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Abstract More than 20 syndromes among the signifi-
cant and increasing number of degenerative diseases of
neuronal tissues are known to be associated with diabetes
mellitus, increased insulin resistance and obesity, dis-
turbed insulin sensitivity, and excessive or impaired in-
sulin secretion. This review briefly presents such syn-
dromes, including Alzheimer disease, ataxia-telangiecta-
sia, Down syndrome/trisomy 21, Friedreich ataxia, Hun-
tington disease, several disorders of mitochondria, myo-
tonic dystrophy, Parkinson disease, Prader-Willi syndrome,
Werner syndrome, Wolfram syndrome, mitochondrial dis-

orders affecting oxidative phosphorylation, and vitamin
B1 deficiency/inherited thiamine-responsive megaloblas-
tic anemia syndrome as well as their respective relation-
ship to malignancies, cancer, and aging and the nature of
their inheritance (including triplet repeat expansions),
genetic loci, and corresponding functional biochemistry.
Discussed in further detail are disturbances of glucose
metabolism including impaired glucose tolerance and
both insulin-dependent and non-insulin-dependent diabe-
tes caused by neurodegeneration in humans and mice,
sometimes accompanied by degeneration of pancreatic
beta-cells. Concordant mouse models obtained by tar-
geted disruption (knock-out), knock-in, or transgenic over-
expression of the respective transgene are also described.
Preliminary conclusions suggest that many of the dia-
betogenic neurodegenerative disorders are related to al-
terations in oxidative phosphorylation (OXPHOS) and
mitochondrial nutrient metabolism, which coincide with
aberrant protein precipitation in the majority of affected
individuals.

Keywords Diabetes · Neurodegeneration · Insulin ·
Genetics · Mitochondria

Introduction

Neurodegenerative disorders affect a major proportion of
the general population, especially with increasing age.
Neurodegeneration is defined as progressive impairment
of any neuronal function. It either affects specific neu-
rons or compromises neuronal function in a less focused
manner. Accordingly, highly specific neuronal functions
may be affected causing, for example, visual or hearing
impairment in some syndromes while others cause a more
diffuse impairment of brain or neuronal functions as ob-
served, for example, dementia. Two groups of neurode-
generative disorders may thus be distinguished. One con-
sists of a large number of syndromes that typically affect
individuals of younger age or even children [1]. These
disorders are commonly caused by single gene mutations
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in the nuclear or mitochondrial genomes and follow the
lines of Mendelian or maternal transmission [1]. The
other group of disorders frequently affects elderly persons
and is accompanied by symptoms of generalized aging,
including diabetes mellitus, obesity, the metabolic syn-
drome, and various types of malignancies. Werner syn-
drome [2] is the only disorder known to belong to both of
these two groups. This disorder, caused by a single gene
mutation, specifically affects children but also includes
symptoms of general aging, including diabetes mellitus
and cancer [1, 3, 4].

More than 100 inherited syndromes of neurodegener-
ation have now been described [1]. Of these, more than
20, including most of the more frequent ones, are asso-
ciated with diabetes mellitus (Table 1), indicating that
approximately 20% of neurodegenerative disorders are
associated with diabetes mellitus. Compared to the overall
incidence of diabetes mellitus in the general population of
4–8% [5], individuals suffering from neurodegenerative
disorders exhibit a significantly higher prevalence of di-
abetes mellitus, although accurate overall statistics are
lacking.

Diabetes mellitus is defined as inappropriate glucose
metabolism leading to impaired removal of glucose from
the circulation. While insulin mediates the clearance of
glucose from blood by activating glucose transport into the
cytosol, absolute or relative lack of insulin and/or impaired
insulin action at its receptor causes delayed or almost
absent metabolism of circulating glucose [6, 7, 8, 9, 10,
11, 12]. Non-insulin-dependent diabetes (type 2) diabetes
mellitus is the most prevalent form of diabetes mellitus
and affects mainly middle-aged and elderly individuals;
sedentary life-style, obesity, and the so-called metabolic
syndrome are well-established risk factors. According to
the criteria of the World Health Organization (WHO),
other types of diabetes include the so-called type 1 dia-
betes mellitus, which is caused by autoimmune destruction
of pancreatic b-cells and predominantly affects younger
individuals, gestational diabetes, and a group termed
“other specific types.” The latter includes various syn-
dromic entities, including Down syndrome, Friedreich
ataxia, Huntington chorea, Klinefelter’s syndrome, Law-
rence-Moon-Biedel syndrome, myotonic dystrophy, por-
phyria, Prader-Willi syndrome, Turner’s syndrome, and
Wolfram’s syndrome’[13]. In addition to these, several
other syndromes typically coincide with diabetes mellitus
(see Table 1). In this regard it should be noted that type 2
diabetes mellitus itself is not a genetically defined entity
but is a polygenic disease presumably caused by multi-
ple combinations of gene mutations that affect both nu-
clear and mitochondrial genomes. Furthermore it should
be mentioned that a small percentage of type 2 diabetes
cases have been found to be associated with defined mu-
tations of the mitochondrial genome (see below), and that
intermediate triplet repeat expansions of the Friedreich
ataxia gene have been found to be associated with com-
mon type 2 diabetes (see below). Recent evidence suggests
that impaired mitochondrial metabolism is an essential
feature of common type 2 diabetes [14, 15, 16, 17, 18].

Hence it is plausible that typical neurodegenerative dis-
orders and type 2 diabetes share common genetic and/or
biochemical features. This review briefly summarizes the
current knowledge on such syndromes specifically in re-
gards to diabetes mellitus and discusses potential unifying
mechanisms among such disorders.

