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Abstract

The Empirical Bayes method addresses two problems of safety estimation;  it increases the

precision of estimates beyond what is possible when one is limited to the use of a two-three year

history accidents, and it corrects for the regression-to-mean bias. The increase in precision is

important when the usual estimate is too imprecise to be useful. The elimination of the regression to

mean bias is important whenever the accident history of the entity is in some way connected with the

reason why its safety is estimated. The theory of the EB method is well developed. It is now used in

the Interactive Highway Safety Design Model (IHSDM) and will be used in the Comprehensive

Highway Safety Improvement Model (CHSIM). The time has come for the EB method to be the

standard and staple of professional practice.  The purpose of this paper is to facilitate the transition

from theory into practice

1.  INTRODUCTION

The safety of an entity (a road section, an intersection, a driver, a bus fleet etc.)  is “the

number of accidents (crashes), or accident consequences, by kind and severity, expected to occur on

the entity during a specified period.”  (1, p.25).  Since what is  ‘expected’ cannot be known, safety

can only be estimated, and estimation is in degrees of precision.  The precision of an estimate is

usually expressed by its standard deviation. 

The safety of entities on which many accidents occur during a short period  can be estimated

quite precisely by using only accident counts.  Thus, e.g., if on a road one expects 100 accidents per

year, then, with three years of accident counts, one can estimate the average yearly accident frequency

with a standard deviation of about  �(100/3)=±5.7 accidents/year or 5.7% of the mean.  Conversely,

when it takes a long time for few accidents to occur, the estimate is imprecise. Thus, e.g., if one
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expects a rail-highway grade crossing or a driver  to have one accident in ten years then with three

years of accident counts the estimate of average yearly accident frequency has a standard deviation

of �(0.1/3)=± 0.18. Since the mean is 0.1 accidents/year the standard deviation is 180% of the mean.

Thus, one shortcoming of safety estimates  that are  based on accident counts only is that they may

be too imprecise to be useful.

The other shortcoming of safety estimates that are based only on accident counts is that they

are subject to a common bias. For practical reasons one is often interested in the safety of entities that

either require attention because they seem to have too many accidents, or merit attention because they

have fewer accidents than expected. In both cases, were one to estimate safety using accident counts

only, the estimate would be biassed. The existence of this ’regression-to-mean’ bias has been long

recognized; it is known to produce inflated estimates of countermeasure effectiveness. Yet, incorrect

claims caused by failure to recognize this bias are still being published in the literature.. (A recent

example is, e.g., Datta et al. (2) who claim that low-cost treatments at three intersections in Detroit

reduced total accidents by 44%, 48% and 57%. Yet, the three intersections were selected for

treatment because their crash frequency, crash rate or casualty rate was higher than that of 95% of

intersections and no correction for the regression-to-mean has been applied. Additional recent

examples could be cited)   Rational management of safety is not possible if published studies give rise

to unrealistic expectations about the effectiveness of safety improvements.

 The Empirical Bayes (EB) method for the estimation of safety increases the precision of

estimation and corrects for the regression-to-mean bias. It is based on the recognition that accident

counts are not the only clue to the safety of an entity. Another clue is in what is known about the

safety of similar entities. Thus, e.g., consider Mr. Smith, a novice driver in Ontario who had no

accidents during his first year of driving. Let it also be known that an average novice driver in Ontario

has 0.08 accidents/year. It would be silly to claim that  Smith is expected to have zero accidents/year

(based on his record only). It would also be peculiar to estimate his safety to be 0.08 accident/year

(by disregarding his accident record). A sensible estimate must be a mixture of the two clues.

Similarly, to estimate the safety of a specific segment of, say, a rural two-lane road, one should use

not only the accident counts for this segment, but also the knowledge of the typical accident

frequency of such roads in the same jurisdiction. 

