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Abstract 

The decomposition-based technique for calculation of 
Petri net invariants is presented. It was proved that 
invariants of the entire Petri net might be constructed of 
invariants of its functional subnets. The acceleration of 
calculations obtained is exponential with respect to the 
number of Petri net nodes. 
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Introduction 

Invariants are a powerful tool for the structural 
properties of Petri net investigation [Murata 1989] and 
constitute nonnegative solutions of linear homogeneous 
Diophantine systems of equations. There is known the 
Toudic method [Toudic 1982] for the calculation of Petri 
net invariants. This method allows the obtaining of 
nonnegative integer solutions by means of matrix 
transformations. The formal grounding of the Toudic 
method was implemented in [Zaitsev 2003b]. But the 
complexity of this method is asymptotically exponential, 
which makes the analysis of real-life models difficult. 

The decomposition of the given Petri net into 
functional subnets was studied in [Zaitsev 2003a]. Notice 
that the functional subnet is a special class of subnet with 
input and output (contact) places. In the above-mentioned 
paper the generating family of functional subnets was 
presented and grounded. As the main result, an efficient 
polynomial algorithm of the decomposition of the given 
Petri net was constructed. 

In the present paper, decomposition of Petri net into 
functional subnets is used for invariants calculation. The 
idea is clear enough and consists in calculation of 
invariants for functional subnets with consequent 
composition of the invariants for the entire Petri net. 
Acceleration of the calculations obtained is exponential. 
 

 

1. Basic concepts 

As only the structural properties of Petri net will be 
studied in the present paper, we shall not consider the 
concept of net behaviour. 

Petri net is a triple ),,,( FTPN =  where }{pP =  is a 
finite set of places, }{tT =  is a finite set of transitions and 

∅=TPI , a flow relation PTTPF ××⊆ U  defines a 
set of arcs connecting places and transitions. Let us 
introduce the special notations for the sets of input, output 
and incident nodes of a place:  
 

},),(|{ Fpttp ∈∃=•  }},(|{ Ftptp ∈∃=• , 
•••• = ppp U . 

 
Similarly we may define the sets of input, output and 
incident nodes of a transition and moreover of an arbitrary 
subset of places (transitions). 

Net with input and output places is a triple 
),,,( YXNZ =  where N is Petri net, PX ⊆ – input 

places, PY ⊆ – output places and the sets of input and 
output places do not intersect: ∅=YX I . Places from 
the set of )(\ YXPQ U=  we shall name an internal. 
Input and output places altogether YXC U=  are named 
a contact.  

Functional net is a net with input and output places 
such that input places do not have input arcs and output 

places do not have output arcs: ∅=∈∀ •pXp : , 

∅=∈∀ •pYp : . We shall denote the functional net as 
),,,,( FTYQXZ =  with the respect to the correspondent 

elements of Petri net N. 
Petri net ),,( FTPN ′′′=′  is a subnet of N, 

if FFTTPP ⊆′⊆′⊆′ ,, . 
Subnet generated by the specified sets of nodes 

),( TPB ′′  is a subnet ),,( FTPN ′′′=′ , where F ′  contains 
all the arcs connecting nodes TP ′′,  in the source net: 

 

}.),(,,|),{(
}),(,,|),{(

FptTtPppt
FtpTtPptpF

∈′∈′∈
∈′∈′∈=′ U

 



Subnet generated by the specified set of transitions 
)(TB ′  is a subnet ),( TPB ′′ , where 

 
}),(),(:,|{ FtpFptTtPppP ∈∨∈′∈∃∈=′ . 

 
In other words, together with the transitions from T ′  
subnet )(TB ′  contains all incident places and is generated 
by these nodes. Further we shall consider mainly all the 
arcs connecting specified nodes in source net; that is, we 
shall consider subnets generated by the set of nodes. 
Therefore, for brevity we shall omit a flow relation 
implying the source relation F. 

Functional net ),,( YXNZ ′=  is a  functional subnet 
of net N and is denoted as NZ f , iff N ′  is subnet of N 
and moreover Z is connected with the residuary part of the 
net only by arcs incident to contact places so that input 
places may have only input arcs and output places may 
have only output arcs. Thus: 

 
∅=′∈∈∀ }\|),{(: TTttpXp , 
∅=′∈∈∀ }\|),{(: TTtptYp ,

∅=′∈∧∅=′∈∈∀ }\|),{(}\|),{(: TTtptTTttpQp . 
 

Statement 1. Functional subnet is generated by the set 
of own transitions. 

So, the set of transitions uniquely defines functional 
subnet. If we consider the constraints of arcs for contact 
places, then we conclude that the residuary part of the 
source net is also a functional subnet. Therefore, the 
source net may be obtained by the way the union of 
subnets with fusion of contact places of opposite classes: 
input with output and output with input. 

