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Theories of nonparametric regression are usually based on the assumption that
the design density exists. However, in some applications such as those involving
high-dimensional or chaotic time series data, the design measure may be singular
and may be likely to have a fractal (nonintegral) dimension. In this paper, the pop-
ular Nadaraya-Watson estimator is studied under the general setup that the con-
tinuity of the design measure is governed by the local or pointwise dimension. It
will be shown in the iid setup that the nonparametric regression estimator achieves
a convergence rate which is dependent only on the pointwise dimension. The case
of time series data is also studied. For the latter case, a new mixing condition is
introduced, and an assumption of marginal or joint density is completely avoided.
Three examples, a fractal regression and two applications for predicting chaotic
time series, are used to illustrate the implications of the obtained results. © 1999
Academic Press
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1. INTRODUCTION

We consider the following setup: we have given random vectors
{(X;, Y;),i=1,..,n}, where X;eR” consists of explanatory or design
variables and Y, € R! is the response variable. Different dependence condi-
tions on the vector sequence {(X;, ¥;)} can be imposed. For the moment
we assume that {(X;, ¥;)} has identical marginal distribution and {X;} has
marginal probability measure p. Our interest is estimation of the regression
function m(x)=E(Y | X=x) for x in the domain of interest in R”. Alter-

natively, we write
Yi=m(X,)+vA(X)e,, i=1,2, .., (1.1)

where v(x)=Var(Y|X=x) is the variance function and {¢;} is a noise
sequence with zero mean and unit variance.

Various nonparametric estimators of m have been proposed in the
literature, among which the simplest one may be the Nadaraya—Watson
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(N-W) regression estimator (Nadaraya, 1964; Watson, 1964). This kernel
regression estimator is defined by, for a given bandwidth /~ and a kernel
function K at any given point x € ‘R?,

" X,—x
n%(x)z’gb YiKg/._hX >
y (25

i=1

(12)

Nonparametric regression estimators have been widely studied. Most
studies make the assumption that p has a density f with respect to the
Lebesgue measure; see, e.g., Stone (1980). This has strong implications
about the structure of data clouds. For example, under this assumption
and the assumption that f is continuous, at any location in the support of
p the data points contained in a neighborhood of size r when r is small
is proportional to nr” apart from a constant. This imposes certain
homogeneity in the distribution of design points. Consequently, the curse of
dimensionality arises in the sense that there are not enough data points in
any given local neighborhood, a severe problem in the analysis of multi-
variate data (Friedman and Stuetzle, 1981; Huber, 1985). On the other
hand, the stylized fact of the “cluster” tendency in multivariate data clouds
may suggest a different model—the singular probability model based on a
fractal or self-similar measure (Mandelbrot, 1982). In the latter framework,
the issue of the curse of dimensionality is alleviated, as will be demon-
strated in this study. (The fractal model arises naturally in the chaotic time
series context which will be treated later.) Another approach to dimension
reduction is the detection of the nonlinear relationships among high-
dimensional variables, a situation termed nonlinear confounding by Li
(1997).

Interesting problems are being raised in the area of chaotic systems, as
reflected, for example, in the special Journal of the Royal Statistical Society,
Series B, issue on chaos edited by Tong and Smith (1992). As a simple
illustration, consider the logistic system x;=4x;_;(1 —x;_,;). The time
series from this simple system is known to appear random and is hard to
distinguish from a stochastic sequence. In general, the study of time series
{x,,t=1,2,.. n} from observing a multi-dimensional dynamical system is
usually through the technique of state space reconstruction. By appealing to
Takens’ theorem, there exist suitable choices of embedding dimension ¢ and
time delay t such that valuable information about the original system can
be extracted from the reconstructed state vectors {X,=(x; ., .., X;,_,),
(qgr+1)<i<(n+7)}. In particular, it is of interest to learn the dynamics
in the reconstructed space, which reduces to estimating the function m in
the system x;,=m(x;_,, .., X;_,,). In practice, this theory is of limited use
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because there may be some measurement error associated with x,, and ¢
and 7 are in general hard to decide. The noisy model (1.1) provides a more
general framework with Y;=x;, X;=(x,_, .., x;_,). The error term in
this context may represent the consequence of embedding or measurement
errors. Precise dependence conditions in the time series context will be
discussed in Section 4. For the moment we also note that model (1.1) is
also closely related to nonlinear prediction. For example, if one is inter-
ested in an L-step-ahead forecasting procedure based on values of past p
lags, one may apply a nonparametric regression method to the historical
data {Y,=x,, 7, X;=(x;, .. X;_,,1), p<i<n—L} to obtain a best
pointwise (conditional mean) predictor in the sense of the mean squared
error.

