Medical Genetics GENETIC DISEASES LISTED BY CLASSIFICATION

I. Chromosome Disorders

- A. Abnormal Chromosome Number
- --aneuploidy (monosomy, trisomy, tetrasomy, double trisomy)
- --polyploidy (triploidy, tetraploidy)
- *5 numerical chromosomal abnormalities to know are caused primarily by **meiopic non-disjunction** and all show small findings of structural abnormalities (translocation and mixoploidy); **all cause congenital abnormalities**

Trisomy (4 out of 5):

- 1. Patau's 47,XX (or XY), +13
 - cleft lip/palate
 - polydactly
 - cardiac abnormality
 - mental retardation
 - holoprosencephaly (single small forebrain)
 - poor survival beyond neonatal period
- 2. Edward's 47,XX (or XY), +18
 - rocker bottom feet
 - cross of fingers
 - cardiac abnormality
 - exomphalus (intestinal contents outside abdomen)
 - micrognathia
 - poor survival beyond one month
- 3. Down's 47,XX (or XY), +21
 - characteristic faces
 - develop delay
 - congenital heart abnormality
 - single palmar crease
 - increased maternal age is a risk
 - possible balanced robertsonian translocation
 - mixoploidy (mosaicism)
 - "triple test" maternal α -fetoprotein lowered, β -HCG raised, estradiol lowered
- 4. Klinefelter 47,XXY
 - gynecomastia (breast development)
 - infertility due to axospermia (don't produce sperm)
 - hypogonadism (small testes)
 - long limbs, short trunk
 - learning disability
 - maternal and paternal age increases risk

Monosomy (1 out of 5):

- 5. Turner's 45,X
 - **mosaicism** common in 30%
 - most 45,X conceptions miscarry
 - short stature
 - ovarian dysgenesis (failure to develop)
 - primary amenorrhea
 - infertility
 - webbed neck

- peripheral lymphodema (swollen feet and hands)
- normal IQ
- coarctation of descending aorta
- B. Abnormal Chromosome Structure (balanced/unbalanced)
- 1. Translocation (reciprocal, robertsonian reciprocal)
- --Patau's Syndrome
- 2. Deletion
- --Cri Du Chat 46, XX (or XY), 5p-
 - Severe mental retardation
 - poor growth
 - unusual facial appearance
 - congenital HD
 - crying like a cat
- --DiGeorge/Velocardial Syndrome 46, XX (or XY), 22q11.2
 - complex congenital HD
 - cleft palate
 - feeding difficulties
 - low Ca⁺⁺, low lymphocyte count
 - FISH
- -- Duchenne MD (XR)
 - dystrophin gene on Xp21
- 3. Ring
- --Turner's Syndrome X
- 4. Insertion
- 5. Inversion
- 6. Isochromosome
- -- Turner's Syndrome Xq
- C. Mosaicism and chimaerism (mixoploidy)
 - -- def. of mosaicaism: a mixture of 2 genetically dif cell lines in a person derived from a single embryo
 - -- def. of chimaerism: presence of 2 genetically dif cell lines in a person, but cell lines are from 2 dif embryos [common reason: after a bone marrow transplant, but very rarely a embryo can form from the fusion of two different (dizygotic) embryos, and give rise to a human chimera]
 - -- somatic mosaicism: 2 diff cell lines exist in several parts of the body
 - -- gonadal mosaicism: 2 diff cell lines present in only ovary or testis
- 1. Turner's Syndrome 45X/46,XX; milder phenotype (less short stature, may ovulate and menstruate, less cardiac disease)
- 2. Duchenne MD: 2 brothers w/ Duchenne MD but no deletion shown on mother's blood only found in ovaries so gonadal mosaicism

