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Abstract

While Lyapunov exponents are among the global dynamical invari-
ants studied for detecting chaos and nonlinear structure in time se-
ries analysis, local Lyapunov exponents, defined as the local divergence
within a finite-time horizon, are a more useful measure of predictability
of nonlinear systems and a more powerful tool for testing nonlinearity
in time series.

This paper is concerned with estimating local Lyapunov exponents
in time series using the kernel regression method of local polynomial
fitting. The estimators of local Lyapunov exponents are shown to ap-
proach joint asymptotic normality. Approximate formulae for comput-
ing the asymptotic bias and the asymptotic variance are derived. A
method for constructing confidence intervals which adaptively correct
for bias in the estimators is prescribed. This methodology is illus-
trated with applications to the Nicholson blowfly population data and

the daily maximum temperature series at Charleston, SC.
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1 Introduction

Lyapunov exponents and fractal dimension are among the global dynamical
invariants studied for detecting chaos and nonlinear structure in nonlinear
systems. However, practical concerns such as prediction require quantifying
the finite-time behavior of a nonlinear system. The local Lyapunov expo-
nents, defined as the divergence rates of two nearby trajectories within a
finite-time horizon, is one way of characterizing predictability in a nonlinear
system, and is a powerful tool for quantifying and testing nonlinearity in

time series.

Introductions to the increasely popular area of chaos and nonlinear time
series from the statisticians’ viewpoint include Tong (1990), Tong and Smith
(1992), which contains several papers cited here, Berliner (1992), and Tong
(1995). The diversity of applications of chaos theory to substantial fields
can be seen in the collections of papers edited by Berry, Percival and Weiss

(1987), Drazin and King (1992), and Grenfell, May, and Tong (1994).

While much progress has been made on the statistical properties of di-
mension estimation methods in recent years, see for example Cutler (1993)
and Smith (1992), fundamental statistical issues remain about estimating
Lyapunov exponents, as shown in the discussions by McCaffrey, Nychka,
Ellner, and Gallant (1992), and Nychka, Ellner, McCaffrey, and Gallant
(1992). While these global dynamical methods have been successfully ap-
plied to many noise-free and high quality data, there are both conceptual
and practical difficulties in applications to time series data which are subject
to significant noises and often they fail to find nonlinearity (cf. Example 3 of
Section 3). In this paper, we develop a finite-time and local state space ap-
proach for studying nonlinear time series via the local Lyapunov exponents.

This approach appears to be able to detect nonlinearity in time series when



global nonlinear dynamical techniques fail.

In deterministic chaotic dynamical systems, small errors in initial condi-
tions can amplify rapidly in the future and errors in the initial conditions
are the main source of forecast errors. For example, error in determina-
tion of present weather state is among the main sources of errors in current
numerical weather prediction. Local Lyapunov exponents provide a way of
quantifying the influence of small error in the specification of initial condi-
tion and thus of predictability of a nonlinear system. The concept of local
Lyapunov exponents has a long history in meteorology. Right after his dis-
covery of chaos in a physical context, Lorenz (1965) developed a similar con-
cept in the context of weather forecasting. This pioneering work has played
a key role in many meteorological predictability studies and has been a key
method for the recent ensemble weather forecasting. The local Lyapunov
exponents defined in this paper are a direct generalization of this classical

local Lyapunov exponents for a deterministic system to a noisy system.

In a scalar time series model, the local Lyapunov exponents (or LLEs)
are defined through the state space representation and the Jacobian matrix
of the state space dynamics. One way to define nonlinearity of a time series
model is through the property that first-order partial derivatives are state
dependent. For example Priestley (1988, Ch. 5) developed a model iden-
tification procedure based on this property. LLEs for a scalar time series
are defined from the Jacobian matrix of the first-order partial derivatives
in a state space representation. Thus, variability of LLEs over states is a
test of nonlinearity. Further, LLEs characterize sensitivity to initial con-
ditions in the state space representation. Local Lyapunov exponents for
one-dimensional systems, in somewhat different forms from our approach,
have also been proposed and studied by Wolff (1992) and Yao and Tong

(1994). The statistical theory for estimating local Lyapunov exponents from



time series is developed in this paper. This appears to be the first system-
atic study of LLEs for multidimensional systems. This study is related to
estimating global Lyapunov exponents in the sense that the estimators for
global Lyapunov exponents are given by those of local Lyapunov exponents
for very large time horizon. This methodology is illustrated with applica-
tions to the blowfly population data due to A. J. Nicholson and the daily

maximum temperature data at Charleston, SC.

The main statistical issue in this paper is estimation of partial derivatives
of an autoregression function, for which nonparametric regression method
of local polynomial fitting is employed. An advantage of local polynomial
derivative estimators is that they are easy to analyze, and in particular the
asymptotic bias and asymptotic variance can be characterized. This paper
develops a method for transforming the results on derivative estimators to
those for the LLE estimators using the theory of eigenvalues from a random
matrix. An alternative approach, based on neural net and spline approaches
to nonlinear regression, has been given by Bailey, Ellner and Nychka (1997).
However, they do not obtain explicit expressions for the asymptotic bias and

variance.