Aceruloplasminemia [OMIM 604290]

This autosomal-recessively inherited disorder is caused
by a deficiency in ceruloplasmin, which normally cat-
alyzes the oxidation of ferrous iron (Fe2+) to ferric iron
(Fe3+) [1]. Aceruloplasminemia was first described in
1994 [19]. It is characterized by dementia, diabetes mel-
litus, cerebellar ataxia, and extrapyramidal symptoms,
and it has been shown that the basal ganglia of affected
individuals accumulate iron [1]. The age at onset is com-
monly that of middle life, and its associated symptoms are
increased serum ferritin and decreased serum iron levels.
Hepatic accumulation of iron has been reported, and in-
volvement of mitochondrial dysfunction possibly medi-
ated by the Fenton reaction appears likely [20, 21]. As-
tonishingly, while this disease typically leads to diabetes
mellitus (which has not been classified further), a bio-
chemically similar disorder named Wilson disease [22,
23, 24] has not to date been associated with disturbances
of glucose metabolism. Another disorder causing sys-
temic iron overload, hemochromatosis [25], which is
caused by mutations of the HFE gene on chromosome
6p21.3, is typically associated with diabetes mellitus but
does not cause neurodegeneration. The reasons for this
apparent contrariness remain to be resolved.

Alstr�m syndrome [OMIM 203800]

Alstr�m syndrome (ALMS) is an autosomal-recessively
inherited disorder that shares symptoms of Bardet-Biedl
syndrome (see below), including retinitis pigmentosa,
deafness, obesity, and diabetes mellitus [1]. It can be dis-
tinguished from the latter syndrome by the lack of poly-
dactyly and hypogonadism and by the absence of mental
impairment. The syndrome is caused by mutations within
the ALMS1 gene [26, 27] of unknown function. Alstr�m
syndrome includes many features of the metabolic syn-
drome [6] including hyperlipidemia, hyperuricemia, insu-
lin resistance, hypertension, and diabetes mellitus. Fur-
thermore, acanthosis nigricans, chronic active hepatitis
(possibly based on nonalcoholic steatohepatitis) and di-
lated cardiomyopathy have been observed [1]. In a recent
study on common type 2 diabetes and its putative rela-
tionship to mutations in the ALMS1 gene, no significant
association was detected [28]. A possible involvement of
impaired mitochondrial function has tentatively been sug-
gested [29].
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Ataxia-telangiectasia (AT) [OMIM 208900]

This autosomal-recessively inherited disorder is also
known as Louis-Bar syndrome [1, 30, 31]. It is caused by
mutations in the ATM gene [32]. ATM has structural el-
ements that resemble those of phosphatidylinositol-3 ki-
nase (an essential part of the insulin receptor signaling
cascade) [8], and loss of function of the ATM protein
impairs the cellular response to DNA damage. This is not
surprising as it is involved in phosphorylation of several
substrates critical for DNA repair and cell cycle control
[33, 34]. Clinically patients exhibit cerebellar ataxia,
telangiectases, immune defects, and an increased preva-
lence of malignant disease. First symptoms typically occur
during preschool age. Ataxia-telangiectasia causes ex-
treme insulin resistance [35], but clinical diabetes seems to
be diagnosed less frequently [36, 37, 38, 39]. While data
on insulin resistance in heterozygous carriers of ATM
mutations are unavailable, such individuals carry an in-
creased risk for development of malignancies [40, 41, 42].
Of note, individuals with common type 2 diabetes mellitus
have an increased risk for malignancies while type 1 di-
abetics do not. In light of the difference in nature of these
two disorders, this has particular relevance. While type 2
diabetes is defined by the presence of insulin resistance
accompanied by inappropriate insulin secretion [6, 8], type
1 diabetes results from an isolated deficiency in secreted
insulin. The phenotypical association of insulin resistance
(and hence type 2 diabetes mellitus) with cancer in gen-
eral, but most pronounced in ataxia-telangiectasia, sug-
gests a causative link between malignancies and insulin
resistance. This is further supported by increased cancer
rates in obese, i.e., insulin-resistant but nondiabetic, indi-
viduals, as well as by elevated serum insulin levels in
insulin-resistant states, together with the well known mi-
togenic action of insulin both in vitro and in vivo.

Mouse models for ATM deficiency exhibit growth re-
tardation, neurological abnormalities, infertility, and spon-
taneous tumor development [43, 44, 45]. Evaluation of
glucose metabolism and/or insulin signaling in these mod-
els has not to date been published.

Alzheimer disease [OMIM 104300]

Alzheimer disease (AD) is by far the most frequent form
of dementia [46] and the most common neurodegenera-
tive disease [1]. While inheritance appears multifactorial
(or autosomal-dominant in some families), and mito-
chondrial involvement is likely [47, 48], at least four
subtypes of the disease have been classified on a genetic
basis: type 1 is caused by mutations in the amyloid pre-
cursor gene [49], type 2 is related to the apoprotein-en-
coding APOE4 allele on chromosome 19 [50, 51, 52] (an
allele also related to hypercholesterolemia), type 3 is
caused by mutations in the presenilin-1 gene on chro-
mosome 14 [53], and type 4 is caused by mutations in the
related presenilin-2 gene on chromosome 1 [54]. The
amyloid protein [49] is a 4-kDa protein cleaved from the

amyloid Abprecursor protein by g-secretase. Multimeric
aggregates of the amyloid protein form the so-called
plaque core which causes the neuronal deposits made of
amyloid fibrils that are prototypical for Alzheimer dis-
ease, but which are also found in patients with Parkinson
disease (see below) as well as older individuals with
Down syndrome (see below). Amyloid protein deposits
are commonly observed in pancreatic islets of diabetic
patients [55]. These deposits consist of islet amyloid
polypeptide (IAPP) [56, 57]. Of interest, treatment with
insulin or metformin lower IAPP concentrations in dia-
betics, while treatment with the most widely used group
of antidiabetic drugs, sulfonylureas, increases IAPP con-
centrations, i.e., therapeutic use of sulfonylureas induces a
possibly detrimental effect on islet function [57].

Given the pathogenetic similarities and the fact that
amyloid Ab precursor protein and IAPP have a 90%
structural similarity [58], it is not surprising that Alzhei-
mer disease seems to predispose for insulin resistance
[59], insulin hypersecretion [59], and type 2 diabetes
mellitus [58]. Conversely, individuals suffering from type
2 diabetes show an increased prevalence of dementia [60,
61]. This effect is perhaps explained by the elevation in
serum insulin levels (as observed in prediabetes and early
type 2 diabetes), which has been associated with impaired
cognitive function [62]. Mechanistically this might be due
to elevated amyloid Ab levels, which are associated with
elevated serum insulin content [63].