Farmer and Sidorowich (1988) gave a nice survey on various nonlinear
prediction procedures which can be regarded as variants of nonparametric
regression methods. However, there is a lack of a theoretical basis for this
type of application, which stimulated our interest in a new statistical
theory. For example, it is well known from chaotic dynamical system
theory that the state vectors X; from this kind of time series usually do not
possess a density. Coming back to the logistic example, it is obvious that
X; lies in a one-dimensional manifold for any ¢>2 and 7>1. More
generally, the invariant measure corresponding to state vectors { X;} based
on observations of a chaotic system typically exhibits some self-similar prop-
erty and has a fractal (nonintegral) dimension (Ruelle, 1989). A similar
problem also arises in noisy chaotic systems (cf. Subsection 4.1 or Smith,
1992).

In summary, concerning the above situations the nonparametric estima-
tion theory based on a density assumption does not apply. It is thus
desirable to have a general theory which does not depend on this condition
and which hopefully includes the singular design measure as a special case.
This goal is achieved in this paper by introducing a general setup for design
measurement, which is based on the theory of fractal geometry (e.g.,
Falconer, 1990; Cutler, 1993). In this setup (cf. Subsection 2.2), the design
measure p is assumed to have a pointwise dimension at the given point of
interest. This covers the usual regular case as well as the cases mentioned
above.

Intuitively, the convergence rate of nonparametric estimators should
depend only on the actual dimension of the design measure, and not on the
number of explanatory variables, since it is the former that controls the
number of data points contained in a local neighborhood. Indeed, a conjec-
ture of Farmer and Sidorowich (1988) says that the convergence rate of
estimating a chaotic map depends only on the fractal dimension of its
invariant measure. In Section 3 the N-W estimator will be extended to the
general case by showing that, if the design measure p has a local or
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pointwise dimension d=d(x)<p, that is, roughly the number of data
points contained in the neighborhood of size r around x scales according
to nr?, the N-W estimator attains the pointwise convergence rate O(h*) +
0,((nh®)~'?) which is faster than that when p has a density, as given e.g.
in Stone (1980). An example of fractal regression is used to illustrate this
result (cf. Subsection 5.1).

The theory is also extended to time series data in Section 4 under general
conditions. Thus, Farmer and Sidorowich’s enlightening hypothesis is par-
tially confirmed in the N-W estimator. The result in the time series context
has interesting implications for predicting chaotic time series. These are
illustrated through two examples in Subsections 5.2 and 5.3. Further dis-
cussion on other estimators is given in Section 6.

2. A GENERAL SETUP

2.1. Smoothness Conditions

For a given distance norm ||, say the Euclidean norm in R?, let
U= U, denote an open set containing x. The class of continuous functions
on U is denoted by C°U). The following smoothness conditions are
routinely imposed.

(A) There exists a number 0 <s<1 such that m is Lipschitz con-
tinuous with exponent s. That is, there exists a constant y,,> 0, such that
Im(x1) —m(x3)| <y, [IX; — X2 || for any x;, x, € U.

(B) The variance function v is continuous in U, ie., ve C°(U).

For simplicity, we also impose the following condition on the kernel
function.

(C) K is a spherically symmetric density function with bounded sup-
port. In other words, there exists a univariate function k with finite
support, k(0)>0, k(x)=0 for x> 1, such that K(x)==xk(|x]). It is also
imposed that k satisfies the Lipschitz condition; there exists y,, 0 <a <1,
such that |k(x) —k(y)| <yi|x— y|* for all x, ye[0,1].

Remark 1. Assumption (A) can be relaxed to some extent. As one
referee points out, our theory still holds if the restriction s <1 is removed.
We choose to use the given setup since it is more natural (see Remark 2).
It is less stringent and is often assumed in the dynamical system literature.