The rest of this paper is organized in the following manner. A precise
definition of LLEs is given in Subsection 1.1. Issues of defining LLEs for
time series with unknown state space are briefly discussed in Subsection 1.2.
In Section 2 the statistical theory of estimating local Lyapunov exponents is
developed. The theory of local polynomial fitting for derivative estimation
is reviewed in Subsection 2.1. The general theory for singular values of
a random matrix is reviewed in Subsection 2.3. In Subsection 2.4, joint
asymptotic normality of the LLE estimators is established, and approximate
formulae for computing the asymptotic bias and asymptotic variance are

derived. In Subsection 2.5, this theory is applied to develop a method for



constructing pointwise confidence intervals which adaptively correct for bias
in the estimators. Applications are given in Section 3. Concluding remarks

are given in Section 4.

1.1 Local Lyapunov exponents

Observations of time series are subject to various errors. We consider the

following model for noisy time series
Tiv1 = m(Tiy o Tipp1) + 0 (@i T pi)Eit, (1.1)

where m : P — R is some nonlinear function, v : R’ — R is a nonnegative
function, and {e;,7 > 1} is a sequence of i.i.d. random variables with mean 0
and variance 1; moreover, £;1; is assumed to be independent of {z;,j < i}.
While an estimation theory will be discussed for the general form (1.1), the
definition of LLEs for this setup is complicated. To simplify our discussion,

we will assume that v is a constant function and v = o2.

Model (1.1) can be written in state space form: define X; to be the

embedded state vector (zi,...,7; p+1)! and e; = (0g;,0,...,0). Define
M(X;) = (m(iy -, Timp1)s Tis - Timpp2) (1.2)
Then
Xip1 = M(X;) + €iqa- (1.3)

Our purpose is to quantify and to derive a diagnostic test for nonlinearity
of model (1.3). This is equivalent to characterizing nonlinearity of M or the
state dependency of the Jacobian matrix of M. For multi-step prediction,
both uncertainty in the present state and dynamical noise contribute to the

forecast uncertainty. The forecast uncertainty is controlled by the sensitivity



on initial values of the system, which is, for small errors, quantified by the

local Lyapunov exponents.

Now we discuss the motivations that lead to a definition of local Lya-
punov exponents for the state space model (1.3). The specific form (1.2) of
M is not important here, though this type of state space representation does
have an effect on defining LLEs for a scalar time series when p is unknown
(cf. Sec. 1.2). To derive the definition, we consider the problem of Monte
Carlo prediction. Suppose that at a given time instant ¢, there exists a re-
constructed state vector X'i which is close to X;. Assume further that the
noise shocks e;11,...,e;1 are known, then one can consider the multi-step
prediction X’i_H, e ,XH_L defined by

Xivj = M(Xipj-1) +eipj, 1 < j < L. (1.4)

That is, Xi+1, ... ,Xi+L differ from X;,1,..., X, only in the specification

of the initial condition at time .
The one-step prediction error is approximated by
X1 — Xipn = M(X;) = M(X;) = Dy (X:)(X; — X)), (1.5)

where Djs denotes the Jacobian matrix of M. We will write J(x) = Djs(x)
as a shorthand notation. The initial error 6 X; = X'i — X, is assumed to be

small enough in (1.5).

Similarly, the L-step prediction error is given by

Xivr —Xivr = Dy(Xivrp—1)(Xivr—1 — Xitr—1)

%

Dy(Xivp—1) - Dy (X)) (X — X5). (1.6)

Q

provided that all intermediate errors {X; . — X; .4, (0 < £ < L — 1)} are

small enough in (1.6).



The covariance of prediction error has the form
(JHTQJx, (1.7)

where JU = J(X;ip_1)--- J(X;) and Cov(X — X) = Q, and in particular
this is of the form p?(JE)TJL if Q = p?I.

In addition, provided that the noise shocks e;y1,...,€;47 1 are small

enough, we have from (1.3),

Xiyo = M(M(X;)+ei1) + it

%

M(M(Xz)) + J(M(XZ))GHJ + €i+2
and in general

Xiyr =~ MM(X) + J(MPH(Xy) .. J(M(X5))ein
+J(MEYX) . T(M?(X5))eits

4.4 J(MLil(Xi))eppol +éi+L

where M? is the /—fold composition of M with itself. If X; is completely
known, an L—step predictor at time 4 is M*(X;) and the predictive covari-

ance is of the form
JES(JNT + JES(JHT + . 4 JEs(JH)T + 2 (1.8)
where Cov(er) = ¥ and JF = J(ML~Y(X;)) ... J(MI~Y(X;)) for j < L.

In general, let {xg,x1,...,x7_1} denote generically any consecutive ob-

served states or their approximations. From now on we will fix the notation
JL = J(XL,I) ce J(Xo).

From previous discussions it is seen that the size of J controls the prediction

error in both deterministic and probabilistic senses. Define 62(L) > --- >



62(L) to be the ordered the eigenvalues of of (J)"J¥. Equivalently, 6, (L) >
.-+ > §,(L) are the singular values of J L. Then, the normalized growth rates

1 )

are called the L—step local Lyapunov exponents (LLEs) (wrt
X0,X1,...,Xr—1). The corresponding eigenvectors Vi,...,V,(L) are called

the L—step local Lyapunov vectors.

