
J Mol Med (2004) 82:671–677
DOI 10.1007/s00109-004-0580-x

R E V I E W

Stefanie Dimmeler · Andreas M. Zeiher

Vascular repair by circulating endothelial progenitor cells:
the missing link in atherosclerosis?

Received: 16 January 2004 / Accepted: 28 April 2004 / Published online: 20 August 2004
� Springer-Verlag 2004

Abstract The integrity and functional activity of the en-
dothelial monolayer play a crucial role in the prevention of
atherosclerosis. Increasing evidence suggests that risk

factors for coronary artery disease increase endothelial cell
apoptosis and lead to a disturbance in the endothelial
monolayer. Recent insights suggest that the injured en-
dothelial monolayer is regenerated by circulating bone
marrow derived endothelial progenitor cells, which ac-
celerates reendothelialization and limits atherosclerotic
lesion formation. However, risk factors for coronary artery
disease such as age and diabetes reduce the number and
functional activity of these circulating endothelial pro-
genitor cells, thus limiting the regenerative capacity. The
impairment of stem/progenitor cells by risk factors may
contribute to atherogenesis and atherosclerotic disease
progression. We discuss this novel concept of endothelial
regeneration and highlight possible novel strategies to
interfere with the balance of injury and repair mecha-
nisms.
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Endothelial cell apoptosis · Endothelial progenitor cells ·
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Abbreviations EC: Endothelial cell · eNOS: Endothelial
nitric oxide synthase · EPC: Endothelial progenitor cells ·
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Introduction

The integrity and functional activity of the endothelial
monolayer play a critical role in artherogenesis. Injury of
endothelial monolayer by mechanical removal of the en-
dothelium (e.g., by PTCA or stenting) or inflammatory
activation of the endothelial cells induces a cascade of
proinflammatory events resulting in infiltration of monoc-
ytic cells and smooth muscle cell proliferation [1]. These
processes can lead to the formation of atherosclerotic
lesions, plaque rupture, and finally myocardial infarction,
which is still the leading cause of death in the Western
world. The maintenance of the endothelial integrity is
therefore of crucial importance in preventing the trig-
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gering of processes. In the past the turnover of endothelial
cells was believed to be very low [2]. However, increas-
ing evidence suggests that risk factors for coronary artery
disease increase endothelial cell (EC) apoptosis and there
lead to a disturbance of the endothelial monolayer [3, 4].
Recent insights additionally suggest that the injured en-
dothelial monolayer is regenerated by circulating endo-
thelial cells. This contribution discusses this novel con-
cept of endothelial regeneration and highlights possible
novel strategies for interfering with the balance of injury
and repair mechanisms.

Endothelial cell apoptosis
and endothelial regeneration

Risk factors for atherosclerotic lesion formation can in-
duce a proinflammatory response in endothelial cells
and directly induce endothelial injury by promoting the
apoptotic suicide pathways. Various in vitro studies show
such proapoptotic events induced by a variety of risk
factors, including proinflammatory cytokines, reactive
oxidant species, oxidized low-density lipoprotein (LDL),
and angiotensin II (reviewed in [3, 4]). An elegant animal
study found elevated EC apoptosis in aortas and femoral
arteries of aged monkeys to be associated with vascular
endothelial dysfunction [5], the latter being a well rec-
ognized premanifestation feature during the early ini-
tiation phases of atherosclerosis. As the most direct in
vivo evidence for the occurrence of EC apoptosis as yet
available, histopathological analysis of human carotid
atheroslerotic plaques demonstrated the occurrence of EC
apoptosis in the downstream part of the plaque [6]. As
early as in 1978 a significant increase in endothelemia
was reported in patients with myocardial infarction and
severe but not mild angina, which was sustained for sev-
eral days [7]. Remnants of apoptotic cells, the apoptotic
microparticles, have been detected in the peripheral blood
particularly of patients with acute coronary syndromes.
About 30% of these microparticles are of endothelial ori-
gin [8]. These data have been confirmed by multicolor
flow cytometry, which detects annexin V (as a marker for
apoptosis) and endothelial marker proteins (KDR and von
Willebrandt factor) (S.D., personal communication).