Remark 2. If stronger smoothness on m is available such as m being
differentiable, one may prefer to apply the local linear and other local poly-
nomial-type estimators, which presumably further reduce the effect of bias.
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However, one should be cautious in applying this type of higher-order
polynomial estimator in small-to-moderate sample cases when the variance
effect may dominate. See Fan and Gijbels (1998) for more details on local
polynomial modeling.

Stone (1980) showed that the N-W estimator attains the optimal rate of
convergence in some minimax sense under some additional technical
assumptions, including that p is absolutely continuous (a.c.). To remove
the density assumption, we will discuss in the next subsection a general
setup on the design measure which is used throughout this paper.

2.2. A New Setup for Design Measure

A general model for design measure can be given which will include the
usual case when p has a joint density, the nonlinear confounding case, and
the fractal case when p has a fractal dimension. The main tool is based on
the notion of a pointwise dimension from fractal geometry (e.g. Cutler,
1993).

The pointwise dimension defines the local continuity behavior of a
measure. Given a point x in R?, let B,(x) = {u: [[u—x| <r} denote the ball
of radius r centered at x. The following assumption on the design measure
is imposed.

(D) The small-ball probability has an exact power-law behavior.
That is,

p(B(r))=cr¢, as r—0, (2.1)
where ¢=c¢(x)>0 is some constant. We will write simply p(B,(r))~ cré.
The number d=d(x) is the (local) pointwise dimension of p at x.
Obviously d < p.

The following remarks are in order.

Remark 3. If p has a continuous density f, (2.1) holds at any point
in {x: f(x)>0} with d=p and c¢(x)=f(x)v, as r—0 (where v,=
n?2IT((p +2)/2)).

Remark 4. 1If p has a continuous density f on a d,dimensional
manifold, (2.1) holds at any point in the support of f with d =d,. This case
contains the situation of nonlinear confounding discussed in Li (1997).

Remark 5. A general definition of pointwise dimension is given by

B B
lim sup %< 0, lim inf L,;(r))> 0, (2.2)
r

r—0 r—0
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where d=d(x) is the pointwise dimension. (An apparently more general
definition is also given in Cutler, 1993, Sect. 3.2, Definition 3.2.1.) We will
write this as p(B(r)) ~r.

In particular, this covers the lacunar phenomenon
p(B(r)=rH(r), for r<§, (2.3)
where H(r) is bounded but does not tend to any limit as r — 0. See example 1.

Note that for a singular self-similar measure, (2.1) or (2.2) holds only for
p-almost all x. On the other hand, the support of p may be contained in
a set of zero Lebesgue measure.

There are occasions when the fractal pointwise dimension d =d(x) may
depend on the position of x in the state space, in which case the fractal set
is said to be inhomogeneous and the measure is said to have the so-called
multifractal property (cf. Ruelle, 1989). However, for many chaotic systems
it can be shown that the pointwise dimension is a constant with probability
one. Naturally, work on dimension estimation has focused on estimating
this common value based on limited data, as emphasized in Smith (1992)
and Cutler (1993). Certainly, there are other definitions of dimension which
may assign different values in some situations, and they can address other
aspects of a measure. For theoretical discussions on local regression estima-
tion, we think that the local pointwise dimension is the most natural one
to consider and so will be the only focus in this paper.

2.3. A Lemma

Condition (D) has important implications for a general kernel function
as given by the following lemma.

Lemma 2.1.  Assumptions (C) and (D) imply that

EK<(X_X)>:hdc(x)dawk(y)yd—ldy)(l to(l)), as h—0,
! ’ (24)

where we assume k() y*~1e LY(0, ).

The proof is given in Subsection 1 of the Appendix. The lemma develops
the scaling property of a kernel function based only on the specification of
probabilities on spherically symmetric sets.

Remark 6. An analogous generalization of the Lemma 1-based Remark 2
is also available. Actually, by the assumption (C), there exist positive
constants L,, L,, a satisfying

Lilca <k(x) <Lylccyy-



FRACTAL REGRESSION 183

It follows that

L (1X=x]
h L,p(B
lim sup K —————<lim sup M< 0,
r—0 r r—0 r
and
IX—X|>
e
h ., p(B
lim inf ———"" /S jim jnf CE2BA@))
r—0 r ar—0 (ar)

Thus, EK((X,)/h) ~r¢.
The following corollary can be established based on Lemma 1.
COROLLARY 1. Under the setup of Lemma 1, the generalization

Var { o) K (T )| =deg?o ([ 120057 v ) (1 +o(1),

(2.5)

as h— 0, holds for any ge C°(U), where we assume k*(y) y*='e L'(0, ).