Finally, research in recent years suggests that choles-
terol modulates synthesis of b-amyloid [64], and that
3-hydroxy-3-methylglutaryl coenzyme A synthase in-
hibitors, by affecting cholesterol biosynthesis, may offer a
treatment option for Alzheimer disease [64] while posi-
tively modulating alterations in lipid metabolism due to a
diabetes mellitus [6].

Several transgenic mouse models overexpressing IAPP
have been generated. While these mice generally develop
diabetes mellitus subsequent to amyloid deposits [65, 66],
in one line [67] mice had to be backcrossed on an ob/ob
background, i.e., a leptin-deficient and obese mouse line,
to produce a diabetic phenotype [68]. Conversely, tar-
geted disruption of IAPP leads to enhanced insulin se-
cretion and improved glucose tolerance [69]. Of interest,
disruption of insulin-degrading enzyme causes increased
amyloid plaque formation and glucose intolerance ac-
companied by hyperinsulinemia [70]. Numerous trans-
genic and knock-in mouse models affecting the various
genes associated with Alzheimer disease have been gen-
erated; due to the number of models they cannot all be
listed in this review. Importantly, none of these latter
models have yet been shown to exhibit disturbances of
glucose metabolism.

Bardet-Biedl syndrome [OMIM 209900]

The (in most cases) autosomal-recessively inherited dis-
order Bardet-Biedl syndrome (BBS) is characterized by
mental retardation, pigmentary retinopathy, polydactyly,
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obesity, diabetes mellitus, renal dysplasia, hepatic fibro-
sis, and hypogenitalism [1, 71, 72, 73]. Obesity is found
in almost every patient, while diabetes affects less than
50% [74]. While the syndrome shares some similarities
with Lawrence-Moon syndrome (OMIM 245800) [1],
these two disorders can be distinguished by the presence
of paraplegia and the absence of polydactyly, obesity, and
diabetes mellitus in Lawrence-Moon syndrome [75].
Terms such as Lawrence-Moon-Bardet-Biedl or Law-
rence-Moon-Biedl syndrome should therefore be avoided
[1]. In addition, some features are shared with Biemond
syndrome II (OMIM 210350) [1], which also causes
obesity, while no diabetes has been reported. Bardet-Biedl
syndrome has been linked to at least eight different ge-
netic loci, referred to as BBS1BBS8; except for BBS3
and BBS5, corresponding mutations have been identified
in various pedigrees. Interestingly, heterozygous carriers
possibly exhibit an increased risk for obesity, hyperten-
sion, diabetes mellitus, and renal disease [76].

Cerebellar ataxia, deafness,
and narcolepsy (CADN) [OMIM 604121]

In 1995 Melberg and colleagues [77] reported a pedigree
of four generations with at total of five patients showing
cerebellar ataxia and sensorineural deafness; four of these
also suffered from narcolepsy, among those two individ-
uals were diabetic. Psychiatric and additional neurologi-
cal symptoms including optic atrophy were observed.
Genetic analyses [78] excluded SCA-1, SCA-2, SCA-3,
SCA-6, SCA-7, and huntingtin gene mutations as well as
linkage to HLA-DR2 (as observed in syndromic narco-
lepsy, see below). Magnetic resonance imaging and com-
puted tomography revealed profound atrophy of several
brain regions [78]. Biochemical investigation of a muscle
biopsy specimen in a single case indicated mitochondri-
al dysfunction with decreased oxidative phosphorylation
and concurrently ATP production [77]. No cases have
been reported outside the above mentioned pedigree [1].

Down syndrome/trisomy 21 [OMIM 190685]

The most frequent form of mental retardation is caused
by a trisomy of all or major parts of chromosome 21
[79], called Down syndrome [80]. Down syndrome pa-
tients exhibit characteristic dysmorphic features, cardiac
and gastrointestinal malformations, tenfold increased fre-
quency of leukemia, significant hearing loss [1], and in-
creased frequency of diabetes mellitus [81, 82]. Down
syndrome and Alzheimer disease (see above) have sub-
cellular similarities regarding cerebral amyloid deposits
[49] and occurrence of mitochondrial dysfunction [83, 84,
85]. Descriptions of two murine models have been pub-
lished [86, 87], but information on glucose metabolism in
these mice is not available.

Feigenbaum syndrome [OMIM 209010]

Feigenbaum syndrome has been reported in two affected
brothers exhibiting progressively impaired cognitive func-
tion, atherosclerosis, sensorineural deafness, glomerulo-
sclerosis, proteinuria, and diabetes mellitus. Ex vivo stud-
ies in cultured fibroblasts revealed impaired mitochondrial
function, with specific impairment of complexes III and
IV of the respiratory chain [1, 88]. No other cases have
been reported in the literature.

Friedreich ataxia [OMIM 229300]

Friedreich ataxia (FRDA) is an autosomal-recessively in-
herited disease leading to degeneration of spinocerebellar
tracts, dorsal columns, and pyramidal tracts [1, 89] as well
as cardiomyopathy causing premature death at an average
age of 37 years [90]. In most cases Friedreich ataxia is
caused by an intronic GAA triplet repeat expansion [91]
impairing expression levels of a fully functional protein
termed frataxin [92] by formation of sticky DNA and
triple helices [93, 94, 95, 96, 97]. Frataxin in its mature
state is an 18-kDa protein encoded in the nucleus and
located at the mitochondrial matrix [98, 99]. It has been
previously demonstrated that this protein directs iron-
sulfur-cluster assembly [100, 101, 102] thereby affecting
oxidative energy flux [103]. A conflicting hypothesis,
tentatively supported by some [104] but not all [105] ev-
idence from protein structure, suggests that frataxin func-
tions as a multimeric iron storage protein [106, 107, 108,
109, 110, 111]. A wide body of evidence suggests a role
for frataxin in promoting cellular defense against reactive
oxygen species; clinical data demonstrate increased oxi-
dative stress in patients with Friedreich ataxia [112, 113].
Findings from animal models suggest that, while the non-
conditional knock-out is embryonically lethal [114], the
tissue-specific targeted disruption of the frataxin gene in
heart or neuronal tissues causes depletion of iron-sulfur-
clusters, presumably accompanied by reactive oxygen
species formation [115]. In vitro findings indicate that
frataxin-dependent accumulation of unspecified reactive
oxygen species [116] is dependent on the concurrent re-
duction of superoxide dismutase acitivity in frataxin-de-
ficient states [117] and elevation in glutathione peroxidase
activity in frataxin-overexpressing states [118]. These ef-
fects are probably affiliated with a secondary deregulation
of intracellular iron metabolism in frataxin-deficient cells
inducing the Fenton reaction. Accordingly, it seems that
persons suffering from Friedreich ataxia develop malig-
nant disorders atypical for their young age [119, 120, 121].