II. Single Gene (monogenic) disorders

A. Autosomal Dominant

- -- vertical transfer
- -- multiple generations affected
- -- male to male transmission occurs
- -- males and females affected equally
- -- offspring risk is 1 in 2
- -- variable expression: clinical effects can vary in severity even in diff members of same family (expression: way in which a genetic disorder is manifest)
- -- often age-dependent penetrance (penetrance: the percentage of gene carriers who disorder) manifest a
- -- homozygotes are usu much more severely aff than heterozygotes
- -- 4 musculoskeletal, 3 brain, 3 Ca, 3 eyes, 1 drug, 1 biochemical
- 1. Myotonic dystrophy
 - maternal **anticipation** (triplet repeat)
 - Steiner's disease
 - mild late onset form mild muscle weakness, cataracts
 - typical form muscle weakness, cardiomyopathy, cataracts, frontal hair loss
 - childhood/infantile form profound muscle weakness, global developmental delays
 - neonatal death from muscle weakness
 - predictive testing
- 2. Huntington's disease
 - paternal **anticipation** (triplet repeat)
 - progressive neurological disorder onset in middle age
 - **fully penetrant**, but age-dependent
 - incurable, death in about 10 yrs from onset
 - predictive testing
- 3. Familial Adenomatous Polyposis
 - fully penetrant
 - development of multiple initially benign colonic polyps usually in teenage yrs
 - untreated, polyps will progress to colon ca
 - tx: panproctocolectomy
 - mutations in APC gene on chromosome 5 (tumor suppressor gene)
- 4. Achondroplasia
 - mutation in signal transduction gene that encodes fibroblast growth factor receptors (FGFR)
 - 80-90% are born to normal parents so often **new mutation**
 - long torso, short limbs, dwarf
 - double dose is lethal
 - only AD disorder w/ consistent expression
 - cause of congenital abnormality
 - dysplasia
- 5. Neurofibromatosis
 - multiple benign skin tumors
 - fully penetrant, variable expression
- 6. Osteogenesis imperfecta
- 7. Marfan's
 - tall, long limbs, dilation of aorta
 - fully penetrant, variable expression
 - clinical testing
- 8. Familial hypercholeserolemia
 - most common single gene disorder in western world
 - biochemical disorder

- heterogeneous mutations in LDL receptor gene
- premature CAD, xanthomas
- Tx: statins
- 9. Waardenburg's syndrome (type 1)
 - mutation in **PAX3 gene** (paired box gene that encode DNA binding proteins which act as transcription control factors)
 - deafness, diff colored irises, white hair patches
- 10. Multiple Endocrine Neoplasia (MEN)
 - gain of fcn mutation in RET gene (oncogene, signal transduction gene)
 - cause thyroid ca
- 11. Hereditary non-polypotic coli (HNPCC)
 - **error in DNA mismatch repair**: MSH1 and MLH2; microsatellite instability in tumor is indicator of DNA mismatch repair defect
 - mutation analysis and predictive genetic testing in high risk families
 - more common than familial
 - cause colorectal, endometrial, ovarian, gastric, breast ca
- 12. Malignant Hyperthermia
 - mutations in ryanodine receptor
 - pharmacogenetic disease
 - those affected are usually healthy
 - but halothane anesthetic induces muscle necrosis and profound hyperthermia
 - can be fatal
- 13. Heritable Retinoblastoma
 - most common eye tumor in children (under 5 yo)
 - occurs in heritable and non-heritable forms
 - IDing at-risk infants substantially reduces morbidity and mortality
 - RB1 gene on 13 (first tumor suppressor gene discovered)
 - high penetrance
 - prototype for "two-hit" hypothesis: individuals w/ familial Rb inherited a 1st germ-line mutation and developed Rb through the occurrence of a second somatic mutation, while individuals who developed sporadic Rb had 2 somatic mutations; reduced likelihood of 2 events occurring accounted for later age of occurrence and greater likelihood of unilateral rather than bilateral tumors
- 14. Holoprosencephaly
 - AD inherited holoprosencephaly can occur w/ mutations in SHH on chr 7 (human equivalent of a **segment-polarity gene**)
 - other cause is trisomy 13 (Patau's)
- 15. Aniridia
 - loss of fcn/deletions of PAX6 gene
 - absent iris; glaucoma; visual impairment
- B. Autosomal Recessive
- -- 1 in 4 offspring will be affected if both parents are carriers
- -- once a child is diagnosed with an autosomal recessive disorder, then their parents are obligate carriers
- -- males and females equally likely to be affected
- -- certain AR recessive conditions are more common in spec ethnic groups
- -- consanguineous
- -- horizontal inheritance: only members of a single sibship are affected
- -- risk that the sibling of an affected child will also be affected equals 1 in 4
- -- risk to offspring of an affected individual is very low
- -- 5 biochemical, 2 Hb, 1 drug, 1 CF
- 1. Tay Sach's
- 2. Thalassemia: hemoglobinapathy (disorder of Hb synthesis); neonatal screening
 - a) α -thalassemia (4 types; usu found in southeast asia)