The relation to prediction error is given by, for a given initial error a € R?,

|JEa|?> =< a, Vi(L) >% exp(2LA1 (L)) + ...+ < a, V, (L) >% exp(2LA, (L)),

(1.10)
where < -,- > denotes the inner product. Thus, if \;(L) > 0, an ini-
tial error which has significant projection onto the subspace spanned by
Vi(L),...,Vi(L) is amplified at the L—th step, while if X\;(L) < 0, an initial
error lying in the subspace spanned by V;(L),...,V,(L) is reduced at the
L—th step and thus has less influence on prediction. If the process {X;}
is ergodic, a general theorem states that \; = limy_, A;(L) exist almost
surely. The quantities Ay, ..., \, characterize the property of the whole pro-
cess {X;} and are called the (global) Lyapunov exponents (cf. Kifer, 1986;
McCaffrey et al, 1992). A bounded process with A\; > 0 is called chaotic
(Nychka et al 1992, McCaffrey et al 1992). This appears to be a viable and
simple way of defining noisy chaos, though there are possible alternative

approaches, see Tong (1995).

For the one-dimensional case, e.g. p =1 in (1.1), the only L—step local

Lyapunov exponent is given by
1
ML) = T {log|m/(zp—1)| +...log|m (z0)|} . (1.11)

This can be compared with those of Wolff (1992) and Yao and Tong (1994)

where alternative definitions of local Lyapunov type quantities are given.



Nevertheless, these alternative definitions can be treated as in some sense

“averaged” versions of LLE (cf. Discussions to Tong 1995).

The LLEs so defined controls the multi-step prediction error of a nonlin-
ear system in various ways. For example, the magnitude of L—step predic-
tion variance in (1.8) is controlled by the LLEs at time steps L—1, L—2, ..., 1.
An additional interpretation may be given as follows. Consider the one-
dimensional system (p = 1) for simplicity. Let Z; be an estimate of true
state x;, and let my = H(x;,&i41,...,€i+1) denote the L—step evolution
of (1.3). Assume that the distribution of ; is known, the L—step predic-
tive distribution given by the random variable mp = H(Z;, €i41,...,€it+L) 18

available. One can evaluate the mean squared prediction error given by

B(rig —myp)? = E{E[(mr —mp)’|eit1,. - cir]}
= E€i+1,---,€i+LEii (T?LL - mL)2

E5i+17---75i+L71 [ml(xt-i-L—l) e m,(xi)]QIOQ

= 102E8i+1,...,8i+[,71 exp{?L)\(L)}, (112)

Q

where z; o111 = m(xiye) + €i4¢ for 0 < ¢ < L — 2. The 2nd line assumes
the independence of Z; and &;41,...,5+7 and E(Z; — z;)? = p?, while the
3rd line uses the local linear approximation. This shows that the prediction
error is controlled by the averaged growth rate given by the local Lyapunov

exponent.

1.2 Effect of embedding

Given a univariate time series {z;,7 = 1,2,..., N}, if its phase space is

unknown, one can consider the reconstructed state vectors

Xi = (@i, Tizry . .. ’xi—(p—1)7—)T,’i =(p-1)7+1,...,N,



for some selection of the embedding dimension p and time delay 7. 7 > 1
is useful if the time series is finely sampled. If we only consider LLEs for
integer time steps of 7, the definition of LLEs is defined through X;,, =
M, (X;) + ej+r where M, is the T—step evolution map and is similar to the
case of 7 = 1. For simplicity this is the only situation considered in this
paper. For theoretical discussions we can assume 7 = 1 without loss of
generality. The selection of p has been considered by a number of authors
(e.g. Cheng and Tong 1992, Tjostheim and Auestad 1994) and in this paper

we do not consider this.

For estimating global Lyapunov exponents or fractal dimension, if p is
large enough, one hopes that estimates of these global quantities stabilize
and converge to the true ones. However, it is not known how the embedding
dimension will affect the definition of local Lyapunov exponents. As far as
we are aware of, we have not seen any statement to this effect. Thus, in this

subsection, we will derive some results on this.

Suppose the time series comes from an autoregressive model (1.1) of
order py. Obviously if p < pg, the LLEs defined based on embedding p will

be biased. Thus, we will just consider the case p > pyg.

Note that, for the reconstructed state space map (1.2), its Jacobian ma-

trix at a fixed point u = (up, -+, u2,u1)” has the simple form

Dy, (u)
Dys(u) = , (1.13)
In1 0p_1
where DI (u) = (0m(u)/0up,---,0m(u)/0u;), and we use Ij to denote the

identity matrix of dimension k& and 0 4 as the k X ¢ zero matrix.

Let A\ (L) > ... > X\y(L) denote the LLEs corresponding to embedding
dimension p. Let J* = J(x;_1)---.J(xq) where J(x) = Dys(x) denotes the

Jacobian matrix corresponding to the true dimension pg. Denote the /-th

10



row of a matrix A by A[{,]. Let E(i,j) denotes the py X pp matrix which
consists of one at the (7, j)th position and of zeros elsewhere. Given a positive
definite matrix A which has the spectral decomposition A = UAU” where
U is orthogonal and A = diag{dy,...,d,}, we define logA = U(log A)UT
where log A = diag{logd;,...,logd,}.