The theoretical framework for combining the information contained in accident counts with

the information contained in knowing the safety of similar entities is the EB method.  Starting with

its application to road safety by Abbess et al. (3) the method is now well developed (1, Chapters 11
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and 12) and has been widely applied. A recent application of the EB method of safety estimation is

the Interactive Highway Safety Design Model (IHSDM, 4 ).  Another application will be to the

Comprehensive Highway Safety Improvement Model (CHSIM) now under development. The time

has come for the EB method to be the standard of professional practice; it should be  be used

whenever the need to estimate road safety arises,  whether in the search for sites with promise, the

evaluation of the safety effects of interventions, or the assessment of potential safety savings due to

site improvements. The purpose of this paper is to be the bridge between theory and practice.

2.  THE EB PROCEDURE
The task is to make joint use of two clues to the safety of an entity: the accident record of that

entity and the accident frequency expected at similar entities.  This expected accident frequency at

similar entities is determined by the Safety Performance Function (SPF) about which more will be said

in section 3. In the EB estimate the joint use of the two clues is implemented by a weighed average.

That is,

Estimate of the Expected Accidents for an entity = 

    Weight×Accidents expected on similar entities + (1-Weight)×Count of accidents on this entity

    where   0�Weight�1 (1)

The result is determined by how much ‘weight’ is given to the accidents expected on similar entities.

The strength of the EB method is in the use of a ‘weight’ that is based on sound logic and on real

data. This ‘weight’ will be seen to depend on the strength of the accident record (how many accidents

are to be expected), and on the reliability of the SPF (how different may be the safety of a specific site

from the average which the SPF represents). 

The EB estimation procedure can be  abridged or full. The abridged version makes use of the

recent 2-3 years of accident counts and of the average traffic flow for that period. This reflects the

now common belief that accident counts that are older than 2-3 years may not represent current

conditions.  However, the EB procedure removes most reasons for not using older data. Accordingly,

the full version of the EB procedure makes use of a longer accident and traffic flow history.  Because

the full procedure uses more accident counts, the estimate of the full procedure is more precise than

the estimate produced by the abridged procedure. Therefore, if data is available, one should strive to

use the full procedure. 
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3. THE SAFETY PERFORMANCE FUNCTION.
The average accident frequency of ‘similar sites’ and the variation around this average is

brought into the EB procedure by the Safety Performance Function (SPF). The SPF is an equation

giving an estimate of µ, the average accidents/(km-year), as a function of some trait values (e.g.,

ADT, Lane width, . . .) and of several regression parameters.  

To illustrate, consider the SPF: estimate of µ=0.0224×ADT0.564 for a certain kind of road in

a given jurisdiction. Here ADT plays the one traits value, no additional trait values are represented

in the SPF, the estimate of one regression parameter is 0.0224, and the estimate of the second

regression parameter 0.564. If on a road of this kind ADT=4000 vehicles per day, then one should

expect 0.0224×40000.564=2.41 accidents/(km-year). 

SPFs are calibrated from data by statistical techniques. In the calibration it is nowadays

common to assume that the accident counts which serve as data come from a negative binomial

distribution. One of the parameters of this distribution is the ‘overdispersion parameter’, denoted here

by ‘�’.  For road segments, the overdispersion parameter is estimated per-unit-length. That is, the

dimension of � is [1/km] or [1/mile]. The meaning of � comes from the following relationship: if L

is the length of a segment and � is the expected number of accidents for that segment, then the

variance of accident counts on segments of that kind is �[1+�/(�L)]. The dimensions of � and L must

be complementary. That is, if in the course of model calibration � is estimated per km, then L must

be measured in kilometres. Note, � estimated per km = 0.622×� estimated per mile. For intersections

L is taken to be one.

In summary we defined:

µ the number of accidents/(km-year) for expected on similar segments and accidents/year

expected for similar intersections.

� the number of accidents during a specified period given by µ×L×Y expected for similar

segments and µ×Y expected for similar intersections. In this L stands for segment length and

Y for years.

� overdispersion parameter estimated per unit length for segments. Naturally, entities for which

the accident frequency is not proportional  to their length (e.g. intersections or rail-highway

grade crossings) have an overdispersion parameter that is not estimated per unit length.
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1

1�(µ×Y)/�
(2)

σ ( ) ( )es tim a te W eigh t E s tim a te= − ×1 (3)

4. THE ABRIDGED EB PROCEDURE ILLUSTRATED.
To introduce the abridged procedure consider numerical examples of gradually increasing

complexity:

Numerical Example 1: A Road segment with one year of accident counts.