- i) α -thalassemia major (hydrops fetalis): deletion of all 4 α globin genes; both parents heterozygous carriers of 2 α globin gene deletion in cis; only Hb is tetramer of 4 γ globins; usu lethal
- ii) α -thalassemia major (Hb H disease): deletion of 3 α genes; one parent heterozygous carrier of 2 α globin gene deletion in cis, other parent carrier of single α globin gene deletion; most Hb is tetramer of 4 β globins; baby w/ severe microcytic anemia, transfusion dependent, no crises
- iii) α -thalassemia trait: deletion of 2 α globin genes; heterozygous carrier of 2 α globin gene deletion in cis; homozygous for 2 single α globin gene deletions; mild asymptomatic microcytic anemia; no indication for transfusion
- iv) silent carrier: deletion of 1 α globin gene; heterozygous for a single α gene deletion; normal hematology studies, usu diagnosed by deduction when a 'normal' indiv has a child w/ either Hb H disease or microcytic anemia
- b) β -thalassemia: anemia due to reduced production of β globin protein due to a variety of mutations in the β globin gene
- i) β_0 thalassemia: severe transfusion-dependent hemolytic anemia, assoc w/ little β globin; repeated transfusions result in premature death due to complications of iron overload despite iron chelation therapy
- ii) β thalassemia trait: heterozygous for β globin mutation; mild microcytosis; raised HbF in infants
- iii) β thalassemia major: Cooley's anemia; homozygous or compound heterozygous for β globin mutation; severe anemia; high HbF in infants; transfusion dependent; iron overload; often death in teens

3. Sickle Cell (HbS)

- **hemoglobinapathy** (disorder of Hb structure)
- common in West Africa
- Glu6Val mutation in both copies of β-globin gene on chromosome 11
- RBCs more fragile and break up (hemolyse)
- chronic anemia
- sickling crises due to blockage of small blood vessels w/ fragmented RBCs
- sickling →increased viscosity and clumping of cells → ischemia, thrombosis, infarction → abd pain, splenic infarction, limb pain, bone tenderness, rheumatism, osteomyelitis, cerebrovascular accident, hematuria, renal failure, pneumonia, heart failure
- sickling → destruction of sickle cells → anemia → splenomegaly, weakness, abnormal skull radiographs, heart failure
- neonatal screening
- Tx: acute crises-pain relief, hydration; chronic mngmt-vaccination, prophylactic antibiotics, blood transfusion

4. Cystic Fibrosis

- common in Western Europe
- CFTR gene on 7q (can be due to **UPD** for chr 7 from a carrier parent)
- chronic lung disease, pancreatic insufficiency, sometimes diabetes
- chronic sinusitis
- infertility in males
- previously fatal in childhood, lifespan may now be into 40s
- neonatal screening (biochemical or genetic)

5. Oculocutaneous albinism

- inborn error of metabolism
- tyrosine hydroxylase deficiency no melanin is made
- lack of pigment in skin, and in the iris and pigmentary layer of the eye

6. Galactosemia

- **inborn error of metabolism**: carbohydrates
- gal-1P uridyl transferase deficiency
- toxic xs of galactose

- neonatal cataracts, hypotonia, dev delay, liver
- effectively treated by galactose (including lactose) free diet
- **neonatal screening** for galactosemia in many countries
- 7. Congenital adrenal hypoplasia
 - inborn error of metabolism: steroids
 - self-wasting and virilization
 - 21-hydroxylase enz def
 - androgens overproduced; glucocorticoids (cortisol) and aldosterone underproduced
 - cause collapse, low BP, low blood Na
 - Tx: lifelong corticosteroid replacement
- 8. Phenylketonuria (PKU)
 - inborn error of metabolism: amino acid
 - most common AR metabolic disorder
 - phenylalanine hydroxylase deficiency causes tyrosine def and xs toxic phenylalanine and metabolites
 - mental handicap, seizures if untreated
 - Tx: restricted diet of phenylalanine gives normal IQ
 - newborn metabolic screening
 - neonatal screening
- 9. Succinylcholine sensitivity
 - low activity of enz pseudocholinesterase
 - those affected are usually healthy
 - slowly metabolize muscle relaxant succinylcholine
 - unable to move after reversal of anesthetic muscle paralysis