The following theorem is obtained. The proof, which involves algebraic

calculations and exploiting the special structure of (1.13), is fairly straight-

forward and is omitted.

Theorem 1 For L < p—po, Mi(L),Aa(L), ..., Ay (L) are the eigenvalues of

L-1

S log((7YT T 4 Y (77 Ipo, Y T o]+ Elpo, po)),
j=1
and Sp1(L) =+ =3y 1(L) = 0,3 p1(L) =+ = hy(L) = —o0.

For L > p —po, M (L), Aa(L),. .. ,5\p0 (L) are the eigenvalues of

P—Ppo

S 1o8(LTT T 3 (7Y oo, 7Tl ],
=1
and Apy11(L) = -+ = A\y(L) = —o0.

Theorem 1 implies that the time series LLEs are positively biased due
to the effect of embedding. However, if p is large enough, the biases die
out quickly as L is increased. This also implies that the definition of global

Lyapunov exponents is consistent, as stated in the next corollary.

Corollary 1 If the embedding dimension p > py, where py is the true di-

mension, the first po Lyapunov exponents are preserved, i.e.

Ai = Ai, 1 <4< po; Aj = —00, > po.

11



While a positive global Lyapunov exponent \; implies sensitive depen-
dence on initial conditions or chaos (e.g. McCaffrey et al 1992), one should
be cautious about interpreting the sign of local Lyapunov exponents due to

the embedding effect. The following example further illustrates this point.
Example 1. Consider the NAR(1) model
Tip1 = m(x;) + ogiq1.
Consider the two-dimensional embedded space or p = 2. The two-step Ja-

cobian product has the form

0 )
Jl = , where b = H;‘L’;_Q m/(zj),a = m'(@ipr-1)b,
b 0

for L > 2. The two LLE are given by

1
M(2) = grllos b® + log(1 + {m/ (zi1r1)}?)]
L—1 1 i+L—2 1
= 7 1.1 ; log m/(z)| + 5 log(1 + {m/ (ziy1-1)}?),

Ao(2) = —o0.

It is seen that A\ = limy_, . A1(L) = Elog|m/(z)|, the global Lyapunov
exponent. As an example, consider the AR(1) model m(z) = pzr embedded
in the two-dimensional state space, the largest 2-step LLE is given by A\ (2) =
0.251og p?(1 + p?) which is positive if and only if p?(1 + p?) > 1, i.e. p? >

(V) = 1)/2.

2 Estimation of local Lyapunov exponents

Given an embedding dimension p, estimators of LLEs are given by plugging
in the estimates of partial derivatives. Various nonlinear regression methods

have been proposed for estimating Lyapunov exponents, including the neural

12



net and spline regression methods (McCaffrey et al, 1992; Nychka et al,
1992). In this paper we will focus on the local polynomial regression method
for which explicit statistical results can be derived. The next subsection
reviews recent results for derivative estimation using the local polynomial

fitting.

2.1 Derivative estimation

Multivariate local polynomial fitting is used for estimation of m and its

partial derivative vector
Dpn(x) = (0m(x) /0y, - -+, 0m(x)/dxzp)"

in model (1.1). The main statistical theory for partial derivative estimation
in the time series context will be reviewed in this subsection. The details
are given in Lu (1996a, b). First, we embed the time series model (1.1) in

the regression framework

Y, = m(Xl) + I/(Xi){;‘i (2.1)

by setting
{Xi=(zi1,...,2ip),Ys = 2;}. (2.2)
Given time series data x1,xs,...,2yN, there are n = N — p observed vectors

of (2.2) corresponding to s = p+ 1,p+1,...,N. If 7 > 1, the embedded

data are of the form
{Xl = ((I;i—Ta"'a(I;i—pT)a}/i :$Z,ZZPT+I,N}

and n = N — pr.

In this paper we consider the local quadratic partial derivative estimator.

That is, at any given point x = (z1,... ,:Ep)T, the estimator is derived from

13



minimizing the weighted sum

Xi—x)
h ?

i Vi —a—b"(X; —x) — (X; — x)"L(X; — x)}Z%K(
i=p+1

(2.3)
where a is a real number, b is a p—dimensional vector, and L is a p X p matrix
which is restricted to be a lower triangular matrix for identifiability. The so-
lution corresponding to minimizing (2.3) consists of @ = m(x), of b = Dy, (x)
which corresponds to an estimate of D,,(x), and of L which corresponds to
estimates of elements in the Hessian matrix H,,(x) = (0*m(x)/0z;0z;) at x.
That is, L(z) = (l;;) satisfies l;; = hy; if ¢ > j and = hy;/2 if i = j , where
H,,(x) = (hij) is the Hessian. Let B = (a,b”,vech” {L})T and we have

g=X"'wx)"'x"wy, (2.4)
where Y = (Y1, Y,)T, W = diag{K (£,-%),---, K(¥27%)} and

L (Xpr1 —x)T vech™{(X1 — x)(Xps1 —x)7}
x=|: s s . @)
1 (Xy—-x)T  vechT{(X, —x)(Xy —x)T}

Here vech” denotes the row vector consisting of the columns on and below the
diagonal of a symmetric matrix. Other local polynomial estimators can be
similarly considered (cf. Lu 1996a, b), though the local quadratic estimator

appears to be simplest and is thus mostly used in practice.

