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ABSTRACT 
 

Decomposition of Petri net model of ECMA 
communication protocol into minimal functional subnets, 
left and right communicating systems, subsystems of 
connection establishing and disconnecting is 
implemented. A correct protocol ought to be invariant 
one. Invariance of source model is proved on the base of 
established invariance of functional subnets. 
Isomorphism of subnets has allowed the calculation of 
invariants in the process of consecutive composition of 
net. Acceleration of computations for decomposition 
technique was estimated. It is exponential with the 
respect to net dimension. 
 
Keywords: Protocol, Petri net, Invariant, Functional 
subnet, Decomposition. 
 
 

1. INTRODUCTION 
 

Asynchronous character of systems’ interaction assuming 
by standard specifications of telecommunication 
protocols makes difficult application of traditional 
methods, aimed to description of allowable sequences of 
actions.  It is caused by that the protocol regulates only 
rules of interaction, while concrete sequences of actions 
are various implementations of system behaviour 
according to protocol. Thus, recently for protocols 
investigation [1,2] more and more frequently Petri nets 
[3] are used.  
 
Detailed models of real-life telecommunication protocols 
represented by Petri nets and constructed on the base of 
source standard specifications number thousands of 
elements usually. Such huge dimension creates 
significant difficulties in application of formal methods 
for net properties investigation aimed to prove the 
correctness of protocol.  
 
One of the most powerful and widespread methods of 
Petri net properties analysis is method of invariants [3]. 
Implementation of this method consists in solving of 
linear Diophantine systems of equations over nonnegative 
integer numbers. Note that, finding of nonnegative 
integer solutions of linear system is a specific task with 
especial methods of solution [4,5]. Unfortunately, 
complexity of these methods is asymptotically 
exponential. It makes practically impossible invariants 
calculation for net with more than hundred elements.  

 
The goal of present work is construction of effective 
methods for telecommunication protocols verification on 
the base of decomposition technique for Petri net 
invariants calculation and implementation of these 
methods for ECMA protocol verification. 
 
In work [6] polynomial algorithm of given Petri net 
decomposition into minimal functional subnets [6,7] was 
represented. In work [8] invariants of functional subnets 
were used for construction of invariants of source net. It 
was shown that acceleration of computations obtained is 
exponential with the respect to number of nodes of net.  
 
In present work technique of invariants calculation with 
consecutive composition of source Petri net out of its 
minimal functional subnets is studied. The symmetry of 
systems interaction, characteristic for the majority of 
telecommunication protocols, is involved.  

 
 

2. MODEL OF COMMUNICATION PROTOCOL 
 

For case study of Petri net invariants calculation with 
decomposition the wide known protocol ECMA 
(European Computer Manufacturer Association) has been 
chosen. ECMA is transport protocol situated between 
network and session levels of ISO model. Further, the 
model of protocol represented in [2] will be used. On the 
one hand, the model is simplified enough to be studied in 
article, on another hand, it allow the implementation of 
decomposition technique. Further studying model 
represents only connection-disconnection processes and 
abstracts of the concrete way of data transmission. 
 
Petri net model of protocol ECMA is represented in Fig. 
1. Let’s remind, that Petri net [3] is a triple 

),,,( FTPN =  where  – finite set of nodes 
named places, 

}{pP =
}{tT =  – finite set of nodes named 

transitions, flow relation  defines a set 
of arcs connecting places and transitions. Thus, Petri net 
is directed bipartite graph; one part of nodes consists of 
places, another – of transitions. Places are drawn as 
circles, transitions – as bars. Usually, graph  is 
supplemented with a marking defining an initial 
arrangement of tokens in places. Tokens are dynamic 
elements that move inside net as a result of transitions 
firing.  

PTTPF ××⊆ U

N

 



 
A special notation of sets of input and output nodes for 
places and transitions is introduced:  
 

},),(|{ Fpttp ∈∃=• },},(|{ Ftptp ∈∃=•

},},{|{ Ftppt ∈∃=•   }.),(|{ Fptpt ∈∃=•

 

Three basic parts of model is considered: left interacting 
system – places 41 pp − , transitions 71 tt − ; right 
interacting system – places , transitions 85 pp − 148 tt − ; 
communication subsystem – places 169 pp − . Semantic 
description of elements of the model is represented in 
Table 1. 