From now on, we will modify the condition (C) to include the moment
condition k(y) y?~1e LY(0, o), kX(y)y¢~te L0, w0).

3. INDEPENDENT OBSERVATIONS

In this section, the case of independent observations is considered. That
is, we assume the following:
(E) (X;, Y;) are iid random vectors. Furthermore, there exists some
constant ¢ >0 such that E |&,|>*° < o0.
The following theorem on the N-W estimator is established. We use <=
to denote convergence in distribution.

THEOREM 3.1.  Under assumptions (A)—(E), it follows that there exists a
sequence of constants b, = O(h*) such that, as h— 0, nh® — oo,

Jnh? {i(x) —m(x) —b,} =5 N(0, §2),
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where 5> =v(x) [ k*(y) y*~ " dy/{de([5 k(y) y~ ' dy)*}. By choosing h=
O(n="*29) the achieved pointwise convergence rate is O,(n~*“+29),

The proof is given in Subsection 2 of the Appendix. Theorem 1 com-
plements Stone (1980) by proving a convergence rate for the N-W regres-
sion estimator which does not depend on the assumption of design density.
The conjecture of Farmer and Sidorowich given in the Introduction is
partially answered under the regression setup. An example is given in
Subsection 5.1 to illustrate the implications of this theorem.

4. TIME SERIES DATA

Section 3 has discussed the regression problem with fractal design. This
section will consider the same general setup except for time series data for
which dependence in observations needs to be taken into account. General
conditions including a new mixing condition are introduced in Subsec-
tion 4.2. This setup may also include the situation of when the time series
data actually come from a noisy chaotic system as discussed in the next
section.

4.1. Fractality in Systems with Little Noise

Simple systems with a few degrees of freedom rarely exist in isolation, so
there is increasing interest in investigating the behavior of chaotic systems
with a little noise; see e.g. Kapitaniak (1990). Since time series data are
often subject to dynamical noise, nonlinear systems which are stable under
perturbations of dynamic noises are of particular interest; cf. Tong and
Smith (1992) and Chan and Tong (1994).

The model which has often been entertained for time series data,

Xy =M(X;_ 1, ey Xi_p) + V(X e Xi_p) & (4.1)

has been considered by a number of authors, including Chan and Tong
(1994) and An and Huang (1996). It is a special case of (1.1) with Y,=x,,
Xi=(x_15 o0 X )"

In order to discuss the theory of noisy chaos, let us assume v = ¢? for the
moment. (This is not necessary for our latter theory.) In the asymptotic
approximations which follow there is an implicit assumption that r or 4 is
of about the same order or of larger magnitude than the noise amplitude
¢ (and both are small). Heuristically, we would expect that for r >> g the
invariant measure would behave as if noise were not present. For r << g,
the noise component is dominant and one would expect the invariant
measure to scale according to the embedding dimension ¢. In the inter-
mediate range, depending on the underlying dynamics as well as noise,



FRACTAL REGRESSION 185

there may exist a critical value r, such that for r <r, the invariant measure
behaves according to d while for r>r, the invariant measure scales with
the embedding dimension ¢. Smith (1992) gave further discussions includ-
ing analyses of a number of simulated and real data sets. Note that the
embedding dimension ¢ may be different from a true model dimension p,
which may be a consequence of some estimation on selection process.

In kernel regression problems, it is necessary that the bandwidth must be
chosen large enough to contain enough data points locally, and for most
common multivariate data sets it is fairly large. This suggests that the
chosen bandwidth is often in the range where the fractal behavior of the
invariant measure takes effect. Thus the fractal setup for design measure-
ment in Subsection 2.2 may be pertinent for most practical purposes. This
seems to be the case for Examples 2 and 3 considered in Section 5.

4.2. Dependence Condition

We need to impose some conditions on the dependence structure. The
following assumption on {¢;} is used for simplicity.