What happens after endothelial injury? In the past the
regeneration of injured endothelium was attributed to the
migration and proliferation of neighboring endothelial
cells. As early as 1972 Kaplan and Schwartz investigated
the rate of endothelial cell proliferation; they detected
only a rather low number of proliferating cells. These
cells were found predominantly in the turbulent flow ar-
eas of the vascular tree, the lesion prone regions where
atherosclerotic lesions preferentially develop. These ob-
servations are in accordance with data obtained more than
20 years later that laminar flow prevents endothelial cell
apoptosis in vitro and in vivo [6, 9]. More recent studies,
however, suggest that additional repair mechanisms exist
to replace denuded or injured arteries (Fig. 1). Implanted
Dacron grafts were shown to be rapidly recovered by

bone marrow-derived cells deriving from CD34+ hema-
topoietic stem cells in a dog model [10]. In humans the
surface of ventricular assist devices was found to be
covered by even more immature CD133+ hematopoietic
stem cells, which concomitantly express the vascular
endothelial growth factor (VEGF) receptor 2 [11]. Addi-
tionally, Walter and coworkers [12] demonstrated that
circulating endothelial precursor cells can home to de-
nuded parts of the artery after balloon injury. The incor-
porated cells were shown to derive from the bone marrow,
using mice which had had bone marrow transplantion
with b-galactosidase expressing cells. Enhanced incor-
poration of b-galactosidase positive bone marrow derived
cells is associated with accelerated reendothelialization
and reduced restenosis [12, 13]. Similar results were re-
ported by Griese et al. [14] who demonstrated that pe-
ripheral blood derived monocyte-derived endothelial pro-

Fig. 1 Regeneration of the endothelial monolayer after injury.
After induction of endothelial injury (1) two possibilities exist to
regenerate the injured endothelial monolayer (2, 3). 2 Regeneration
by mature endothelial cells which migrate and proliferate to re-
generate the endothelial layer. 3 Regeneration by bone marrow
derived endothelial progenitor cells
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genitor cells (EPC) home into bioprosthetic grafts and
to balloon-injured carotid arteries, the latter being asso-
ciated with a significant reduction in neointima deposi-
tion. Likewise, infusion of bone marrow-derived CD34�/
CD14+ mononuclear cells contributes to endothelial re-
generation [15]. Overall these findings suggest that cir-
culating endothelial cells make an important contribution
to reendothelialization.

The origin of the circulating pool of endothelial cells is
not entirely clear. Various studies provide compelling
evidence that EPC can derive from hematopoietic stem
cells, which express the marker proteins CD133 or CD34
[11, 16, 17]. However, this does not exclude the presence
of other sources in the bone marrow (e.g., mesenchymal
stem cells, stem/progenitor cells) or even tissue resident
stem cells. Moreover, CD14+ monocytic cells (even in the
absence of the hematopoietic marker CD34 [15]) can
differentiate to endothelial cells [18, 19]. Regardless of
the origin of the circulating EPC this pool of circulating
endothelial cells may play an important function in en-
dogenous repair mechanism to maintain the integrity of
the endothelial monolayer, thereby preventing thrombotic
complications and atherosclerotic lesion development.
Although this concept has not yet been confirmed, several
hints from recently presented data are supportive. For
example, transplantation of apolipoprotein E�/� mice with
wild-type bone marrow reduced atherosclerotic lesion
formation [20]. Moreover, various risk factors affect the
number and functional activity of EPC both in vitro and in
patients with coronary artery disease, whereas the re-
duction in risk factor load elevates EPC levels (see next
section).

By improving neovascularization bone marrow de-
rived stem/progenitor cells may also contribute to plaque
angiogenesis thereby potentially facilitating plaque in-
stability [21]. However, a recent study in nonischemic
mice detected no effect of bone marrow cells infusion on
plaque composition [22]. Moreover, an increase in plaque
size was detected only in the presence of ischemia, sug-
gesting that ischemia induced release of growth factors
predominantly accounts for this effect [22].