Despite their severely reduced life expectancy a subset
(up to 30%) of Friedreich ataxia patients develops dia-
betes mellitus of unknown origin [122, 123, 124]. Non-
diabetic Friedreich ataxia patients exhibit normal or even
exceeding glucose-stimulated insulin secretion [124], but
show some degree of insulin resistance [125]; this has
also been observed in heterozygous carriers of the GAA
repeat [126]. Once present, diabetes mellitus in Friedreich
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ataxia is caused by a progressive insulin deficiency
sometimes leading to keto(acido)sis [122, 123]. While
studies on a possible association between the common
type 2 diabetes and the frataxin GAA triplet repeat ex-
pansions in humans are to date inconclusive [127, 128,
129, 130, 131, 132], linkage of type 2 diabetes with the
locus harboring the human frataxin gene at 9q13 was
found in at least four different populations worldwide
[133, 134, 135, 136], suggesting a role in the pathogenesis
of common type 2 diabetes. Disruption of the frataxin
gene selectively in pancreatic b-cells causes a progressive
diabetes mellitus paralleled by impaired insulin secretion
due to decreased b-cell mass and accumulation of reactive
oxygen species [137].

Herrmann syndrome [OMIM 172500]

Herrmann syndrome has been described in a single
pedigree with 14 affected individuals of five genera-
tions, exhibiting diabetes mellitus, nephropathy, epilepsy,
ataxia, and deafness [1, 138]. While the transmission
appears to be autosomal-dominant, no male-to-male
transmission of the phenotype was observed in the pedi-
gree. No other cases have been reported in the literature.

Huntington disease (HD) [OMIM 143100]

This autosomal-dominant disease is characterized by
progressive, selective neuronal cell death associated with
uncontrollable, choreatic movements [139], rigidity, sei-
zures, and progressive dementia [1]. A typical atrophy of
the caudate nucleus is observed radiographically; this
affection is preceded by impaired glucose metabolism in
this nucleus, which can be observed in asymptomatic
individuals as well [140]. The disease has been attributed
to a CAG repeat in the huntingtin gene [141]. Age at on-
set and severity of the disease are determined by both
the repeat length of the expanded allele and the repeat
length of the “normal” allele [142]. Regarding the func-
tion of huntingtin protein, a major hypothesis suggests
that toxicity arises from the cleavage and accumulation
of amino-terminal fragments containing an expanded
polyglutamine region, which might be due to an increased
resistance against proteolytic cleavage of mutant hunt-
ingtin [143]. Subsequently, impaired mitochondrial func-
tion and increased oxidative stress is commonly observed
in both humans and mice [47, 144, 145, 146]. Huntington
patients develop diabetes mellitus about seven times
more often than matched healthy control individuals [147,
148]. The reasons for this concomitant disorder is un-
clear, although inappropriate insulin secretion is a po-
tential reason [149]. Huntington patients experience dra-
matic weight loss (also called wasting or cachexia), which
may be due to increased 24-h sedentary energy expendi-
ture [150].

Several mouse models for Huntington disease have
been generated; the best characterized line is termed R6/2

and was generated by transgenic expression of a mutant
huntingtin [151]. When these mice are evaluated with
respect to altered glucose metabolism, most authors ob-
serve pronounced diabetes [152, 153, 154, 155, 155]. In
one study, however, no alterations in basal serum glucose
levels were observed [156]; in another, a change was
observed in only one-quarter of the animal population
investigated [157]. The reasons for these inconsistencies
are unclear. Interestingly, DNA vaccination of R6/2 mice
is reported to ameliorate the diabetic phenotype originally
observed [155].

Kearns-Sayre syndrome [OMIM 530000]

Kearns-Sayre syndrome (KSS) [158] is a mitochondrial
disease frequently associated with endocrine disturbances,
including growth hormone deficiency, hypogonadism,
hypoparathyroidism, and diabetes mellitus [1], the latter
possibly caused by a specific loss of pancreatic b-cells
[159]. Insulin resistance is apparently lacking [160].
Ophthalmoplegia, pigmentary retinal degeneration, and
cardiomyopathy are the key features of the syndrome.
Characteristic alterations in skeletal muscle, so-called
ragged red fibers, are another typical feature [161]. Ge-
netically the disease is caused by various deletions in the
mitochondrial genome affecting subunits of the respira-
tory complexes I, IV, and V as well as several mito-
chondrial tRNAs. Interestingly, identical deletions ap-
pear to cause different phenotypes, ranging from Kearns-
Sayre syndrome to Pearson Marrow pancreas syndrome
(OMIM 557000) [1], chronic progressive external oph-
thalmoplegia (e.g., OMIM 590100, OMIM 601779,
OMIM 590050 (see below), OMIM 590055, and others]
[1] and myopathy, encephalopathy, lactic acidosis, and
strokelike episodes (MELAS; OMIM 54000, OMIM
590050 (see below) [1]. Until very recently [162] trans-
genic animals for mitochondrial mutations could not be
generated for technical reasons; hence no corresponding
animal model has been generated either for Kearns-Sayre
syndrome or for any other mitochondrially encoded mu-
tation, including syndromes such as MELAS, myoclonic
epilepsy associated with ragged-red fibers (MERRF), and
maternally inherited diabetes and deafness (MIDD)
caused by mutations of MTTE (“mitochondrial transfer
RNA for glutamic acid”), MTTL1 (“mitochondrial trans-
fer RNA for leucine 1”), MTTI (“mitochondrial transfer
RNA for isoleucine”), MTTK (“mitochondrial transfer
RNA for lysine”), and MTTS2 (“mitochondrial transfer
RNA for serine 2”; see below), has.