C. X-Linked Recessive

- -- diagonal transfer
- -- 1 in 2 for sons of a carrier female; 1 in 2 that each daughter will be a carrier
- -- affected male transmits allele to all daughters (obligate carriers); transmits none to sons
- -- therefore no male to male transmission
- -- female can be affected rarely if:
 - a) she is homozygous having inherited a mutant allele from both parents
 - b) Turner's syndrome
 - c) 46, XY w/ androgen insenstitivity
 - d) non-random X inactivation (poss due to X-autosome translocation)
- 1. Duchenne & Becker Muscular Dystrophy
 - mutation of the dystrophin gene on Xp21 (dystrophin gene is largest known human genome)
 - progressive muscle weakness and wasting from early childhood, become wheelchair bound in early teens, and die in late teens or early twenties
 - biochemical testing (raised creatine kinase levels)
 - DNA linkage testing
- 2. Glucose 6P Dehydrogenase deficiency
 - those w/ mutated allele are normally healthy
 - pharmacogenetic disease
 - given antimalarials, sulphonamides or eat fava beans they experience acute hemolysis
 - G6PD is involved w/ red cell metabolism
 - 2 alleles are found in diff areas of world
- 3. Hemophilia A and B
 - treatable
- 4. Non-specific mental retardation
- 5. Red-green color blindness
- 6. Ornithine transcarbamyl deficiency (OTC)
 - inborn error of metabolism: urea cycle
 - xs protein load, illness, stress

- triggers hyperammonemia: acute and chronic brain damage, coma, death
- variable expression
- some females can also be affected
- 7. Lesh-Nyhan
 - inborn error of metabolism
- 8. Fragile X syndrome
 - **anticipation** (triplet repeat) maternal
 - fragile site on Xq
 - 2nd most common genetic cause of learning disability after Down's syndrome
 - behavior disturbances; tall, large ears, long face, loose jts, macroocrhidism
 - Dx w/ molecular methods via an intermediate permutation not seen in other triplet repeats
 - intermediate state of a **premutation**: a person is unaffected, but the unstable premutation triple repeat may expand to a full mutation in meiosis
 - only mothers who carry premutations will have children with full mutations, who could be affected
 - premutation males with have premutation carrier daughters
- 9. Androgen Insensitivity Syndrome
 - 46, XY female
 - female w/ normal ext genitalia and secondary sex charact
 - no internal female genitalia
 - gonads found in inguinal region histological testes w/ high testosterone levels
 - mutation in androgen receptor gene blocks response to usu effect of testosterone
 - lack of testosterone effect, despite high circulating levels, means no external male genitalia form
 - Tx: excision of gonads, female hormone replacement
 - female carriers and females affected
- D. X-Linked Dominant Inheritance (XD)
- -- both males and females are affected (females are usually less severely affected
- -- affected females can show a mosaic pattern of involvement in tissues like skin
- -- 1 in 2 chance that any son or daughter born to an affected female will be affected
- -- all daughters and none of sons of an affected male will be affected
- -- therefore no male to male transmission
- -- 2 types
- 1. XD disorder which affects both males and females but females may be less affected
 - a) Rickets
- 2. XD disorder which affects females only b/c mutation is lethal in hemizygous male pregnancies
 - a) Rett syndrome
 - b) Incontinentia pigmenti
- III. Polygenic Disorders (multifactorial inheritance: several genes + environment)
- *Hirschsprung's Disease (illustrates consequences of **liability/threshold model**)
 - -- absent autonomic innervation of colon: stomach distends, cannot digest food
 - -- polygenic inheritance: mild-short segment aff; severe-long segment aff; commoner in boys
- -- rare familial forms can be caused by inactivating mutation (loss of fcn) in the **RET oncogene** **Approaches to identify heritability:
 - -- family studies: increased prevalence in 1st/2nd degree relatives
 - -- twin studies: concordance in MZ and DZ twins 'reared apart' studies
 - -- adoption studies: "adopted in/out"
 - -- population/migration studies: diff in prevalence w/ migration
- A. Congenital Anomalies
- 1. Deformation: abnormal form or position caused by a non-disruptive mechanical force
 - -- talipes
- 2. Disruption: morphological defect resulting from a breakdown of, or interference w/, an originally normal developmental process

