows from the Preservation Theorem and the verification of the abstract speci-
fication. More precisely, we have shown that the specification fulfills its integrity prop-
erty of Theorem 3 perfectly, which especially implies computational fulfillment. As
Sys impl ≥poly

sec Sysspec has already been shown in [4], our proof of integrity carries over
to the concrete implementation for the computational case according to Theorem 1.

5 Conclusion

In this paper, we have addressed the problem how cryptographic protocols in asyn-
chronous networks can be verified both machine-aided and sound with respect to the
definitions of cryptography. We have shown that the verification of integrity properties
of our abstract specifications automatically carries over to the cryptographic implemen-
tations, and that logic derivations among integrity properties are valid for the concrete
systems in the cryptographic sense, which makes them accessible to theorem provers.
As an example, we have formally verified the scheme for ordered secure message trans-
mission [4] using the theorem proving system PVS [15]. This yields the first formal veri-
fication of an integrity property of a cryptographic protocol whose security is equivalent
to the underlying cryptography with respect to the strongest cryptographic definitions
possible.
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