Risk factors and endothelial progenitor cells

The number of circulating EPC, which might have a re-
pair capacity is significantly downregulated in patients
with coronary artery disease [23]. Classical risk factors
for atherosclerosis such as age and smoking are associated
with reduced numbers of circulating CD34/KDR+ and
CD133/KDR cells [23]. Likewise, the number of cultured
EPC from peripheral blood mononuclear cells of patients
with risk factors for coronary artery disease was found
to be significantly reduced. Two other studies reported
lower numbers of EPC as assessed by outgrowth assays in
patients with type II [24] or type I diabetes [25]. Most
convincingly, classical risk factors for atherogenesis are
associated in healthy men with a reduction in peripheral
blood-derived endothelial cells [26]. Interestingly, the

number of outgrowing endothelial colonies is correlated
with endothelial function as assessed by measurement of
flow-dependent dilation [26]. Since the measurement of
endothelial-mediated vasodilatory capacity gives direct
insight into the functional activity of the endothelium and
is closely linked to the prognosis of patients with coronary
artery disease [27], these data suggest that EPC do indeed
have a regenerative capacity. The reduction in EPC by
risk factors may contribute to a vicious cycle resulting in
endothelial dysfunction (Fig. 2)

Mechanisms for impaired regenerative capacity due
to reduced EPC levels

The reduction in circulating EPC may have different
causes: (a) exhaustion of the pool of stem/progenitor cells
in the bone marrow, (b) reduced mobilization, or (c) re-
duction of survival and/or differentiation (Fig. 3). The
maintenance and mobilization of hematopoietic stem cells
(the precursors of EPCs) in the bone marrow is deter-
mined by the local microenvironment, the “stem cell
niche,” which consists of stromal cells [28]. The direct
influence of the overall risk factors for coronary artery
disease on the bone marrow microenvironment is not
clear. However, the effect of aging has been extensively
studied. Whereas basal hematopoiesis is maintained in
aging, the capacity to react to stress-induced mobilization
gradually declines with increased age (for review see
[29]). Thus one may speculate that elderly patients would
show a limited response towards EPC mobilizing/differ-
entiation stimuli and therefore a reduced number of cir-
culating EPCs [30]. Indeed, a lower increase in circulating
EPC has been found in elderly patients after surgery [31].

Fig. 2 Effect of risk factors on endothelial regeneration and func-
tion. Risk factors induce apoptosis of endothelial cells. In the
presence of ongoing apoptosis the endothelial monolayer needs to
be regenerated. However, risk factors also reduce the migratory
capacity of mature endothelial cells and lower the number and
function of circulating endothelial progenitor cells. The enhanced
apoptosis and reduced repair may lead to a vicious cycle promoting
endothelial dysfunction. Indeed, the number of endothelial pro-
genitor cells is inversely correlated with endothelial function [26]
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In apolipoprotein E�/� mice age significantly reduced
intermediate vascular progenitor cells in the bone marrow
(which were defined as CD31+/CD45� cells) but did not
affect the overall number of hematopoietic stem cells or
mature endothelial cells [20]. Interestingly, similar find-
ings have been observed in patients with coronary artery
disease, where the number of circulating EPC was sig-
nificantly reduced while the overall hematopoietic pre-
cursor cell levels (CD34+ or CD133+ cells) were not
changed [23]. Age itself may also interfere with the
functional activity of stem/progenitor cells. Edelberg and
coworkers [32] previously demonstrated that only the
transplantation of young bone marrow derived cells re-
stores age-associated impaired neovascularization, while
bone marrow of aged mice was not effective. Further-
more, young bone marrow derived cells provide protec-
tion against atherosclerotic lesion formation [20]. The
antiatherosclerotic effect was detected only when young
bone marrow derived cells were used [20].

What is the effect of other risk factors on the bone
marrow environment and the stem cell niche? The bone
marrow stromal cells partially consist of endothelial cells.
Given that risk factors systemically impair endothelial
cell functions, one may speculate that stromal cells also
have impaired functional activity. Indeed, deficiency for
the endothelial nitric oxide synthase (eNOS) leads to an
impairment of VEGF-induced mobilization of hemato-
poietic stem cells and EPC and blunted hematopoietic
recovery after myelosuppression [33].