The following assumptions are made for the regression model (2.1):

(A) The sequence {g;,F;} is a martingale difference with E{e;|F;—1} =
0,E{e2|#; 1} =1and X; € F;_, forall i > 1.

(B) The noise sequence further satisfies sup;>; E{|e;|**°|Fi_1} < oo for

some ¢ > 0.

14



(C) The vector sequence {X;} is strictly stationary and satisfies the short-
range dependence condition: let f;(:,-) denote the joint density of
X1, Xj4+1 and f(-) denote the marginal density, then

sup Z |fj(u,v) — f(u)f(v)| < oo. (2.6)

u VGERP ;

(D) K is assumed to be spherically symmetric and to satisfy

/uPK(ul,---,up)dul -+ duy, < oo,

Let U denote an open neighborhood of x = (x1,--+,z,)” in RP, and let
C?(U) be the class of functions which have up to order d continuous partial

derivatives in U. The following theorem is from Lu (1996b, Theorem?2).

Theorem 2 Under model (2.1) and Assumptions (A)-(D), for | distinct
points X1, ...,x; such that f(x;) > 0,v(x;) > 0 for all j, if there exist open
neighborhoods U; of x; such that m € CY(U;), f € C°(U;),v € C°(U),j =

1,2,...,4, then for h—0,nh? — 0o as n — 00, the local quadratic estima-
tors B(xl), - ,B(Xg) are asymptotically independent and jointly normal. In
particular, at each point x = (z1,---,zp)T, we have that
()2 D, (x) = D) — Ax, )} S N0, 2209 ) (2)
2f(x)
Here f(x,h) = (W2 /3)b(x),
®m(x
F4 8mg = + 3“2 8:1:712”(')(901)
m( ) 3%m(x)
14 + 343 Ez-
b(x) _ 2 #2 Bmfawz : (2 8)

33
H4 Bmg’ ) + 3/1'2 E 31?8(;2

and pp = [u{K(u)du, v, = [ufK?(u)du for any nonnegative integers £.

15



2.2 LLE estimators

Consider in the embedded state space any L distinct fixed points {x; =
(Zipy - -, Ti2, 1)1 },0 <i < L —1. Let J(x;) denote the Jacobian matrix of
M at x; and JL = J(x1 1) ... J(x0) denote the L—step Jacobian product.
An estimator of J is given by J* = J(x 1)---J(x0) by plugging in the
respective partial derivative estimators. We denote the corresponding sin-
gular values of JL by Si(L),l <1 < p and the L—step LLE estimators are
given by

o 1 A
Ai(L) = 7 log{d;(L)}, for 1 <i <p.

Define a sequence of matrices by

Bl — h2/(3!ﬂz)({)bT(Xz') +o(M} | 2.9
p—1,p

where b(x;) = (bip, ..., bi2,bi1)T is as given in (2.8). A sequence of random

matrices is defined by

Nap 7z}

W= V2
2/ f (i)

,1=0,1,...,L—1 (2.10)
Op—l,p

where Z, ..., Z;_ are iid N(0,I,).
We introduce notations for the intermediate Jacobian products:

Jl=J(xj 1) J(xp_1), for 0 <k <j<LJ*=Jf fork>0, (2.11)

and J° = I,,. The following corollary follows from Theorem 2.

Corollary 2 Assume that model (1.1) satisfies the conditions of Theorem 2,

we have as h — 0,nh? — oo,

L-1
(nhPT2) 124 jl — gt — Z JE o B(xg, h)J* — O(h*)}
k=0

16



L—1
R /3 WL (2.12)
k=0
with the convention J° = JLLJrl = Ip.
To derive asymptotic results for the LLE estimators based on Corol-

lary 2, we need the theory of singular values from a random matrix, which

is considered in the next subsection.

2.3 Singular values from a random matrix

Consider the following setup: assume that an asymmetric matrix 7T), satisfies
AT, — A,) S W, (2.13)

where ¢, — o0, and A, is a sequence of matrices tending to a nonrandom
matrix A, i.e.

A, =A+B,,B, %0, (2.14)

and W is a random matrix. We will denote the vector of singular values in
decreasing order of a matrix G by §(G) = (01(G), ..., d,(G))T. Our purpose

is to study the asymptotic behavior of

Zn = 8(T) — 5(A). (2.15)

By the singular value decomposition,
A=UAVT, where A = diag{6,(4),...,0,.(A),0,...,0},

where §, > 0, is the rank of A, and U = (Uy,---,U,),V = (V1,---,V}) are
orthogonal matrices. Let dgv(G) denote the column vector consisting of the

diagonal elements of a square matrix G, and so for any G,
dgv(UTGV) = (U] GV, -+, Uy GV,)". (2.16)
We have the following theorem.