Klinefelter syndrome

Klinefelter syndrome is characterized by a primary en-
docrine disturbance associated with impaired mental
capacity, hypogonadism, and hypogenitalism [163]. An
increased prevalence of obesity is observed. Whether
Klinefelter syndrome is a bona fide neurodegenerative
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syndrome remains questionable. The disorder occurs in
1:600 live male births and is caused by duplication of the
X-chromosome in a male karyotype, leading to a total of
47 instead of 46 chromosomes. Mitochondrial aberrations
were observed on a morphological level [164] and may
have a confounding role [165]. Diabetes mellitus is fre-
quently observed in Klinefelter syndrome, although its
cause remains elusive [38, 166, 167, 168].

Mitochondrial transfer RNA
for glutamic acid [OMIM 590025]

The MTTE gene encodes a mitochondrial tRNA for glu-
tamic acid. Mutations in the region encoding this tRNA
(mitochondrial basepairs 14,674–14,742) cause myopa-
thy, cerebellar ataxia, peripheral neuropathy, and diabetes
mellitus [1, 169, 170].

Mitochondrial transfer RNA
for leucine 1 [OMIM 590050]

The MTTL1 gene encodes a mitochondrial tRNA for
leucine with codon use UUA or UUG. Mutations in the
region encoding this tRNA (mitochondrial basepairs
3,230–3,304) cause several syndromes [1], which are in
part associated with diabetes mellitus, including MELAS
and MIDD.

Clinical features of MELAS syndrome are episodic
vomiting, seizures, and recurrent cerebral insults resem-
bling strokes and causing hemiparesis, hemianopsia, or
cortical blindness. While mutated MTTL1 has been as-
sociated with MELAS syndrome [171, 172], other mito-
chondrial mutations and deletions may also contribute to
the clinical phenotype of MELAS (OMIM 540000) [1].

MIDD [OMIM 520000] is characterized by occurrence
of neurosensory deafness followed by diabetes mellitus
[173]. The latter usually occurs in the second decade of
life. While the original description of MIDD [174] fo-
cuses a 10.4 kb deletion in the mitochondrial genome,
concurrent studies have associated an identical phenotype
with an A3243G point mutation [175, 176, 177] affecting
tRNA (Leu), which is also frequently associated with
MELAS. The reasons for these apparent inconsistencies
are unclear but may be due to heteroplasmy of mito-
chondrial mutations. There is some evidence for maternal
inheritance in certain cases of type 2 diabetes mellitus
[178], suggesting that one or more genetic risk factors are
located in the mitochondrial genome. It should be noted
that hearing impairment may be restricted to certain
acoustic frequencies; hence the absence of deafness in a
classical sense does not necessarily exclude diagnosis
of the particular disorder. Based on several association
studies it has been estimated that 1.5% of common dia-
betes mellitus cases may be caused by the mitochondrial
A3243G mutation [179]. The primary defect leading to
diabetes mellitus seems to be impaired insulin secretion
[180, 181] while insulin resistance is also observed [181].

This is of interest given very recent evidence suggesting
an association between altered mitochondrial metabolism
and common type 2 diabetes mellitus [18].

Mitochondrial transfer RNA
for isoleucine [OMIM 590045]

The MTTI gene encodes a mitochondrial tRNA for iso-
leucine. Mutations in the region encoding this tRNA
(mitochondrial basepairs 4,263–4,331) typically cause
cardiomyopathy [1, 182, 183, 184]. A mutation G4284A
has been associated with diabetes mellitus in a single
pedigree [185].

Mitochondrial transfer RNA
for lysine [OMIM 590060]

The MTTK gene encodes a mitochondrial tRNA for ly-
sine. Mutations in the region encoding this tRNA (mito-
chondrial basepairs 8,295–8,364) typically cause MERRF
[1, 186, 187]. The most frequent mutation, A8344G,
probably accounts for probably more than 80% of all
MERRF cases [188]. A different mutation, A8296G, was
found to cause a phenotype similar to MIDD, while (by
definition) not affecting MTTL1 [189, 190]. In Japan this
mutation accounts for approx. 1% of all type 2 diabetes
cases [190].

Mitochondrial transfer RNA
for serine 2 [OMIM 590085]

The MTTS2 gene encodes a mitochondrial tRNA for
serine. Mutations in the region encoding this tRNA (mi-
tochondrial basepairs 12,207–12,265) are rare. The ex-
change C12258A causes cerebellar ataxia, cataracts, and
diabetes mellitus, and, as with other mitochondrial dis-
eases, this disorder is maternally transmitted [1, 191].

Myotonic dystrophy 1 [OMIM 590025]

The autosomal-dominantly inherited disease myotonic
dystrophy 1 (MD1) [192, 193] is characterized by myo-
tonia, distal muscular dystrophy, cataracts, hypogonad-
ism, and frontal hair loss, all usually occurring in middle
life [1]. The disease is caused by a CTG triplet repeat
expansion [194, 195] in the myotonic dystrophy protein
kinase gene. The repeat is located in the 30 untranslated
region and causes diminished transcription as well as
decreased transcript stability [196], and expression of the
corresponding protein is diminished in affected individ-
uals [197]. As in other trinucleotide repeat related disease,
the length of expansion may determine the age at onset
and severity of the disease [198]. The disease apparently
affects not only (neuro)muscular junctions [197] and
muscle-specific chloride channels [199] but also leads to
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progressive motor and sensory neurodegeneration [200,
201] as well as cortical atrophy [202]. Magnetic reso-
nance imaging findings suggest an increased ATP turn-
over rate as well as a decreased availability of ATP [203,
204], the latter resembling features of mitochondrial dis-
orders. Diabetes mellitus is not typical for myotonic
dystrophy but occurs more frequently among individuals
with this disorder than in the general population, and it is
characterized by hypersecretion of insulin, suggesting
possible insulin resistance [205]. Several animal models
exist [206, 207]; detailed information on glucose metab-
olism is so far lacking.