Difference of the source Petri net N and it’s functional 
subnet Z ′  is a subnet ZNZ ′−=′′  where 

 
)\,),(\,( TTXQYXPYZ ′=′′ UU . 

 
Statement 2. If NZ f′ , then NZN f′− . 
Functional subnet NZ f′  is a minimal iff it does not 

contain any another functional subnet of Petri net N. 
Notice that the concept of functional subnet does not 

use additional characteristics of Petri net. To study 
invariants we consider Petri nets with multiply arcs 

),,,,( WFTPN =  where FTP ,,  are as above and 
Ν→FW :  defines the multiplicity of arcs, Ν  is a set of 

natural numbers.  
Let us mP = , nT =  and the sets of places and 

transitions are enumerated. We introduce matrices −A , 
+A  of input and output arcs of the transitions 

correspondingly: 
 

jiaA ,
−− = , mi ,1= , nj ,1= ; 



 ∈

=−

,,0
,),(),,(

,
otherwise

Ftptpw
a iji

ji  

jiaA ,
++ = , mi ,1= , nj ,1= ; 



 ∈

=+

.,0
,),(),,(

,
otherwise

Fptptw
a ijij

ji  

 
And finally we introduce an incidence matrix A  of 

Petri net as .−+ −= AAA  
P-invariant of Petri net is an integer nonnegative 

solution of the system 
 

 0=⋅ Ax . (1) 
 
T-invariant of Petri net is an integer nonnegative 

solution of the system 0=⋅ yA . 
Petri net is p- or t-invariant, if it has a corresponding 

invariant with all positive components. 
Invariants are widely used for the investigation of Petri 

net properties. p-invariant nets are bounded and t-
invariant nets are repetitive [Murata 1989]. Moreover t-
invariants are used for the investigation of such 
significant properties as liveness and deadlock-free. So, 
according to [Murata 1989], each t-invariant of Petri net is 
p-invariant of dual net, we shall consider further only p-
invariants. Notice that dual net has a transposed incidence 
matrix. In other words places of dual net correspond to 
transitions of source net and vice versa. 

 
 
2. Algorithm of Petri net decomposition 

As it was shown in [Zaitsev 2003a], the set of minimal 

functional subnets }{ jZ=ℑ , NZ j f  of an arbitrary 
Petri net N defines the partition of the set T into 

nonintersecting subsets jT  so j

j
TT U= , ∅=ij TT I , 

ij ≠ . Moreover, any functional subnet Z ′  of an arbitrary 
Petri net N is the direct sum (union) of a finite number of 
minimal functional subnets. So, the partition of the set T 
defined by the set of minimal functional subnets is the 
generating family of the set of functional subnets of Petri 
net N.  Notice that in the general case a minimal subnet 
does not imply a low quantity of nodes but suppose that 
the subnet cannot be divided into inside subnets.  

Subnet ),,,()( RYQXRBZ ==  of Petri net N is a 
complete in N, iff in N the following conditions hold true: 

RX ⊆• , RY ⊆• , RQ ⊆•• . 
 
 



Algorithm of decomposition: 
Step 0. Choose an arbitrary transition Tt ∈ of the net N 

and include it in the set of selected transitions }{: tR = .  
Step 1. Construct subnet Z generated by the set R: 

),,,()( RYQXRBZ == . 
Step 2. If Z is the complete in N, then Z is sought 

subnet. Stop. 
Step 3. Construct the set of absorbed transitions: 

}|{ RtQtRtYtRtXttS ∉∧∈∨∉∧∈∨∉∧∈= •••• . 
Step 4. Assign SRR U=:  and go to Step 1. 
 
In [Zaitsev 2003a] the following Lemma 1 and 

Theorem 1 were represented. 
Lemma 1. Subnet Z is complete in Petri net N iff it is 

the functional subnet of N. 
Theorem 1. Subnet Z constructed by the algorithm of 

decomposition is the minimal functional subnet of Petri 
net N. 

Let us assign 1:=i  and ZZ i =: . Then we assign 
ZNN −=:  and repeat the execution of the algorithm in 

the case if the set T is not empty. Continuing in such a 
manner and choosing 1: += ii , we shall construct the set 

of minimal functional subnets kZZZ ,...,, 21  of Petri net 
N representing the desired partition of source net. As it 
was shown in [Zaitsev 2003a], the algorithm of 

decomposition has polynomial complexity )( 3nο , where 
n  is the number of nodes of the net.  