17



Theorem 3 Under (2.13) and (2.1}), if A is full rank and all the singular
values of A have multiplicity one (otherwise consider the subvector consisting

of those simple positive singular values), we have

e {8(T,) = 5(4) = dgv(UTBuV) = o(Ba) } % dgv(UTWV).  (2.17)

If A is degenerate and 6, = 0 has multiplicity one and B, = op(cﬁlﬂ), the

following result holds
d
e 2 16p(Ta)] 5 WV, l.

PROOF. The first part of the theorem follows from the fact that a singular
value from a matrix is differentiable if of multiplicity one. The second part of
the theorem concerning the zero singular value follows directly from Theorem

4.2 of Eaton and Tyler (1994). O

The special case B, = 0 is also given in Eaton and Tyler (1994). One
consequence of Theorem 3 is that, if W is jointly normal, the limiting distri-
bution of the singular values which have positive and simple limits is jointly

normal.

2.4 Asymptotic theory for estimating local Lyapunov expo-
nents
We denote the singular value decomposition of T by
Tt =U(L)diag{é1 (L), -, 5,(L)}V" (L),
where U(L),V (L) are orthogonal, and whose columns are denoted by
U(L) = (Ui(L), -+, Up(L)), V(L) = (Vi(L), - -, Vp(L))-

Recall that Jf , = J(xz-1) ... J(xp41) for k =0,...,L — 1. We denote its

columns by

JIcL+2 = (JkL+2(1)a B JIcL+2(P))- (2.18)
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The following lemma, is obtained.

Lemma 1 Assuming that all the singular values of J" have multiplicity one

and positive, under conditions of Corollary 2, we have

d1(L) 51(L)
(nhp+2)1/2 B .
op(L) 5,(L)
p2 Lol {UL (L)L, o ()T (k) JFVI(L)}
- bpe : —o(h?) § 4 N(0, %),
k=0

02 L-1
=g f(:lck){UZ’ (L) TPV () (TN TV(L)

k=0

2 L—-1

for 1 <i<p,1<j<p.

PROOF: From Corollary 2 and Theorem 3, we have
d1(L) d1(L)
(nh# )12 : - :
0p(L) dp(L)
k=0 U (L) Jfsp B (%, h) J* V(L)
— _ 0(h2)
k=0 Uy (DT B (xi, 1) J*V (L)
ko UT (D) T o Wi J*Va (L)
d .

—

S0 Uy (DT, WeFVy(L)
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From the definition of B(x,h), we have that

h2
JE o B(xg, h) = 3,—WJ£+2(1)b(xk) + o(h?),

and
Ul (L) JE o B(xp, ) JRVi(L) =

——{UT (L) T (D) HO (x4) JFVA(L)}, for 1 < i < p.

)

Similarly, from the definition of Wy in (2.10), we have

072 L T
Jh W = — V2L ()77,
k2 o/ T Er2
and
0472
Ul (L) Tl o Wi J*Vi(L) = m{UE(L)JI£+2(1)}{Zf‘]k‘/i(L)}a

for1 <i:<p,1<j5<L.

So we have proved that

01(L) 01(L)
(k)12 |-
bp(L) 0p(L)
b2 Lo {UT (L) T () HY (xi) T*VA(L)}
o 2 : —o(h?)

{Up (D) T2 (D) HOT (1) JH V(L) }

skl {(UL(L)JE () Z] TFVi (L)}
d O+/72 :
N s kgﬂ (e : , (2.19)

{Uy (L) T (WHZT TFV (L)}
from which the theorem follows easily. O

Applying the “delta method” to log z and Lemma 1, we obtain our main

theorem.
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Theorem 4 Under conditions of Lemma 1, we have

(L) A (L)
(nhp+2)1/2 o :
S\p(L) (L)
. 67 (L) S {UT (L) T (1) " (xi) TV (L)}
_6M2L : _O(hZ)
67 (L) S U (L) T (1) " (xk) TV, (L)}
4 N(0,55),
where ¥ = (O'iLj),
ob = T SN L gy aneisv)?
T TR oy foe e A
L _ a2
70T T225,(1)5;(L)
L—1
S @{U,T (L)JE (W HUT (L) JE () HVT (L) (J5)T TV (D)},
k=0

for1<i<p,1<5<p.

2.5 Confidence intervals

Theorem 4 serves as a basis for constructing confidence intervals for local
Lyapunov exponents. One immediate difficulty is to deal with bias in the
estimators. Theoretically, bias may be avoided by using a smaller bandwidth,
though in practice it is hard to decide when a bandwidth is small enough.
Furthermore, for the asymptotically optimal bandwidth, the bias term is not
negligible. To deal with this issue, the following bias-correction method is

proposed. The following corollary follows directly from Theorem 4.
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Corollary 3 Under conditions of Theorem 4, and given consistent estima-
tors BZ and &%, we have as h — 0,nh? — oo,

[TXd
h2

oy
mﬂz (h%)) = N(0, 1).