 

 

Fig. 1. Model of protocol ECMA 
 

Table 1 Description of model’s elements 
 

Place Description Transition Description 
51, pp  Initial state of systems 81,tt  Send connection request 

62, pp  Waiting of connection 92,tt  Receive connection request 

73, pp  Transmission of data 103,tt  Receive connection acknowledgement 

84, pp  Waiting of disconnection 114,tt  Send disconnection request 

119, pp  Request of connection 125,tt  Receive disconnection request 

1210, pp  Acknowledgement of connection 136,tt  Receive disconnection acknowledgement 

1413, pp  Request of disconnection 147,tt  Receive counter disconnection request 

1615, pp  Acknowledgement of disconnection   
 

 
3. DECOMPOSITION OF PROTOCOL 

 
We decompose source model of ECMA protocol 
represented in Fig. 1 in minimal functional subnets 
according to decomposition algorithm described in [6]. 

 

Let’s remind, that functional net [6,7] is a special case of 
net with input and output places. Functional net is a triple 

),,,( YXNZ =  where – is Petri net,  – input 
places,  – output places, besides sets of input and 
output places do not intersect: 

N PX ⊆
PY ⊆

∅=YX I , moreover, 
input places do not have input arcs, and output places do 
not have output arcs: , . ∅=∈∀ •pXp : ∅=∈∀ •pYp :



 
Places of a set  are named by contact ones, 
and places of a set  are named by internal 
ones.  

YXC U=
)(\ YXPQ U=

 
Functional net  is named a functional 
subnet of net  and is denoted as  if 

),,( YXNZ ′=
N NZ f N ′  is 

subnet of N, and, moreover, Z  is connected with 
residuary part of net only through the arcs incidental to 
either input or output places, besides input places may 
have only input arcs and output places – only output arcs. 
Thus  
 

∅=′∈∈∀ }\|),{(: TTttpXp , 
∅=′∈∈∀ }\|),{(: TTtptYp , 

∅=′∈∧∅=′∈∈∀ }\|),{(}\|),{(: TTtptTTttpQ . 
 
Functional subnet is named a minimal one, if it does not 
contain any other functional subnets. According to 
theorem 2 proved in [6], any functional subnet Z ′  of a 
Petri net  is a sun (union) of a finite number of 
minimal functional subnets. Thus, a set of minimal 
functional subnets is a generating family for a set of 
functional subnets of a given Petri net . 

N

N

 

 

Fig. 2. Decomposition of protocol ECMA 
 

Application of decomposition algorithm to model of 
ECMA protocol (Fig. 1) results in obtaining of set 

 consisting of four minimal 
functional subnets represented in Fig. 2. Graph of 
functional subnets is shown in Fig. 3. Note that, as 
processes of system interaction are symmetry, so pairs of 
subnets 

},,,{ 2,21,22,11,1 ZZZZ

1,1Z  and 1,2Z , and also 1,2Z  and 2,2Z  are 
isomorphic. Thus, it is necessary to investigate further 
only properties of two subnets of four obtained. 

 
Different ways of minimal functional subnets 
composition allow the decomposition of the source model 

in left and right interacting systems 1Z , 2Z  and also 
decomposition in subnets of connection establishing and 
disconnecting 1Z ′ , 2Z ′ , where 2,11,11 ZZZ += , 

2,21,22 ZZZ += , 1,21,11 ZZZ +=′ , 2,21,22 ZZZ +=′ . 
 

Therefore, decomposition of Petri net model of protocol 
ECMA into minimal functional subnets was 
implemented. Moreover, decomposition into left and 
right interacting systems, subsystems of connection 
establishing and disconnecting was considered. 

 
 



 
 

1,1Z

2,1Z

1,2Z

2,2Z
 

 
Fig. 3. Graph of functional subnets 

 
 

4. INVARIANCE OF PROTOCOL 
 

Invariants [3] are a powerful tool of structural properties 
of Petri nets analysis. It allows the determination of 
boundness, safeness of net, necessary conditions of 
liveness and absence of deadlocks. These properties are 
significant for real-life objects analysis, especially, for 
communication protocols [1,2]. 
 
In the general case nets with multiply arcs are considered. 
It contains an additional mapping . 
Multiplicity, in a case it is distinct from unit, is pointed as 
a number  on the corresponding arc. Let 

Ν→FW :

w mP = , 

nT = . We enumerate sets of places and transitions. Let 

us introduce matrices −A , +A  for input and output arcs 
of transitions accordingly: 

 

jiaA ,
−− = , mi ,1= , nj ,1= ; 

. 
⎩
⎨
⎧ ∈

=−
otherwise

Ftptpw
a jiji

ji
,0

),(),,(
,

 

jiaA ,
++ = , mi ,1= , nj ,1= ; 

. 
⎩
⎨
⎧ ∈

=+
otherwise

Fptptw
a ijij

ji
,0

),(),,(
,

 
And finally, we introduce incidence matrix A  of Petri 
net as  .−+ −= AAA
 
p-invariant of Petri net [3] is a nonnegative integer 
solution of system  
 

 0=⋅ Ax . (1) 
 
t-invariant of Petri net is a nonnegative integer solution 
of system  

0=⋅ TAy . 
 