A road segment is 1.8 km long,  has an ADT of 4000, and recorded 12 accidents in the last

year.  The SPF for similar roads is 0.0224×ADT0.564 accidents/(km-year), with an overdispersion

parameter �=2.05/km. To estimate the safety of this road segment proceed as follows.

Step 1: Average for entities of this kind.

Roads such as this have 0.0224×40000.564=2.41 accidents/(km-year), on average. Therefore

segments that are 1.8 km long are expected to have 1.8×2.41=4.34 accidents in one year.

Step 2: Weight.

We need a ‘weight’ for joining the 12 accidents recorded on this road and the 4.34 accidents

for an average road of this kind. In general the ‘weight’ is given by:

In equation 2, µ is in accidents/(km-year) and ‘Y’ is the number of years during which the

accident count materialized. Here µ=2.41 accidents/(km-year), Y=1 and   the estimate of

�=2.05/km. Therefore: weight = 1/[1+(2.41×1)/2.05] =0.460. Note that both µ and � are ‘per

unit length’.

Step 3: Estimate. 

Using equation 1 the estimate of the expected accident frequency for the specific road segment

at hand is:  0.460×4.34+0.540×12=8.48 accidents in one year. Note that 8.48 is between the

average for similar sites (4.34) and the accident count for this site (12). The EB estimator pulls

the accident count towards the mean and thereby accounts for the regression to mean bias. The

standard deviation of the estimate of the expected accident frequency is given by:

Here, �=±�(0.54×8.48)=±2.14 accidents in one year. 
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Numerical Example 2: Three years of accident counts

Suppose now that for the same road segment  we have three years of accident counts: 12, 7,

8, and that the ADT in each of  those three years was 4000 vpd. To estimate the safety of the road

segment:

Step 1: Average for entities of this kind.

 As before, segments of this kind are expected to have 2.41 accidents/km-year. On  1.8 km in

three years we expect 1.8×3×2.41=13.01 accidents. 

Step 2: Weight. 

The weight is 1/[1+(2.41×3)/2.05]=0.220. Note that with one year of accident data used the

weight was 0.460. As more years of accident data as used, the weight (given to the number of

accidents expected on similar entities) diminishes.

Step 3: Estimate.

Expected accidents=0.220×13.01 + 0.780×(12+7+8)=23.92 accidents in three years with

�=±�(0.78×23.92)=±4.32 or 23.92/(3×1.8)±4.32/(3×1.8)=4.43±0.80 accidents/(km-year).

Numerical Example 3: Application of Accident Modification Functions (AMFs)

Suppose now that the SPF equation in Example 1 is for roads with 1.5 m shoulders while the

road segment of interest has 1.2 m shoulders, and that a 0.3m decrease in shoulder width is known to

increase accidents by, say, 4%.

Step 1: Average for entities of this kind.

 Using the result from Example 1, segments of this kind are expected to have 1.04×2.41=2.51

accidents/km-year. On 1.8 km in three years we expect 1.8×3×2.51=13.55 accidents. 

Step 2: Weight.

The weight is  1/[1+(2.51×3/2.05]=0.214.

Step 3: Estimate. 

Expected accidents=0.214×13.55+0.786×(12+7+8)=24.12 ± �(0.786×24.12)=4.35 accidents

in three years or [24.12±4.35]/(3×1.8)=4.47±0.81 accidents/(km-year).

Numerical Example 4: Subsections and Accident records.

Consider the road segment in Figure 1 that is made up of three subsections that differ in some

traits (which determine the variable values of the SPF) and in the AMFs. However, the accident count

is not available separately for each subsections, only for the entire 1.5 km segment on which  11

accidents were counted in the last two years.
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Figure 1

Subsection ADT Length
[km]

AMF
 

Accidents/(km-year) Accidents

1 2000 0.1 .90 1.466 0.147 
2 2300 1.2 .95 1.675 2.010 
3 2300 0.2 1.05 1.851 0.370 

Sum 2.527 

Table 1

Step 1: Average for Entities of this kind.

The ADTs and AMFs differ amongst the subsections as shown in columns 2 and 4 of Table 1.