The application of the decomposition algorithm to Petri 
net 1N  is represented in Fig. 1 and is described in detail 
in [Zaitsev 2003a]. Source net 1N  is decomposed into 

three minimal functional subnets 321 ,, ZZZ  completely 

defined by the sets of its transitions },{ 64
1 ttT = , 

}{ 1
2 tT = , },,{ 532

3 tttT = . 
 
 

3. Invariants of decomposed net 

Let us consider the structure of the system of equations  
(1) 

0: =⋅ AxL . 
 

Every equation iL : 0=⋅ iAx , where iA  denotes i-th 
column of matrix A , corresponds to the transition it . It 
contains terms for all incident places. Coefficients are the 
weights of arcs. The terms for input places have the sign 
minus and the terms for output places have the sign plus. 
So, the system (1) may be represented as 

 
 nLLLL ∧∧∧= ...21 . (2) 
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Fig. 1. Decomposition of Petri net 1N  into minimal 

functional subnets 
 

 
Theorem 2. An arbitrary invariant x ′  of Petri net N  

is the invariant of every functional subnet Z ′ , NZ f′ . 
Proof. So x ′  is the invariant of Petri net N , then x ′  

is a nonnegative integer solution of (2) and consequently 
x ′  is nonnegative integer solution of each iL . Therefore, 
x ′  is the solution of an arbitrary subset of the set }{ iL . 

According to Statement 2, functional subnet Z ′ , 
NZ f′  is generated by the set of its transition T ′ . Thus 

the equation corresponding to the transition has the same 
form iL  as for the entire net since the subnet contains all 
the incident places of the source net. Therefore, the 
system for invariant of a functional subnet Z ′ , NZ f′  is 
the subset of the set }{ iL  and vector x ′  is its solution. 
Consequently, x ′  is the invariant of the functional subnet 
Z ′ . The arbitrary choice of NZ f′  in the above 
reasoning proves the theorem. ð 

Conclusion. If any Petri net is invariant, then all its 
functional subnets are invariant too. 



Lemma 2. Each contact place of decomposed Petri net 
has no more than one input minimal functional subnet and 
no more than one output minimal functional subnet. 

Proof. Suppose the contrary. We have to consider two 
cases: 

a) a contact place Cp ∈  that has more than one 
input minimal functional subnet existing; 

b) a contact place Cp ∈  that has more than one 
output minimal functional subnet existing. 
In case a) there are minimal functional subnets 
ZZ ′′′, such as  

),(),( ptZtptZt •• ∈′′′′∈′′∃∧∈′′∈′∃ . 
As, according to Lemma 1, each minimal functional 

subnet is complete in N , so transitions tt ′′′,  according to 
the definition of completeness belongs to the same 
minimal functional subnet. Thus, we obtain a contrary. 

In case b) there are minimal functional subnets 
ZZ ′′′, such as  

),(),( •• ∈′′′′∈′′∃∧∈′′∈′∃ ptZtptZt . 
And we obtain a contrary in such a manner as in the 

case a). The contrary, obtained in the both cases, proves 
the lemma. ð 

Theorem 3. Petri net N  is invariant iff all its minimal 

functional subnets jZ , NZ j f  are invariant and there is 
a common nonzero invariant of contact places. 

Proof. We shall use only equivalent transformations to 
not prove separately necessary and sufficient conditions. 
According to [Zaitsev 2003a], the set of minimal 

functional subnets }{ jZ=ℑ , NZ j f  of an arbitrary 
Petri net N defines the partition of the set T into 
nonintersecting subsets jT . Let us assume the number of 
minimal functional subnets is k . As it was mentioned in 
the proof of Theorem 1, equations contain terms for all 
incident places. So we have 

kLLLL ∧∧∧⇔ ...21 , 

where jL  is the subsystem for minimal functional subnet 
jZ , NZ j f . Notice that if jL  has no solution, then L  

has no solution too (except trivial, of course). 

Let us assume jR  is the matrix of basis solutions of 

subsystem jL . Then we write the general solution of the 

subsystem jL  in the form jj Rzx ⋅= , where jz is an 
arbitrary nonnegative integer vector. Thus 

kk RzRzRzxL ⋅==⋅=⋅=⇔ ...2211 . 
So the system 

 kk RzRzRzx ⋅==⋅=⋅= ...2211  (3) 

is equivalent to the source system (1). Further more we 
shall demonstrate, that the solution of the above system 
(3) involves a low number of equations. Let us consider a 

set of places of Petri net N  with the set of minimal 

functional subnets }|{ NZZ jj f : 

CQQQP k UUUU ...21= , 

where jQ  is the set of internal places of subnet jZ  and 
C  is the set of contact places. According to the 

definition, any place jQp ∈  is incident only to 

transitions from the set jT . So, px  corresponding to this 

place will appear only in the one subsystem jL . That is 
why we have to solve only equations for contact places 
from the set C . 