eNOS�/� mice additionally showed a reduction in ex-
ercise-induced EPC mobilization [34]. Moreover, bone
marrow derived eNOS�/� stem cells exhibit a lower en-
graftment and reduced capacity to augment neovascular-
ization after intravenous injection in a hind limb ischemia
model [33]. Interestingly, bone marrow derived cells from
patients with chronic heart failure showed a reduced mi-
gratory response ex vivo and significant impairment to
home to sites of ischemia and to improve neovascular-
ization after hind limb ischemia [35]. These experimental

data correspond to initial clinical observations showing a
correlation between the migratory capacity of the bone
marrow derived cells and improvement in cardiac func-
tion in patients after cell therapy [36]. Since nitric oxide
bioavailability is reduced in patients with coronary artery
disease and heart failure, one may speculate that the re-
duction in nitric oxide may lead to reduced mobilization
and impair maintenance of functional active stem cells.

A second possibility, which may underlie the reduced
EPC levels, is enhanced apoptosis and/or deregulation of
EPC differentiation. An increased turnover rate in the
progenitor cell population with increased susceptibility to
apoptosis may be due to an imbalance in pro- and anti-
apoptotic factors or be caused by a decline in antioxidant
defense, as has been suggested for the coronary artery
disease process in general. Moreover, angiostatin, an an-
tiangiogenic molecule, was shown to block proliferation
of EPCs [37]. In contrast, increased EPC levels by statins
or estrogens (see next section) are associated with inhi-
bition of EPC apoptosis [38, 39]. In addition to apoptosis,
dysregulation of EPC differentiation by environmental
factors may change the balance between cells determined
to the endothelial lineage or to inflammatory cells. Mono-
cytic cells or CD34+ cells can be differentiated to endo-
thelial-like cells, when grown under appropriate medium
conditions with endothelial growth factors (e.g., VEGF).
However, changing the medium conditions and including
macrophage-colony stimulating factors or a combination
of granulocyte-macrophage-colony-stimulating factor and
interleukin 4 results in generation of macrophage or
dendritic cells from the same starting cell population [18].
Moreover, bone marrow derived cells can even give
rise to smooth-muscle cells and, thereby, contribute to
atherosclerotic lesion development [40]. In vitro, oxidized
LDL inhibits VEGF-induced EPC differentiation [41].
These data suggest a critical role of the local environment
to determine the cell fate promoting either EPC devel-
opment, with a presumed vasculoprotective effect, or
preventing EPC differentiation, which may limit endo-

Fig. 3 Possible targets of risk
factors for coronary artery dis-
ease to reduce circulating en-
dothelial progenitor cells (1–4).
Risk factors for coronary artery
disease may interfere with he-
matopoietic stem cells in the
bone marrow, reducing mobili-
zation or affecting survival and
differentiation of circulating
progenitor cells. Additionally,
risk factors such as age may
also reduce homing by reducing
stimulatory factors such as
VEGF and the block receptor
dependent signaling of EPCs
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thelial regeneration. Particularly under conditions of
blocked endothelial differentiation, one may speculate
that this forces differentiation to proinflammatory cell
types or smooth-muscle progenitors, which are considered
to promote atherosclerotic lesion development.

Finally, mechanisms which facilitate homing of EPC
to the ischemic tissue, could be affected by risk factors.
Indeed, aging has been shown to significantly impair
hypoxia-induced expression of VEGF [42] and VEGF-
expression after balloon injury [43]. In patients with
coronary artery disease an impairment of hypoxia-in-
duced VEGF release was found to be associated with a
reduced collateral circulation development [44]. More-
over, a reduced increase in VEGF plasma levels is asso-
ciated with lower mobilization of EPC in elderly patients
after coronary artery bypass graft [31].

Other factors which may act as chemoattractants, such
as hematopoietic growth factor and stromal cell derived
factor 1, may also be affected. Alternatively, the expres-
sion of the receptors or the integrity of the receptor-de-
pendent signaling pathways could be targets for risk factor
induced inhibitory effects. Receptors could be cleaved by
inflammation-induced activation of proteases, as shown
for granulocyte colony-stimulating factor triggered prote-
olysis of the stromal cell derived factor 1 receptor CXCR4
[45]. Initial evidence that intracellular signaling pathways
are targeted by risk factors was observed in mature en-
dothelial cells; VEGF-dependent activation of intracellular
signaling pathways (such as Akt) was disturbed by incu-
bation with oxidized LDL [46]. Likewise, isolated pe-
ripheral blood derived EPC from patients with coronary
artery disease show a blunted migratory response towards
VEGF despite unchanged VEGF receptor expression [23],
suggesting that the response towards VEGF is blocked
intracellularly.