As according to [3] each t-invariant of Petri net is p-
invariant of dual net, so further, not limiting a generality, 
we shall consider only p-invariants.   

 

All known methods of invariants calculation [4,5] have 
exponential complexity. It makes difficult the application 
of these methods to real-life objects’ models, numbering 
thousands of elements, analysis.  
 
According to theorem 2 proved in [8], Petri net  is 
invariant iff all its minimal functional subnets are 
invariant and moreover exists a common nonzero 
invariant of contact places. Therefore, to calculate 
invariants of a Petri net it is required to calculate 
invariants of its minimal functional subnets and then to 
find common invariants of contact places. It was shown, 
that results are true for an arbitrary set of functional 
subnets defining a partition of the set of transitions of 
Petri net.  

N

 
Let a general solution for invariant of functional subnet 

jZ  has a form  
 

 jj Gzx ⋅= , (2) 
 
where jz  is an arbitrary vector of nonnegative integer 
numbers, and  is a matrix of basis solutions. Then the 
system of equations for calculation of common invariants 
of contact places has a form 

jG

 
 { CpGzGz j

p
ji

p
i ∈=⋅−⋅ ,0 , (3) 

 
where  is the numbers of functional subnets, 

incidental to a place 

ji.

Cp∈ , and  is a column of 

matrix , that corresponds to place . 

j
pG

j
pG p

 
Therefore, variables jz  become not free ones. Note that 
system (3) has the same form as the source system (1). 
Thus, it may be solved with above-mentioned methods. 
Suppose that Ryz ⋅= , where  is a matrix of basis 
solutions of system (3), and 

R
y  is an arbitrary vector of 

nonnegative integer numbers. So, the general solution of 
system (1) according to (2) may be represented as  
 

 Hyx ⋅= , . GRH ⋅= (4) 
 

In the cases the model has internal symmetry and owing 
to what some minimal functional subnets are isomorphic, 
it is expediently to implement process described above 
consecutively.  

 
We use the isomorphism of subnets 1Z  and 2Z . Firstly, 
we calculate invariants of subnet 1Z . Then we construct 
invariants of isomorphic net 2Z . And finally, we 
calculate invariant of whole given Petri net. 
 
Invariants of subnets 1,1Z  and 1,2Z  we represent as  
 



 
1,11

5
1
4

1
3

1
2

1
11211109321 ),,,,(),,,,,,( Gzzzzzxxxxxxx ⋅= , 

, 2,12
3

2
2

2
116151413431 ),,(),,,,,,( Gzzzxxxxxxx ⋅=

 
where matrixes  and  have a form: 1,1G 2,1G
 

0110000
0000111
0011001
1100100
1001101

1,1 =G , 
0000111
0101001
1010010

2,1 =G . 

 
Note that, components of vector x , corresponding to 
subnets 1,1Z  and 1,2Z , are written in explicit form; they 
define indexation of columns of constructed matrixes. 
Indexes of rows correspond to components of vectors 

),,,,( 1
5

1
4

1
3

1
2

1
1

1 zzzzzz =  and ),,( 2
3

2
2

2
1

2 zzzz = . 
 
We construct the system of equations of form (2) for 
contact places: 
 

⎪⎩

⎪
⎨
⎧

=−−++
=−−++

.0
,0

2
3

2
1

1
4

1
2

1
1

2
3

2
2

1
4

1
3

1
1

zzzzz
zzzzz  

 
Note that, in composition of subnets  and  
places  and  are contact ones. General solution has 
a form  

1,1G 2,1G
1p 3p

 
12

3
2
2

2
1

1
5

1
4

1
3

1
2

1
1 ),,,,,,,( Ryzzzzzzzz ⋅= ,  

 

00010000
10000001
00100010
01000100
10001000
01100001
10000110
01101000

1 =R . 

 
For calculation of basis invariants of net 1Z  according to 
(4) we construct out of subnets’ invariants  and  
a joined matrix : 

1,1G 1,2G
1G

 

000000001000
010100000000
101000000000
000001100000
000000000111
000000110001
000011000100
000010010101

1 =G  or  

000000001101
010100000001
101000000100
000001100000
000000000010
000000110000
000011000000
000010010000

1 =G . 