(F) There exists a nondecreasing sequence of o-fields { %} such that
X, e Z_\, ¢, € Z for all i>1, and the sequence {¢;, 7} is a martingale dif-
ference sat1sfy1ng

Ele;| i1} =0,  E{e]|Fi_1}=1 (4.2)
Further, there exists some 0 >0 such that

sup E{|e;|*T° | Z_,} < 0.
i=1

Assumption (4.2) is natural in the autoregressive model (4.1), since it is
equivalent to the assumption that E{x;|x;_,x;,_,, ..} and E{x?|x,_,,
X, 5, ..} are functions of variables x; _,, ..., x,_, only for some integer p or
that the underlying model is of finite order.

Since the design density is not assumed, and thus the joint densities
between any two vectors involving predictors or responses at different
times do not exist, the assumptions that are usually imposed on joint
densities in the literature cannot be used. Consequently, we introduce a
more general mixing condition next.

Let P denote the joint probability measure of the sequence {X,} so
that marginally P(X; € A)=p(A4). Also let u denote the dy-dimensional
Hausdorff measure where dyy > d(x). For example, dy can be the Hausdorff
dimension for the support of p. (See Falconer, 1990, Chap. 2, for a defini-

tion.) If there exists a constant d,, such that p(d(x)=d,)=1 (d, is the
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(global) pointwise dimension), naturally we require dy=>d,. More
generally, for estimation at more than one location we may require
dy = sup, d(x), where x goes over the point of interest in the support of p.
We define a generalized f,-mixing condition in the following way.

(G) The sequence {X;} is strictly stationary and there exists a
sequence of constants f, such that

n

Y. IP(X;,1 €4, X, € B)— P(A) P(B)| < B,u(4) u(B), (43)

J
j=1

for all Borel sets 4, B in R”, and f§,, < M for some constant M.

If the joint density of X, X;,, exists, denoted by f;(-,-), and the
marginal density is denoted by f(-), one can set

Bo= sup 3 1fi(uv)—f(w) f(v)]

u,veﬂipjzl

Assumption (G) is similar to the requirement that the a-mixing rate (e.g.,
Bradley, 1986) be summable, except that f,-mixing imposes an additional
constraint on the sets of small probability. In the context of estimating a
deterministic system (i.e., v=0), Bosq and Guégan (1995) used a condition
similar to (G) but with x4 taken to be the Lebesgue measure. Their condi-
tion may be too restrictive considering that P may have support on a set
of Lebesgue measure zero. When {¢;} is an independent sequence, the
process {X,} is a Markov chain. An and Huang (1996) gave a number of
conditions which ensure the geometric ergodicity of a Markov chain, which
in turn implies a-mixing with a geometric rate.

4.3. Theorem

Asymptotic normality of the N-W estimator in the general setup is given
in the next theorem. The proof is given in Subsection 3 of the Appendix.

THEOREM 2. Under assumptions (A)—(D), (F), and (G), there exists a
sequence of constants b, = O(h*) such that, as h— 0, nh® — o,

Snh? {i(x) — m(x) —b,} =5 N(0, §2),

where 6% =v(x) [ k*(y) y? = dy/{pe(x)(|& k(y) y?~" dy)*}. Further, the
estimators at different points are jointly normal and asymptotically independent.

In the more realistic noisy situations, Theorem 2 answers the conjecture
of Farmer and Sidorowich affirmatively for the N-W-type estimator which
includes, in particular, the nearest-neighbor estimator with uniform weight.



FRACTAL REGRESSION 187

This result implies that the accuracy of estimating a strongly nonlinear
map using a nonparametric regression procedure does not necessarily
depend on the number of predictor variables, and if the actual dimension
of the measure of predictor variables is fixed and not large, the precision
of a nonlinear nonparametric prediction procedure can be very good no
matter how many predictor variables are included in the model. The
theoretical revelation is backed by numerical studies given in Section 5
(Examples 2 and 3).

Our results raise some interesting questions about bandwidth selection in
the singular design case. Intuitively, a smaller bandwidth should be used in
the singular design case, and in particular when the pointwise dimension is
small. Thus, it is useful to apply a dimension estimation method such as
that of Smith (1992) to get an idea of the fractalness of the design space.
A more formal data-based selection method for & may also be worth
investigating, as mentioned by a referee. For the latter, one approach may
be based on some assumption of smoothness of regression and plug-in or
substitution of estimated quantities so as to achieve a tradeoff between
asymptotic bias and variance. See, for example, Chapter 4 of Fan and
Gijbels (1995). A particular issue is the estimation of the variance function v.
Fan and Yao (1998) presented an estimation method which is efficient even
when m is estimated based on the same data set and they applied it to
some bandwidth selection methods. Their approach is likely applicable to
our general context as well. Another often-used approach of data-based
bandwidth selection is the cross-validation method, which does not require
any prior model assumption, and in particular does not require knowledge
of the pointwise dimension of the design measure.