Assume that, as in the earlier examples the SPF is 0.0224×ADT0.564 accidents/(km-year) and

�=2.05/km. Thus, after correction for AMF, subsection 1 is expected to have 0.0224×20000.564

×0.90 = 1.466 accidents/(km-year) and therefore1.466×0.1=0.147 accidents/year. The three

sub-sections together are expected to have 2.527×2=5.054 accidents in two years or 2.527/1.5

=1.715 accidents/(km-year). From here on it is convenient to forget about the subsections and

treat the 1.5 km segment as one entity. 

Step 2: Weight.

The weight is  1/[1+(1.715×2)/2.05]=0.374.

Step 3: Estimate.

Expected accidents for the 1.5 km long section in two years =0.374×5.054 +0.626×11 =8.78

±�(0.626×8.78)=2.34 accidents or [8.78±2.34)/(1.5×2)=2.93±0.78 accidents/(km-year). 
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Accident severity
Accidents
in three
years

Proportion
on similar

roads

Average
Accidents/
(km-year)

Average
Accidents in
three years

Weight
Expected
Accidents
this site

1 2 3 4 5 6

Fatal (K) 1 0.019 0.046 0.247 0.937 0.295 

Incapacitating injury
(A) 2 0.053 0.128 0.690 0.843 0.896 

Non-incapacitating
injury (B)

2 0.151 0.364 1.965 0.653 1.977 

Possible injury (C) 5 0.140 0.337 1.822 0.669 2.872 

Property damage only 17 0.637 1.535 8.290 0.308 14.317 

Total 27 1.000 2.410 13.014 20.357 

Table 2

Numerical Example 5: Accidents by severity.

Consider again the setting in numerical example 2 with the addition of the information in columns 1 and

2 of Table 2.

Step 1: Average for entities of this kind.

As in the earlier examples, segments of this kind are expected to have 2.41 total accidents/(km-

year).  Applying the typical proportions in column 2 of Table 2, we expect 0.046 fatal

accidents, 0.128 A-injury accidents, . . ., as shown in column 3. On 1.8 km in three years we

expect on roads of this kind 1.8×3×0.046=0.247 fatal accidents as shown in column 4.

Step 2: Weight. 

The weight for fatal accidents is 1/(1+0.046×3/2.05)=0.937 as shown in column 5. The

overdispersion parameter, � remains 2.05/km for all severities because it can be shown that

when the SPF is multiplied by a constant, the overdispersion parameter is unchanged. Note  that

the weight of the ‘Average for entities of this kind’ is large for the rare accident severities. It

is the property of the EB procedure that estimates will not be dominated by the random

occurrence of rare events.

Step 3: Estimates.

The estimate of expected fatal accidents=0.937×0.247 + 0.063×1=0.295±�(0.063×0.295)

=0.136 accidents in three years. Note that the sum of expected accidents when estimated

separately for each severity is 20.35. When the same has been estimated in example 2 using the
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total accidents without differentiation by severity, the estimate was 23.92 accidents. The

discrepancy has two sources. First, it is appropriate that  the specific accident severity of a site

should be reflected in the estimates. Therefore, in principle, the two numbers should differ.

However, there is a systematic reason for the discrepancy. It arises mainly because separation

into severity classes inevitably results in smaller values of µ used in equation 2, and therefore

in larger weights given to the expected accident frequency on similar entities. An ad-hoc

correction could be to multiply each estimate by the ratio 23.92/20.35. The estimate of

expected fatal accidents would then be 0.295×1.118=0.347.  A correct way of removing the

blemish would be to adopt procedures described by Flowers (5) or Heydecker (6). However,

both require additional parameter estimates to be used and these are, at this time, not easily

available.

Numerical Example 6. An intersection. 

For three-leg rural intersection in Minnesota Vogt and Bared (7) find that under nominal

conditions µ is estimated by 6.54×10-5 ×ADTmainline×ADTminor road and the estimate of � is 1.96.

Consider such an intersection with ADTmainline=4520,  ADTminor road=230, the AMF to account for

differences from nominal conditions is1.27,  and there were 7 accidents in three years.

Step 1: Average for entities of this kind.