Narcolepsy [OMIM 161400]

Narcolepsy is a syndromic sleep disorder characterized
by attacks of disabling daytime drowsiness and low
alertness. The normal physiological components of rapid
eye movement (REM) sleep, dreaming, and loss of mus-
cle tone are uncoupled and also occur while the subject is
awake, resulting in half-sleep dreams and episodes of
skeletal muscle paralysis and atonia [1, 208, 209]. The
disorder is associated with an increased frequency of type
2 diabetes mellitus [210, 211]. Furthermore narcolepsy
patients tend to be more obese than matched control in-
dividuals [212] which has been attributed to decreased
serum levels of the adipocytokine leptin [213]. In contrast
to the obese phenotype, narcolepsy has been linked to a
specific degenerative loss of hypocretin-positive neurons
in humans [214]. Hypocretins are orexigenic peptides,
i.e., induce food uptake [215]. Narcolepsy has been as-
sociated with impaired expression of hypocretins and
impaired hypocretin signaling [216, 217, 218]. The mech-
anism by which decreased expression of orexigenic sig-
nals causes both obesity and type 2 diabetes remains to be
determined [219]. The disease has been linked to HLA-
DR2–DQB1-0602 by several groups [1], which, con-
versely, is associated with protection from autoimmune
type 1 diabetes mellitus [220]. Both dog and mouse
models exist [221, 222], which have not been studied in
depth regarding alterations in glucose metabolism [219].

Norrie disease [OMIM 310600]

The X-linked disorder Norrie disease is characterized by
pseudotumor of the retina, retinal hyperplasia, hyperplasia
of retinal, ciliary, and iris pigment epithelium, hypoplasia
and necrosis of the inner layer of the retina, cataract, and
frequently also by hearing loss and/or mental retardation
[1, 223, 224, 225]. Whether diabetes mellitus is associated
with the disease remains questionable, although an in-
creased prevalence among individuals with Norrie disease
has been reported [226]. Identification of the underlying
genetic aberration [227, 228, 229] led to an animal model
employing targeted gene disruption [230]; information on
glucose metabolism, however, is lacking.

Parkinson disease [OMIM 168600]

This disorder is the second most common neurodegener-
ative disease. Clinical symptoms typically include resting
tremor, bradykinesia, rigidity of muscles, postural insta-
bility, and dementia [1, 231]. The syndrome usually be-
gins in the fifth decade of life or later. Parkinson disease
(PD) is characterized histologically by a loss of dopami-
nergic neurons in the substantia nigra and the detection of
so-called Lewy bodies, intracellular inclusions, in sur-
viving neurons in the brain, but especially the substantia
nigra [232, 233, 234]. While an increased frequency of
the disease in certain families has long since suggested
that PD has a genetic component [235], inheritance pat-
terns have been inconclusive. This is presumably due to
incomplete penetrance of causative mutations and/or the
fact that defects in numerous genes can cause the same
phenotype [232, 233, 234, 236].

Results from recent studies indicate that various genes,
including a-synuclein [237], parkin [238], tau [239],
MAOB [240], interleukin 1b [241], and N-acetyltrans-
ferase 2 [242], may play causative roles. Recent evidence
suggests that PD is a filamentous disorder (as in Alzhei-
mer and Huntington disease) where neuronal deposits of
microfibrils made of aberrent a-synuclein and tau pro-
teins synergize [243]. Mitochondrial dysfunction and
oxidative stress may play a role in a considerable per-
centage of PD cases [244, 245, 246].

Impaired glucose tolerance is frequently observed in
PD and affects up to 80% of patients [247]. While little is
known about the pathogenesis of prediabetes in Parkinson
disease, therapy with levodopa seems to exacerbate glu-
cose intolerance [247]. It has been proposed that distur-
bances in glucose metabolism detrimentally affect the
Parkinson phenotype and hence should be treated rigor-
ously [247]. A recent mouse model overexpressing mu-
tant human a-synuclein developed a Parkinson-like phe-
notype but was not evaluated for disturbances of glucose
metabolism [248].

Prader-Willi syndrome [OMIM 176270]

The apparently autosomal-dominantly inherited Prader-
Willi syndrome (PWS) is considered to be a methylation
imprinting disorder of the long arm of chromosome 15,
affecting a locus harboring the SNRPN gene [1]. It is
characterized by extreme obesity, muscular hypotonia,
mental retardation, hypogonadotropic hypogonadism, car-
diac insufficiency, short stature, and small extremities
[249, 250]. Typically from the age of 12 months patients
develop insatiable appetite, which causes remarkable obe-
sity, with a body mass index typically beyond 35. Hunger
might be promoted by inappropriate regulation of serum
levels of ghrelin [251], an orexigenic growth hormone
secretagogue [252]. Diabetes mellitus occurs frequently in
Prader-Willi syndrome and affects up to 25% of indi-
viduals [253, 254]. Type 2 diabetes mellitus is occa-
sionally observed concurrently even in prepubertal chil-
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dren [255, 256]. Prader-Willi patients exhibit insulin re-
sistance but to a lesser degree than typical for their degree
of obesity; instead, an impaired insulin secretion is ob-
served, as well as an increase in hepatic insulin extraction
[257]. Targeted disruption of the murine homolog of the
SNRPN gene alone did not produce a phenotype; how-
ever, removal of a larger fragment, including a so-called
imprinting center, leads to abolished expression of several
genes, and the resulting mice have several symptoms
typical of Prader-Willi syndrome in humans [258]. In-
formation on glucose metabolism is so far lacking.

Thiamine responsive megaloblastic anemia syndrome
[OMIM 249270]

Thiamine-responsive megaloblastic anemia syndrome
(TRMA) is characterized by diabetes mellitus, megalo-
blastic anemia, and sensorineural deafness [1, 259, 260].
Mutations in the thiamine transporter gene SLC19A2
cause the syndrome [261]. Symptoms [262] are similar to
those of thiamine (vitamin B1) deficiency, the so-called
beriberi disease; diabetes mellitus is a typical component
of both the inherited genetic disorder and the nutritional
deficiency. Treatment with thiamine reverses the pheno-
typic components, or at least brings symptoms to a halt.
Mutations in the thiamine transporter gene SLC19A2
furthermore cause a decreased activity of complex I of the
respiratory chain [263]. A recent animal model resembles
the phenotype in humans [264] and suggests that diabetes
mellitus due to inherited or acquired thiamine deficiency
is due to a decreased insulin secretion, while sensitivity to
insulin may be even increased [264]. While a follow-up
mouse model obtained by a similar targeting technique
was not evaluated for disturbances in glucose metabolism,
in contrast to the previous study, no megaloblasts were
observed [265].