- -- amniotic bands
- 3. Malformation: morph defect resulting from an intrinsically abnormal dev process
- *major: causes significant medical or cosmetic problems (e.g. spina bifida)
- *minor: no medical significance (e.g. accessory nipple, single palmar crease)
 - a) sequence: multiple anomalies derived from a single known or presumed structural defect
 - i) Potter's sequence: arises from any cause of lack of amniotic fluid surrounding a fetus b) syndrome: mult abnormalities thought to be pathogenetically related b/c happen more requently than chance and not explained by a sequence
 - i) chromosomal: Down's (trisomy 21)
 - ii) monogenic: achondroplasia (AD)
 - iii) teratogenic
 - -- congenital infection: CMV, Rubella, Toxoplasmosis
 - -- maternal diabetes/epilepsy
 - -- maternal medication/drugs: phenytoin, alcohol
 - iv) polygenic/multifactorial
 - -- neural tube defects: failure of closure of dev neural tube during first 4 wks of embryonic life leads to anencephaly, encephalocoele, lumbo-sacral myelocoele, meningocoele, spina bifida; screening for maternal serum α -fetoprotein and fetal ultrasound scanning; folic acid supplementaion
 - -- cleft lip/palate
 - -- congenital HD
 - v) unknown: >50%
- B. Common Disorders of Adult Life
- 1. Diabetes mellitus
 - increased concordance in MZ vs DZ twins indicates a significant genetic component
 - type I insulin-dependent (IDDM): childhood onset, HLA gene
 - type II non-insulin dependent (NIDDM): onset usu > 50 yrs
 - maturity-onset diabetes of young (rare) MODY: single gene AD; usu non-ins dep; polymorphisms w/in MODY genes can become candidates for NIDDM and IDDM
 - increased risk of diabetes in sibs in both NIDDM and IDDM indicates a genetic effect in both; NIDDM also assoc w/ environmental effects (obesity)
- 2. Coronary Artery Disease
 - major cause of morbidity and mortality accounting for 50% of deaths in developed countries
 - polygenic factors and single gene mode of inheritance via familial hypercholesterolemia
- 3. Schizophrenia

IV. Mitochondrial Disorders

- mitochondrial genome exclusively maternally inherited
- mutations can occur in the mit genome indep of cell mitosis
- mit mutations can accumulate w/ age
- some mit mutations can be inherited
- in any one cell, some mit can have a mutation, and some do not
- heteroplasmy: mixture of normal and mutant mit in a cell
- all offspring of an affected or carrier female are at risk of becoming affected themselves
- all daughters of an affected or carrier female are at risk of transmitting the condition

GENETIC DISEASES LISTED BY LECTURE TOPICS:

<u>Pharmacogenetics</u>: genetic basis for drug response

- 1) hereditary conditions only revealed in presence of a particular medicine
 - a) glu-6P dehydrogenase deficiency (XR)
 - b) malignant hyperthermia (AD)
 - c) succinylcholine sensitivity (AR)
- 2) genetic variation which controls response or side effects from drugs
 - a) Tx for TB
 - -- N-acetyltransferase activity of Isoniazid
 - -- acetylation inactivates drug
 - -- slow acetylators-higher longer levels of drug (more side effects)
 - -- fast acetylators-more liver disease
 - b) Clozapine
 - -- anti-dopaminergic drug used in tx of schizophrenia
 - -- responders to drug have higher freq of spec alleles

<u>Anticipation</u>: the manifestation of a genetic disorder at an earlier age or with increasing severity in succeeding generations due to an enlarged meiotically unstable DNA triplet repeat

- 1. Huntington's disease (CAG) (AD)
- 2. Myotonic dystrophy (AD)
- 3. Fragile X syndrome (XR)

Biochemical Genetics: inborn errors of metabolism

- 1. Lesch-Nyhan syndrome (XR)
- 2. Familial hypercholesterolemia (AD)
- 3. Phenylketonuria (AR)
- 4. Galactosemia (AR)
- 5. Congenital adrenal hypoplasia (AR)
- 6. Ornithine transcarbamyl deficiency (XR)
- 7. Oculocutaneous albinism (AR)

Hemoglobinopathies

- 1. Disorders of Hb structure
 - a) HbS (point mutation: β , 6 glu to val)
 - b) Hb Lepore/Anti-Lepore (fusion chain: δ -like residues at N-terminal end, δ -like residues at C-terminal end)
- 2. Disorders of Hb synthesis
 - a) α-thalassemia
 - b) β-thalassemia
- 3. Structure/Developmental Expression
 - a) HbF (fetal Hb): $\alpha_2 \gamma_2$
 - b) HbA (adult Hb): $\alpha_2\beta_2$
 - c) HbA₂ (2-3% in adults): $\alpha_2\delta_2$
 - d) α-like cluster on chromosome 16
 - e) β-like cluster on chromosome 11