Under the nominal conditions, intersections of this kind are expected to have 6.54×10-

5×45200.82×2300.51=1.041 accidents/year. Under the real conditions of this intersection, using the

AMFs, 1.27×1.041=1.322 accidents/year. In the three years for which accident counts are used,

3×1.322=3.966 accidents.

Step 2: Weight. 

The weight is 1/[1+(1.322×3)/1.96]=0.331

Step 3: Estimate.

Expected accidents=0.331×3.966 + 0.669×7=6.00±�(0.669×6.00)=2.00 accidents in three years

or [6.00±2.00]/3=2.00±0.67 accidents/year.

Numerical Example 7. Accidents allocated to a group of intersections .

Some data bases contain information about how  many intersection (and intersection-related)

accidents have occurred on a road segment without the ability to specify how many occurred on which

intersection. Consider a road segment with two intersections for which we have estimates of µ1 (2.6
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accidents/year) , �1 (2.2) and of µ2 (4.3 accidents/year), �2 (1.8). In three years,  11 accidents have

occurred on these two intersections.

Step 1: Average for entities of this kind.

In the three years for which accident counts are available and on two similar intersections one

should expect 3×2.6+3×4.3=7.8+12.9= 20.7 accidents.

Step 2: Weight. 

Were one to use  equation 2 directly, as if the two intersections were one, weight would be

1/(1+20.7/2)=0.088. In this the average overdispersion parameter was used.  This is a bit of an

oversimplification. Actually, when the accident count is available jointly for n entities with

means �1, �2,. . .,�n and overdispersion parameters �1, �2, . . .,�n and when correlation

coefficient between �i and �j is �i,j  then the weight should be computed by:

But, it is at present not clear what correlation coefficient should be used and therefore the two

extremes are of interest.
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In this example the weight is between 1/[1+(7.82/2.2+12.92/1.8)/20.7]=0.147 and

1/{1+[�(7.82/2.2) +�(12.92/1.8)]2/20.7}=0.085.

Step 3: Estimate.

Using the simply-obtained weight of 0.088, Expected accidents=0.088×20.7+

0.912×11=11.94±�(0.912×11.94)=3.30 accidents in three years.

5. THE FULL PROCEDURE ILLUSTRATED.

So far we discussed the abridged EB procedure. The full  procedure differs from the abridged

procedure in that year to year changes in ADT and in other variables can be brought into estimation

thereby allowing use of longer accident histories. The full EB procedure is illustrated by numerical

examples.

Numerical Example 8 - Accounting for changing ADTs

A road segment is 1.8 km long. It has remained physically unchanged during the past 9

years. The ADT estimates and accident counts for each year are given in rows 2 and 3 of Table

3. As in earlier examples, for this kind of road and nominal conditions µ is estimated by

0.0224×ADT0.564 accidents/(km-year) and the overdispersion parameter � is 2.05. Assume

further that to convert from nominal to real conditions, the product of all AMFs is, in this case,

0.95.To estimate the safety of this road section in each of the nine years proceed as follows:
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1 Year 1989 90 91 92 93 94 95 96 97 Sums

2 ADT 4500 4700 5100 5200 5600 5400 5300 5300 5400

3 Accidents 12 5 9 8 14 8 5 7 6 74

4 µyear, 
[accidents/(km-year)]

2.446 2.506 2.624 2.653 2.767 2.710 2.682 2.682 2.710 
23.781

5 Expected accidents in
year

4.402 4.511 4.724 4.776 4.980 4.879 4.828 4.828 4.879 42.806

6 Expected annual
accident for segment

7.36 7.54 7.89 7.98 8.32 8.15 8.07 8.07 8.15 71.52 

Table 3.

weight� 1

1�
�

year�last year

year�first year

µyear

�

(7)

Step 1.  Average for entities of this kind

Each year has an estimate of the expected number of accidents for roads of this kind. Thus, e.g.,

for 1989 and under nominal conditions, roads with ADT=4500 are estimated to have

0.0224×45000.564= 2.574 accidents/(km-year) and after adjustment to actual conditions µ1989=

2.574×0.95= 2.446 accidents/(km-year) as shown in row  4.  Listed in row 5 are the expected

accidents when segment length has been accounted for.