Spinocerebellar ataxia 3 (SCA3)/Machado-Joseph
disease [OMIM 109150]

This autosomal-dominant disorder is characterized by
ataxia, spasticity, and aberrant ocular movements [1,
266]. The age at onset is usually middle life, and in the
original description diabetes mellitus was associated with
the disease [266]. The disorder is caused by an expansion
of a CAG repeat [267, 268] in the ataxin-3 gene, which
apparently is translated into polyglutamine tracts causing
aberrant precipitations of the protein [269]. This was
demonstrated in mice that transgenically overexpress the
aberrant protein [269].

Spinocerebellar ataxia 6 [OMIM 183086]

The autosomal-dominant disorder spinocerebellar ataxia 6
(SCA6) is characterized by progressive cerebellar ataxia
and atrophy, dysarthria, nystagmus, and proprioceptive

sensory loss [1, 270, 271]. The underlying cause is a CAG
expansion in the CACNA1A gene encoding the a1A-Ca2+

channel [270]. Increased prevalence of diabetes mellitus
has been reported only in a single large Japanese pedigree
[271].

Turner syndrome

Turner syndrome affects females and is characterized by
short stature, absence of secondary sexual characteristics
and failure of sexual maturation, impaired intelligence,
cardiac abnormalities, visual impairment including nys-
tagmus and strabismus, psychiatric illnesses [272, 273,
274, 275], and obesity [1, 276, 277]. It is caused by loss of
one sex (i.e., X or Y) chromosome, resulting in a total
of only 45 chromosomes instead of 46. Whether Turner
syndrome is a bona fide neurodegenerative syndrome
remains questionable. Turner syndrome has been associ-
ated with presumably insulin-deficient [277] disturbances
in glucose metabolism and diabetes mellitus [38, 168,
277, 278, 279]; insulin resistance has not been convinc-
ingly excluded.

Werner syndrome [OMIM 277700]

The autosomal-recessive disorder Werner syndrome
(WRN) [2] is characterized by scleroderma-resembling
skin changes, cataract, subcutaneous calcification, pre-
mature atherosclerosis, diabetes mellitus, and prematurely
aged facial features, which is already observed in children
[1]. The syndrome is of particular interest since it may
resemble a pronounced acceleration of normal aging. As
noted above, Werner syndrome is the only disorder that
unifies symptoms of a specific disorder and signs of
general aging [280, 281]. A neurodegenerative phenotype,
both peripherally and centrally, is present [282, 283, 284,
285]; furthermore, myocardial insufficiency [286, 287]
and increased prevalence of malignant diseases have been
observed [4]. Diabetes mellitus is typical for the disorder
[3, 288] and is caused primarily by insulin resistance
[289] that responds to insulin sensitizers [290]. Using a
positional cloning approach, mutations in a gene subse-
quently termed WRN were found to be responsible for the
disease [291]. WRN protein belongs to a family of DNA
helicases that have been implicated in unwinding of DNA
during helix replication, DNA repair, and accuracy of
chromosomal segregation. An autosomal-dominant, and
hence atypical, Werner syndrome has been attributed to
heterozygous carriage of mutations in the LMNA gene
encoding lamin protein [292]; aberrant lamin expression
has been shown to be associated with several muscular
dystrophies, cardiomyopathies, another syndrome of pre-
mature aging termed Hutchinson-Gilford progeria syn-
drome (OMIM 176670) [1] and disturbances of lipid
deposition, so-called lipoatrophies, which are typically
connected with extreme insulin resistance [293, 294,
295]. Additionally, a single nucleotide polymorphism
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C1908T in the LMNA gene was associated with obesity in
a Canadian Inuit population [296]. Lastly, aberrant lamin
expression may affect serum levels of the anorexic hor-
mone leptin [297], hence possibly influencing body
weight.

A knock-out mouse lacking the helicase domain of
WRN exhibited no signs of decreased life expectancy. A
double-knock-out, additionally affecting the p53 tumor
suppressor protein, led to decreased life expectancy and
increased tumor frequency [298]; information on glucose
metabolism in these mice is lacking.

Wolfram syndrome/diabetes insipidus
and diabetes mellitus with optic atrophy
and deafness [OMIM 222300]

Wolfram syndrome/diabetes insipidus and diabetes mel-
litus with optic atrophy and deafness (DIDMOAD) is
inherited in an autosomal-recessive manner. Diagnosis
requires the presence of an insulin-dependent diabetes
mellitus, usually occurring during the first decade of life
and a bilateral progressive optic atrophy [299]. Further
symptoms include hearing impairment, central diabetes
insipidus, ataxia, dementia, nystagmus, mental retarda-
tion, seizures, cortical atrophy [1], and psychiatric ill-
nesses [300]. Heterozygous carriers (frequency 1:100)
have an increased risk for psychiatric disorders [301,
302]. Wolfram syndrome was thought to be a primarily
mitochondrial disease [303, 304], a hypothesis which was
rejected after isolation of the corresponding gene. Posi-
tional cloning approaches led to the isolation of WSF1
encoding wolframin protein [305, 306]. Wolframin may
have a role in regulating intracellular calcium levels;
hence impaired wolframin function might induce inap-
propriate apoptotic events, leading to neurodegeneration
and loss of pancreatic b-cells [307].

Woodhouse-Sakati syndrome [OMIM 241080]

Woodhouse-Sakati syndrome is a rare disease character-
ized by hypogonadism, diabetes mellitus, absence of fa-
cial hair with thinning of capital hair, mental retardation,
mild sensorineural deafness, and electrocardiographic ab-
normalities [1, 308, 309]. No information on modes of
inheritance or affected genes is available.

Concluding remarks

In summary, most of the above mentioned neurode-
generative disorders are typically or frequently associated
with diabetes mellitus or its antecessors, insulin resis-
tance and/or impaired glucose tolerance (Table 1). Ex-
ceptionally, for Norrie disease and both spinocerebellar
ataxias 3 and 6 evidence for an association with diabe-
tes mellitus is somewhat sparse. Likewise, the associa-
tions for Feigenbaum syndrome, Herrmann syndrome,

and cerebellar ataxia, deafness and narcolepsy are based
on a single pedigree, and no further families have been
reported. Lastly, associations with MTTI and MTTK mu-
tations are restricted to a single polymorphism.