 
Note that, the difference between matrixes is contained in 
columns corresponding to contact places (  and ). In 
the first case invariants of contact places are calculated 
according to matrix , and in the second case – 
according to . Indexation of columns corresponds to 
vector . 

1p 3p

1,1G
1,2G

),,,,,,,,,,,( 1615141312111094321 xxxxxxxxxxxx
 

Matrix of basis solutions has a form  
 

000001100000
000010011101
101011000100
010100110001
000000001111
111110010101
111100000111

1 =H . 

Note that, after a calculation of product GR ⋅  according 
to (4) we have deleted linearly dependent rows in matrix.  

 
Further, in the same way, we construct invariants of 
whole net, that is the composition of subnets 1Z  and 2Z . 
System of equations for contact places has a form: 
 

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

=−−−++
=−−−++
=−−−++
=−−−++

=−−++
=−−−+
=−−−+
=−−++

.0:
,0:
,0:
,0:

,0:
,0:
,0:

,0:

2
4

2
2

2
1

1
5

1
2

1
116

2
5

2
2

2
1

1
4

1
2

1
115

2
4

2
2

2
1

1
5

1
2

1
114

2
5

2
2

2
1

1
4

1
2

1
113

2
7

2
4

1
6

1
5

1
212

2
6

2
4

2
2

1
7

1
511

2
6

2
5

2
2

1
7

1
410

2
7

2
5

1
6

1
4

1
29

zzzzzzp
zzzzzzp
zzzzzzp
zzzzzzp

zzzzzp
zzzzzp
zzzzzp

zzzzzp

 

 
Let us solve a system, calculate a product GR ⋅  and 
delete linearly dependent rows. We obtain basis 
invariants of Petri net as following:  
 

0000000000001111
0000000011110000
1111000001110111
0101001101000001
1010110000010100
0000100100001101
0000011011010000
1111011001010111
1111100101110101

=H . 



 
Result obtained coincides with invariants calculated 
through usual methods for whole net and also with 
invariants obtained with direct composition of four 
minimal functional subnets.  

 
Thus, Petri net is invariant so, for instance, the invariant  
 

( 1111111112121212* =x ) , 
 
that is the sum of basis invariants with numbers 1, 3 and 
9, contains all natural components. Therefore, model of 
protocol ECMA is safe and bounded.  

 
It should to note, that though net is also t-invariant one, it 
contains a deadlock with tokens in places  and . 
Net reaches this deadlock as a result of firing sequence 

 or . 

9p 11p

51tt 15tt
 
 

5. ESTIMATION OF ACCELERATION 
 
Let us estimate obtained acceleration of computations in 
the assumption of exponential complexity of algorithms 
[4,5] for solving of linear Diophantine systems in 
nonnegative integer numbers. Let the complexity is , 
where  is number of nodes of net.  

q2
q

 
Source net contains 16 places, thus, direct calculation of 
invariants require solving a system with 16 unknowns. 
Composition of four minimal subnets requires solving 
system of the size 7 to obtain invariants of minimal 
subnets and to solve a system of the size 12 to obtain 
invariants of contact places. Consecutive composition 
assumes solving system of the size 7 to obtain invariants 
of minimal subnets, solving system of the size 5 to obtain 
invariants of contact places of first composition and 
solving system of the size 8 to obtain invariants of 
contact places of second composition. Note that, at the 
exponential growth of functions, the complexity of 
matrixes multiplication representing by polynomial of 
third degree is insignificant and will not be considered.   

 
Complexities of calculation for each of enumerated three 
ways of invariants obtaining may be estimated by 
following expressions:  
 

65000216 ≈=IS , , 
. 

430022 127 ≈+=IIS
500222 857 ≈++=IIIS

 
Thus, decomposition allowed the acceleration more than 
ten times in the comparison with traditional methods. 
Moreover, consecutive decomposition allowed the 
additional tenfold acceleration.  

 
Notice that, accelerations have been obtained for net 
numbering three tens of nodes. At research of large-scale 
nets, the acceleration may be rather huge, so it is 
estimated as exponential function [8].  

 
 

6. CONCLUSION 
 
Therefore, the decomposition of Petri net model of 
ECMA communication protocol into functional subnets 
was implemented. To verify a protocol, Petri net 
invariants were used. Two ways of protocols’ invariants 
calculation with decomposition into functional subnets 
were compared: direct and consecutive. Essential 
acceleration of computations obtained proves the 
practical value of proposed technique. 
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