Although it may be premature to rush any conclusions
based on these preliminary findings, risk factors might
interfere with EPC-mediated vascular protection via var-
ious possible mechanisms, thereby modulating the endo-
thelial regeneration process.

Regulation of EPC levels

If the hypothesis is correct that the impaired circulating
EPC numbers and/or function contributes to atheroscle-
rotic disease progression in patients with risk factors for
coronary artery disease, the augmentation of EPC may
offer an attractive therapeutic approach. Initial evidence
for potential pharmacological intervention came from
studies using 3-hydroxy-3-methylgluaryl coenzyme A
reductase inhibitors (statins). Statins were shown to in-
crease the number and the functional activity of EPC in
vitro [39, 47] in mice [39, 47] and in patients with stable
coronary artery disease [48]. The increase in EPC num-
bers was associated with increased bone marrow derived
cells after balloon injury and accelerated endothelial re-
generation [12, 13]. The mechanism for enhancing the
EPC numbers and function include an increase in prolif-

eration, mobilization, and prevention of EPC senescence
and apoptosis [39, 47, 49]. The molecular signaling
pathways have not been identified thus far. However,
several studies indicate that the activation of the phos-
phatidylinositol 3-kinase/Akt pathway, which has first
been shown to be activated in mature endothelial cells by
statins [50], may also play an important role in EPC [47,
49]. Thus, statins may share similar down-stream signal-
ing pathways described for growth factors such as VEGF.
VEGF is one of the first factors identified to mobilize
EPCs in mice [51]. Clinical studies using gene therapy
with plasmids encoding for VEGF demonstrated an aug-
mentation of EPC levels in humans [52]. Recently es-
trogen was shown to increase bone marrow derived EPC
levels and reduced neointimal thickening [38]. Further-
more, erythropoietin, which is routinely used for stimu-
lation of erythropoiesis, also potently augmented EPC
levels in mice [53] and man [54]. Importantly, plasma
levels of erythropoietin were significantly associated with
EPC levels in patients with coronary artery disease [53],
suggesting an important role of erythropoietin levels for
basal EPC levels. Finally, a recent study suggests that
physical exercise also increased EPC levels in mice and
man [34]. Physical exercise and the other factors, which
increased EPC levels, such as estrogen and erythropoietin
are well established activators of the phosphatidylinositol
3-kinase/Akt pathway similar to statins, suggesting that
this may be a common pathway to support EPC survival.
Although this obviously does not rule out the possible
importance of other signaling pathways, for example, that
of Janus kinase/signal transducer and activator of tran-
scription, activation of Akt may be useful in improving
stem/progenitor cell therapy. Interestingly, overexpres-
sion of Akt recently has been shown to increase the ef-
ficiency of mesenchymal stem cell therapy after myo-
cardial ischemia in mice [55].

Other mobilizing factors which are known to augment
circulating stem cells and EPCs include granulocyte-
macrophage colony-stimulating factor, stromal cell de-
rived factor 1, and placenta-derived growth factor [56, 57,
58]. For clinical purposes the long-term use of these
mobilizing factors for endothelial regeneration may be
hampered by a proinflammatory response and therefore
potentially proatherosclerotic side effects.

Conclusion

Intensive investigation is underway to determine the
functional activity of EPC for endothelial repair and
vasculoprotection. Preliminary data suggest that EPC
have the capacity to regenerate the injured endothelial
monolayer and thereby reduce atherosclerotic lesion for-
mation. Improvement in EPC levels and/or function by
pharmacological interventions could therefore be an at-
tractive novel therapeutic option for antiatherosclerotic
therapy. However, in light of the many unanswered
questions it is premature to rush any conclusion. Thus, in
addition to replacing injured endothelial cells in the
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conductance vessels, EPC also promote neovessel for-
mation. It is still controversial whether plaque angiogen-
esis accelerates atherosclerotic lesion development. Fur-
ther studies are necessary to elucidate the definitive
contribution of circulating progenitor cells for prevention
of atherosclerosis.
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