Diabetes mellitus is caused either by insulin resistance
or decreased insulin secretion, or both (see “Introduc-
tion”). Eight of the described syndromes are clearly ac-
companied by increased insulin resistance, one of the
main hallmarks of diabetes development (Fig. 1, left
center column). Four of these disorders are associated
with obesity, which is known to cause insulin resistance
[6, 8]. Eight of the described syndromes are linked to
decreased insulin secretion (Fig. 1, right center column),
while two of these syndromes exhibit an increased se-
cretion (Alzheimer disease, myotonic dystrophy 1), pos-
sibly associated with insulin resistance (Fig. 1). Friedreich
ataxia shows a primarily increased secretion during the
nondiabetic phase, which then turns into impaired secre-
tion accompanied by overt diabetes mellitus. Five of the
disorders are caused by unstable triplet repeat expansions
(Fig. 1), which either cause decreased expression of a
fully functional protein (Friedreich ataxia, myotonic
dystrophy 1) or result in translation of an expanded
polyglutamine tract (remaining disorders). Figure 1 fur-
ther depicts those disorders, which—directly or indirect-
ly—affect mitochondrial energy transfer, i.e., OXPHOS.
Lastly, disorders known to cause aberrant protein pre-
cipitations via microfibril formation and concurrent
mechanisms are presented (Fig. 1), as well as those dis-
orders that lead to an increased frequency of malignant
disorders (Fig. 1).

Neurons and pancreatic b-cells have a high metabolic
activity and a low regeneration rate. Presumably both
properties make these tissues extremely sensitive to ge-
netic and environmental deviances, causing clinically
evident damage, while other tissues remain functional.
Interestingly, numerous neurodegenerative diseases as
well as diabetes mellitus cause cardiomyopathy, which
possibly supports this view. While these common ele-
ments may explain only a minority of neurodegeneration-
associated diabetes mellitus, the reasons for deregulation
of body weight, lipid metabolism, and insulin resistance
are largely unexplained. As seen in Fig. 1, approximately
50% of the neurodegenerative disorders associated with
diabetes mellitus show some involvement of mitochon-
drial dysfunction. These may possibly subclassified into
disorders directly affecting mitochondria based on an
evident genetic and/or biochemical link, including Fried-
reich ataxia, Keans-Sayre syndrome, mutations of mito-
chondrial transfer RNAs, and thiamine-responsive meg-
aloblastic anemia syndrome, and into the ten disorders in
which the affection of mitochondrial metabolism is un-
resolved. Insulin secretion is directly dependent on the
OXPHOS mediated opening of the KATP channel in the
pancreatic b-cell [7, 12], and hence related to both gly-
colytic flux [310] and mitochondrial capacity [311]. In-
dependently of nutrient dependent stimulation of insulin
secretion, the overall number of pancreatic b-cell (re-
flecting the balance of apoptosis and regeneration of such
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cells) is a crucial factor in the pathogenesis of type 2
diabetes [10, 11] and may be affected by mitochondrially
active proteins [137, 311]. Insulin resistance also appears
to be causally related to impaired OXPHOS in skeletal
muscle (and possibly other compartments including adi-
pose tissue and hepatocytes) [14, 15, 16, 17, 18]. Taken
together, these data suggest that an essential mechanism
for the association of neurodegeneration and diabetes
mellitus is located in the mitochondria, affecting both
apoptosis and nutrient metabolism and phosphorylation.
Another common factor may be found in aberrant protein
precipitation, which is observed in only five of the neu-
rodegenerative disorders. On the other hand, these few
disorders account for the vast majority of affected indi-
viduals (since they include Alzheimer disease, Down
syndrome, Huntington disease, and Parkinson disease).
Interestingly, four of these disorders, i.e., all but spino-
cerebellar ataxia 3, are accompanied by mitochondrial
dysfunction as well.

In conclusion, numerous inherited disease cause both
neurodegeneration and diabetes mellitus. While groups of
phenotypical clusters can clearly be found, a unifying
mechanism remains elusive but might be located—if ex-
istent at all—in unwanted alterations in mitochondrial
energy metabolism and function.

Postscriptum: diabetic neuropathy

While this review focuses on diabetes mellitus as a con-
sequence of primarily neurodegenerative disease, diabetic
neuropathy is a result of diabetes mellitus, being the most
frequent complication of the disease and probably the
most common disease of the nervous system. Its severity

is related to duration of diabetes and quality of blood
glucose control. It increases progressively without ever
reaching a plateau. Neuropathy is classified as either
diffuse (including the most frequent symmetric sensory
neuropathy, autonomic neuropathy, and symmetric motor
neuropathy) or focal (affecting cranial or facial nerves, as
well as singular nerves of upper or lower extremities).
Neuropathy hence may lead to paralysis, paresthesia,
unperceived lesions (especially at the lower extremities)
followed by chronic inflammation and amputation, de-
layed gastric emptying, constipation, incontinence, im-
potence, cardiac arrhythmia, tachycardia, silent (i.e., un-
perceived) cardiac infarction, among other symptoms.
The exact pathogenesis of diabetic neuropathy remains
obscure; in general, a combination of cumulative damage
to neurons and adjacent Schwann cells as well as hem-
orrheological abnormalities, i.e., decreased blood flow in
capillaries supplying neurons are thought to contribute to
diabetic neuropathy. In this regard, activation of the
polyol pathway, accumulation by advanced glycation end
products, damage via reactive oxygen and reactive ni-
trogen species, deficiency of g-linoleic acid, impaired
neuroregeneration via lack of nerve growth factor, and
others have been suggested [312, 313, 314].
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Fig. 1 Selected focus-related
characteristics of some of the
neurodegenerative syndromes
discussed in detail in the text,
specifically in regards to asso-
ciation with altered insulin se-
cretion, insulin resistance, im-
paired mitochondrial function,
obesity, aberrant protein pre-
cipitation, increased risk for
malignant disorders, and the
presence of triplet repeat ex-
pansions. Please note that all
syndromes that have not been
reported to be associated with at
least one of those seven char-
acteristics are listed in Table 1
but are omitted here
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