(nh? )2 (657 (A = i —

Based on Corollary 3, the pointwise “plug-in” confidence intervals (CIs) can

be constructed for A\;(L). Let

R o hZ .
I, = (\—(nhP*?) 1/2U£Za/2 + —6/1,2Lﬁi’
N 2\—1/2~L h’2 2
Ai + (nhPt2)"Y 0iiZaj2 + GMQLﬁi)’ (2.20)

where Z,/; is the (1 — a/2)th percentile of the standard normal. If the
remainder term of order o(h?) in the asymptotic bias is negligible, in the
sense that (nh?2)1/2h? is bounded, i.e. h < ¢;n~/®+6) for some constant

c1, Corollary 3 implies that
P(I,) = 1—a,as h — 0,nh? — oo,nhP™® = O(1). (2.21)

Simultaneous confidence intervals for several A;(L)’s can also be constructed

using e.g. the Bonferroni method.

In the examples in Section 3, the local cubic fit with bandwidth hy4 is used
for estimating the bias term b(x;),k = 1,2,..., L. Consistent estimators of
U(L) and V(L) are given by the orthogonal matrices U (L) and V(L) derived
from the singular value decomposition of JL. Thus, a consistent estimator

for the asymptotic bias of \; is given by 6[;&,@, where

L—1
B2 57HL) AU (L) JE () () JF V(L)Y (2.22)
k=0

for any 1 <17 <p.

The kernel density estimator is used, i.e. at a given point x,

. 1 & X —
foo = o LK (=),
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For variance estimation, we use the local variance estimator

~ " Xz — X " Xz — X ~
v(x) = ;EQK(T)/;K( i ) — (),

where vy is the Nadaraya-Watson estimator given by

myw (x) = ZYiK(Xih; x)/ZK(Xih;X)-

=1 =1

It is easy to see that the variance estimator is always nonnegative and is
consistent under general conditions. Thus, a consistent estimator for the

asymptotic variance for Ai s given by

L-1 .
o= Gy & e ORI @)
Though several bandwidths need to be specified in this bias-adjusting
procedure, our limited experience suggests that as a rule of thumb, one may
choose ho = hg = h, and hy = 1.5h. Typically a bandwidth can be chosen
by the trial and error method. For a given choice of h the asymptotic bias
and variance are computed to characterize the estimation error and also to

fine tune for a better bandwidth choice.

3 Applications

In this section, we consider applications using the LLE methodology de-
veloped in this paper. A large class of multivariate kernels is given by
Kop(x) =c 11— HxHa)ﬂl{HxHSl} for different choices of parameters « and g
where c is the normalizing constant. In these analyses, the tricube kernel K33
is used for local quadratic fitting and biweight kernel Ko3 is used for density
and variance estimation. To explore the dynamics change in phase space

for a given time series data, we will evaluate A\;(L) along some sequence of
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embedded state vectors, that is, let xq,...,x71 taking on X, ..., X111

where X; = (xj,(p,l), . ,xj)T as 1 goes through selected time points.

Example 2. The data considered are the bidaily population sizes of
blowflies obtained by entomologist A. J. Nicholson in 1957 in his study of
population dynamics. This data set has been analyzed by a number of
authors using different nonlinear time series models and nonlinearity testing
procedures. Tsay (1988) gave an excellent review on analyses of this data
set and related references. Due to the concern for stationarity, only the first
206 observations are used in this study. We choose p = 2 since nonlinearity
in most fitted models involves only the first two lags, though there could
be potential bias if additional lags prove to be significant. We also choose
h = 4500,ho = hg = h and hy = 6000. Two-step LLEs are computed
at all possible points in the reconstructed state space. Figure la shows
the time series of the original data and first LLEs. Figure 1b shows the
computed confidence intervals for first LLEs, which are constructed using
the method discussed in Section 2.5. Figure lc shows the distribution of
first LLEs in the phase space. Most of the first LLE estimates are positive,
indicating that there is sensitive dependence on initial values in most part
of the series and the system is likely nonlinear. Furthermore, strongest
unstabilities occur at the onsets of these limit cycles when there are big jumps
in blowfly population caused by the unusual amount of emergence. This is
consistent with the finding of Tsay (1986) that large residuals persistently

appear in these time points.

To assess the overall behavior of the limit cycles we have also computed
8-step LLEs based on the same parameters. This result is shown in Figure 2
in similar format as in Figure 1. The implications of Figure 2 are similar to
those of Figure 1 in that the rising part of the growth cycle has most unpre-
dictability while the negative first LLEs indicate that there are predictability
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in other parts of the series during this longer time horizon, consistent with

the limit cycle nature of this data set.

This example shows that the LLEs are rather effective in detecting the
asymmetry or nonlinearity of limit cycles. Furthermore, it may indicate

which part of a time series is predictable and which part is unpredictable.