<u>Genetic Imprinting</u>: if region is imprinted (e.g. methylated) copies of that region from both parents are needed to be normal (for non-imprinted regions, inheritance of both copies of that region from only one parent may not be disadvantageous)

- 1. Prader-Willi syndrome
 - deletion of 15q11 from Dad (dad-active SNRPN gene, mom-inactive SNRPN; as long as there is an expressed SNRPN gene, a person will not develop PW)

- poor neonatal muscle tone (hypotonia) and poor infant feeding
- children become hyperphagic, obese; learning disability; cryptorchidism (small genitalia)
- can be detected w/ FISH
- 2. Angelman syndrome
 - deletion of 15q11 from Mom (mom-active UBE3A gene, dad-inactive UBE3A; as long as there is an expressed UBE3A gene, a person will not develop Angelman)
 - seizures; abnormal gait w/ jerky arm mvts; no speech; usu blonde hair

<u>Uniparental Disomy</u>: inheritance of both members of a homologous pair of chromosomes from one parent -- causes of UPD

- meiotic non-dysjcn that causes a disomic gamete
- when fertilized by a normal monosomic gamete, the resultant embryo is trisomic
- an attempt is made to get rid of the xtra chr "trisomic rescue"
- rescue attempt may get rid of the chr derived from the original gamete leaving the embryo w/ UPD -- 2 types of UPD
 - uniparental heterodisomy: non-disjen in meiosis I; 2 diff chromosomes both from same parent
- uniparental isodisomy: non-disjen in meiosis II; 2 identical chromosomes both from same parent --effects of UPD
 - can cause disease if isodisomic chrm has an autosomal recessive dis mutation (i.e. Cystic Fibrosis)
 - can cause disease if UPD occurs in imprinted chromosomal region
 - a) Prader Willi: if baby has UPD for 2 maternal chromosomes 15
 - b) Angelman syndrome: if baby has UPD for 2 paternal chromosomes 15

Developmental Genetics

- 1. Segmentation genes: segment polarity mutants can cause deletion of a segment w/ duplication on the opposite side
 - --mut in human Sonic Hedgehog on chr 7 cause holoprosencephaly (incomp cleavage of forebrain)
- 2. PAX genes: Paired Box genes that encode DNA binding protein which act as transcription control factors
 - -- mutations in PAX3 cause Waardenburg's syndrome
 - -- mutations in PAX6 cause aniridia
- 3. Zinc Finger genes: finger-like loop projection formed by a complex of a zinc ion w/4 AAs to act as a transcription control factor through binding to DNA
 - -- deletions in a zinc finger gene called GLI3 cause Greig syndrome (cephalosynpolydactyly: fusion of skull bones, fingers, and xtra fingers and toes)
- 4. Signal transduction genes: mutations can cause cancer and/or dev abnormalities
 - -- gain-of-fcn mutations in RET cause MEN and thyroid Ca; loss of fcn in RET cause Hirschsprung's disease
 - -- mut in genes for fibroblast growth factor receptors (FGFR) can cause achondroplasia
- 5. Hydatidiform moles: disorganized proliferation of the placenta
 - -- partial: triploidy of paternal origin (69,XYY)
 - -- complete: 46 chrs which are exclusively paternal; high potential for malignant change (46,YY)

Hereditary Cancer

- A. Classification
- 1. by tumor type
 - a) rare hereditary ca syndromes defined by a rare tumor type $\ensuremath{w/}$ familial clustering
 - b) subset of common cancers which is hereditary (e.g. colon, br, ovarian ca)
- 2. by type of gene mutated
 - a) tumor suppressor genes: cell's brakes for tumor growth; Ca arises when both brakes fail
 - -- Rb (13g)
 - -- Breast Ca (BRCA1)
 - -- Familial Adenomatous Polyposis (APC)
 - b) oncogenes: accelerates cell division; Ca arises when stuck in "on" mode
 - -- Multiple Endocrine Neoplasia (RET)

- c) DNA damage-response genes: repair mechanics for DNA; Ca arises when both genes fail, speeding the accumulation of mutations in other critical areas -- Hereditary Non-Polypotic Colon Ca (MSH2, MLH1)