Step 2. Weight.

The formula for computing the weight is now:

Note that equations 2 and 7 are identical when all the µ’s are the same. With  �=2.05 and �µyear=

23.781, the weight = 1/(1+23.781/2.05) =0.0794.

Step 3. Estimates.

 Now the expected number of accidents for the specific road section at hand and the period

1989-1997 is 0.0794×42.846+0.9206×74=71.52±�(0.9206×71.52)=8.11. Note that this estimate

is based on the full nine-year accident history and this explains the small weight attached to what

is expected at similar sites. The estimate for any specific year is now  computed by multiplying

the estimate for the entire period by the ratio µyear/�µyear. Thus, for 1997 the estimate is
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1 Year 1989 90 91 92 93 94 95 96 97 Sums

2a Yearly Multipliers 1 0.984 1.053 1.005 0.996 0.932 0.931 0.891 0.927 

2b ADT 4500 4700 5100 5200 5600 5400 5300 5300 5400

3 Accidents 12 5 9 8 14 8 5 7 6 74

4 µyear, 
[accidents/(km-year)]

2.446 2.466 2.764 2.667 2.756 2.526 2.497 2.390 2.513 23.023 

5 Expected accidents in year 4.402 4.439 4.974 4.800 4.960 4.547 4.495 4.301 4.523 41.441 

6 Expected annual accident for
segment

7.58 7.64 8.56 8.26 8.54 7.83 7.74 7.40 7.79 71.34 

Table 4.

[71.52±8.11]×2.710/23.781=8.15±0.92. These values are listed in row 6. In this manner, the

evidence of the entire accident record of nine years is brought to bear on the estimate in any

specific year.

Numerical Example 9 - Accounting for secular trend.

In the preceding example the underlying assumption was that while ADT changed over the years,

other factors affecting the safety (weather, vehicles, drivers etc.) remained unchanged. However, most

everything changes with time. This ‘secular trend’ can be expressed in multivariate models by ‘yearly

multipliers’ which can be estimated together with all other regression coefficients. Such multipliers are

listed in row Table 4. Thus, e.g., were the model  0.0224×ADT0.564 applied to data from 1990, it would

over-predict the total number of recorded accidents that occurred in 1990 by 1.6%; to bring the

prediction and the accident count into agreement one has to multiply by 0.984 as shown in row 2a..The

yearly multipliers alter the entries in row 5 and this, in turn, affects all other numerical results.

Numerical Example 10 - Projection.

The focus so far was on estimating what the expected accident frequency was for some year in

the past. Occasionally one wishes to project what accident frequency should be expected at some time

in the future. Projections of this kind are always necessary when one wishes compare what safety would

have been had some intervention not been implemented to what safety was with the intervention in place.

Suppose then that for the segment in numerical example 8 we wish to project the expected  number of

accidents in 2003 and 2004 when ADTs of 6000 and 6300  are expected and for when the yearly

multiplier values of 0.9 and 0.92 are projected.  

The starting point for the projection can be any of  the values in Table 4.  Thus, e.g., the value

of 7.79 accidents in 1997 is for AADT1997=5400 and the yearly multiplier of 0.927. Recall that the
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exponent of ADT in the model equation is 0.564. Thus, the projection ratio for 2003 is

(0.9×60000.564)/(0.927×54000.564)=1.030 and for 2002 it is (0.92×63000.564)/(0.927×54000.564)=1.083.

Therefore for  2003 we project 7.79×1.030=8.02 accidents and for 2002 we project 7.79×1.083=8.44

accidents.

6. SUMMARY.

The safety of entities is usually estimated from the history of its accident counts. The EB

procedure for safety estimation combines accidents counts with knowledge about the safety of similar

entities. Doing so has several advantages. Precision of estimation is enhanced when the accident record

is sparse and the regression to mean bias is eliminated. As usually, improved precision requires added

information. In this case one needs estimates of the Safety Performance Functions for similar entities and

an estimate of the applicable overdispersion parameter. Since these are now more widely available, EB

estimation of safety should be the preferred practice. The purpose of this paper is illustrate that what

may seem to be a complex theory can be put into daily practice.
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