Example 3. In this example, we apply the methodology to the daily
maximum temperature series from 1928 to 1987 at Charleston, SC. To re-
move seasonal climatology, we consider modelling the temperature series &;

by

& = alt)+ 2tz (3.1)
bm 27it . 2mit
alt) = ap+ ;(au cos(%) + a9; sm(%)),
D 2mjt 2mjt
t — . . Q)
v(t) j;(co + ¢15 cos( 368 ) + 25 sin( 365 ),

where pp,, p, are the order of harmonics fitted. For this data set, we choose
pm = 7 and fit «(t) separately to the two 30-year periods 1928-1957 and
1958-1987. v(t) with p, = 3 is fitted to the empirical annual mean of (§; —
&(t))?. The standardized time series {z; = (& — &(t))/0'/?(t)} appears to
be stationary. The time series plot and autocorrelation plots for both z; and

x? are shown in Figure 3.

Two-day LLEs are computed based on {z;} for year 1987. We choose
p = 2 which appears to be adequate and use ho = hy = h = 2.5 and hy = 3.
Figure 4a shows the time series plot of estimates of A;(2) on different days
along with x; for year 1987. Figure 4b shows the 95% pointwise confidence
intervals along with estimated values of the first LLEs. All LLE estimates are
negative, indicating that the system is stable and errors in initial value have
little effect on the multi-period predictions. On the other hand, the LLEs are

able to distinguish some nonlinear structural change in the dynamics. For
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example, based on Figure 4a and particularly the phase plot in Figure 4c,

we define three regions in the phase space

Rt = {z_1 <0,z < —1};
R = {z;1 <0,z >0}

R = {z;-1 >0,—00 < < 00}
It appears that first LLEs are largest on R while being smallest on R°.

Since the LLEs are negative, larger LLE on R™ implies more predictabil-
ity since the local autoregression coefficients are further away from zero while
smaller LLE on R implies less predictability since the local AR coefficients
are closer to zero. Indeed, this is confirmed by fitting separate autoregressive
models for the three regions R, R, R to data {(xs,z; 1), 212} Including
an intercept, the fitted coefficients are given in Table 1. It appears that the
model in region R™ has local AR coefficients furtherest away from zero and
hence has the smallest predictive variance while the model in R? has local

AR coeflicients closest to zero and hence the largest predictive variance.

AR coefficients  intercept | residual variance
RT:]0.3848, -0.0369, 0.0531 0.7532
R°: | 0.1038, 0.1248,  0.1070 1.0234
R: | 0.3024, 0.0444, -0.0360 0.9745

Table 1: Fitted parameters for the three autoregressions.

We have also computed 10-day LLEs (not shown) using the same pa-
rameters. The estimates of first 10-day LLEs are all less than —0.5. This
implies that the 10-step Jacobian products are close to zero at all time points
and the 10-step dynamical map is close to a constant. Thus, randomness

dominates for the longer time period in this series.
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In conclusion, we find some evidence of nonlinearity in the short-term
behavior of this standardized temperature series, while there is little dynamic
structure beyond 10 days. It is not surprising that Sahay and Sreenivasan
(1996) failed to find any evidence of nonlinearity in other daily temperature
data by using the dimension estimation and other global nonlinear dynamics
techniques. This example demonstrates the advantage of the LLE method in
studying the short-term behavior of a system in local state space over tradi-
tional global dynamical methods which consistently fail to find nonlinearity

globally in climate data sets.

With this still limited experience, we think that the local Lyapunov expo-
nents method is a very promising approach for nonlinear time series analysis
and is a strong alternative of global nonlinear dynamics techniques for quan-
tifying nonlinearity. The variability of LLEs over the the state space provide
a general test for nonlinearity and is a useful diagnostic tool for exploring

the change of predictability in empirical time series.

4 Concluding remarks

In this paper, we develop an approach for studying the finite-time behavior
of a nonlinear system in local state space via the local Lyapunov expo-
nents. This promising approach appears to be able to detect nonlinearity in
time series when global dynamical techniques such as the global Lyapunov
exponents and dimension estimation fail. A rigorous statistical theory for
estimating local Lyapunov exponents in multidimensional systems is devel-
oped. Explicit expressions for the asymptotic bias and variance are also
given. These results are useful for constructing confidence intervals and in

the choice of bandwidth for LLE estimation.
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5 IStEEE=832

Figure 1: 2-step LLE calculation for the blowfly population data in Example
2. a. Solid line denotes the original data and the dots denote the data
points; the dotted line denotes corresponding estimates of first LLE from the
same bi-day. The numbers on the right axis denote the scale of the original
data. b. 95% pointwise confidence intervals (solid line: raw estimates; long-
dashed line: bias-adjusted estimates; dotted lines: confidence bounds). c.
Distribution of LLE in the phase space.
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Figure 2: Same as in Figure 1 except for 8-step LLE calculation.
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Figure 3: Stationarity test of Charleston temperature anomalies in 1928-1987
in Example 3. a. Standardized series x;. b. Phase plot. c. Autocorrelation
function plot for z;. d. Autocorrelation function plot for x?. The dotted

lines denote 95% confidence intervals under the white noise assumption.
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Figure 4: LLE calculations for the standardized temperature series z; in
Figure 3. The numbers on the right axis denote the scale of z;. a. Solid
lines denote z; while dotted lines denote A;(2). b. 95% confidence intervals
(solid line: raw estimates; long-dashed line: bias-adjusted estimates; dotted

lines: confidence bounds). c. Distribution of first LLE in the phase space.
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