Now we construct an equation for the contact place 
Cp ∈ so it is incident more than one subnet. According to 

Lemma 2, each contact place Cp ∈  is incident not more 
than two functional subnets. So we have equations 

 
 j

p
ji

p
i RzRz ⋅=⋅ , (4) 

 
where ji,  are the numbers of minimal functional subnets 

incident to contact place Cp ∈ , j
pR  is a column of 

matrix jR  corresponding to the place p . The equation 

(4) may be transformed to the form 

0=⋅−⋅ j
p

ji
p

i RzRz . 

So the system 
 







∈=⋅−⋅

∈∨∈⋅=

CpRzRz

CpQpRzx
j
p

ji
p

i

jj
p

j
p

,0

,
 

(5) 

 
is equivalent to the source system (1). This fact proves the 
theorem. ð 

Conclusion 1. To calculate Petri net invariants we may  
calculate invariants of its minimal functional subnets and 
then to find common invariants of contact places.  

Notice that in both mentioned cases according to (5) 
we have to solve a linear homogeneous system of 
equation in nonnegative integer numbers.  

Conclusion 2. The above Theorem 3 is valid for an 
arbitrary set of functional subnets that defines a partition 
of the set of the transitions of the source Petri net. 

Therefore, a technique of linear homogeneous systems 
solution with decomposition into functional subnets 
consists in: 

I. Decompose given Petri net N  into set of 

minimal functional subnets }{ jZ=ℑ , NZ j f .  
II. Calculate general solution for each minimal 

functional subnet jZ . 
III. Calculate common solution of (5) for contact 

places. 



Now we estimate the acceleration of invariants 
calculation with the decomposition technique. Let k  be 
the maximum number of contact or internal places of 
subnets, and let the complexity of solution for system 
with size n  be about n2 . So, the complexity of invariants 
of subnets and common invariants of contact places 
calculation is estimated as k2~ . Complexity of 
decomposition according to [Zaitsev 2003a] is polynomial 
and was omitted. Thus, the acceleration of computations 
is about 
 kn

k
n −= 2

2
2 .  

 
4. Example 

Now we apply introduced technique to the calculation 
of invariants of Petri net 1N  (Fig.1).  

I. As it was represented in Fig. 1, Petri net 1N  is 
decomposed into three minimal functional subnets 

321 ,, ZZZ  completely defined by the sets of its 

transitions },{ 64
1 ttT = , }{ 1

2 tT = , },,{ 532
3 tttT = . 

II. Let us calculate invariants of the minimal functional 
subnets. 

Subnet 1Z . The system of equations is 





=+⋅−
=+⋅−

.02
,06

14

15

xx
xx

 

The general solution is 
( ).130061

1 ⋅= zx  

Subnet 2Z . The system of equations is 
{ .03 321 =+⋅+− xxx  

The general solution is 









⋅=

00101
00013

),( 2
2

2
1 zzx . 

Subnet 3Z . The system of equations is 









=+−
=+−

=⋅+−⋅−

.0
,0

,063

52

43

532

xx
xx

xxx
 

The general solution is 
( )133103

1 ⋅= zx . 
III. Let us write the system of equations for the contact 

places. Notice that in net 1N  all places are contact ones 














⋅=⋅=
⋅=⋅=
⋅=⋅=
⋅=⋅=

⋅=⋅+⋅=

.11
,33
,31
,11

,613

1
1

2
15

1
1

3
14

3
1

2
23

3
1

2
12

1
1

2
2

2
11

zzx
zzx
zzx
zzx

zzzx

 

We may write this system in the form (1) and solve it 
with the Toudic method 














=⋅−⋅
=⋅−⋅
=⋅−⋅
=⋅−⋅

=⋅−⋅+⋅

.011
,033
,031
,011

,0613

1
1

3
1

1
1

3
1

3
1

2
2

3
1

2
1

1
1

2
2

2
1

zz
zz
zz
zz

zzz

 

The general solution with the respect to the vector 
),,,( 3

1
2
2

2
1

1
1 zzzzz =  is 

( )1311⋅= rz . 
And the general solution of source system is 

( )13316⋅= rx . 
Notice that in this example we have not obtained any 

acceleration of computations, so the Petri net is tiny and 
all its places are contact ones. A real-life example studied 
in [Zaitsev 2004] allows an essential acceleration. 
 
 

Conclusions 

The complexity of Petri net invariants calculation is 
exponential in general case. This fact makes the analysis 
of real-life objects difficult. The technique proposed and 
studied in present paper allows the acceleration of the 
calculation of invariants. This technique is based on the 
decomposition of Petri net into functional subnets. The 
acceleration obtained is exponential with respect to the 
number of places of source Petri net.  
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