This paper does not go into any details about bandwidth selection issues,
a likely topic for future investigation. For the examples which follow, we
simply try a range of different bandwidths and choose the one that works
best. For example, in Example 1 we choose /& which appears to give a good
fit or to minimize the prediction errors at the selected design points.

5. EXAMPLES

The following three examples illustrate the performance of the N-W
kernel predictor in singular design models. The first one considers the case
of a fractal regression, in which the regressors are self-similar random
variables. The next two examples deal with predicting noisy chaotic time
series, where we adopt the /-NN method instead of a global bandwidth.
Locally, the performance of the /-NN method is exactly the same as the
fixed bandwidth method discussed ecarlier. Globally, the /-NN method
allows different amounts of smoothing in different locations. This may be
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desirable when the design space is fairly inhomogeneous. For simplicity, we
use the uniform kernel in all examples.

5.1. ExampLE 1 (Fractal Regression). The Cantor-type distribution is
defined by the random variable

n(oa)=(a—1) } a7¢,
i=1
where a > 1 and &,’s are Bernoulli trials with probability of success 0.5. The
uniform measure corresponds to a=2. The famous middle-third Cantor
measure corresponds to a = 3. It has pointwise dimension d =log 2/log 3.
Feller (1971, Example 1.11(d)) discussed the case « =4. To calculate the
local dimension, we note that, at any point x on the Cantor-type set,

p(In(4) —x[<=47")=2""
and so for any 0 <r<1,
p(B.(r)=2""if4 "1 <r<4n,

and thus, by defining n=[ —logr/log4], the integer part, and H(r)=
(4"r) =12, (2.3) is satisfied. Defining G(log(r)) = H(r), it follows that G is a
periodic function with period log 4. The pointwise dimension is obviously
log 2/log 4 =0.5. In general, for any o> 2, the corresponding measure has
pointwise dimension d =log 2/log .

We define four independent random vectors of length 500: C,, C,, Cj,
and C,, each consisting of iid random samples from #(3), #(4), #(5), and
n(7), respectively.

Define four regression models by

Y, =cos(2nC;) + sin(2nC;, ) + 0.1N(0, I),

for i=1, 2, 3, 4, corresponding respectively to Cases 1-4. The design space
(C;, C;,,) for each case is plotted in Fig. 1. Due to self-similarity in the dis-
tribution of design points, details are hidden in most plots. To better
appreciate the difference in details of the four designs, we also present the
enlarged details inside the small squares, and these are shown in Fig. 2.

We compute fits using the kernel regression method for each data set at
selected data points from 100, 101, ..., 500. The respective bandwidth in
each case is:

Case 1. h=0.03
Case2. h=0.01
Case 3. h=0.005
Case4. h=0.001.
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FIG.1. Plots of design space for each case in Example 1.
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FIG. 3. Scatter plots of fitted values versus true values for each case in Example 1. The
solid lines denote r1 = y.

The scatter plots of fitted values versus true values are given in Fig. 3.
The bandwidth reflects some tuning to achieve a visually good fit (fitted
values and true values fall around the straight diagonal line, solid lines in
the figures) in each case.

The bandwidth choice is consistent with the implications of our theory.
Since the design points are more scattered in the first two cases than in the
last two cases, the bandwidth is smaller for the last two. In other words,
as the fractal dimension of the design space for each case, denoted using
the formula

d(cia Ci+1) zd(ci) +d(Ci+l)a

gets smaller as 7 increases, a smaller and smaller bandwidth can be
employed (hence there is a smaller bias effect). This example partly conveys
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the message that fractal design reduces the effect of dimensionality curse and
may be “good” for multivariate regression.

5.2. ExamMpPLE 2 (Simulations from a Noisy Hénon System). Consider
the noisy Hénon system x;=1—ax? | +bx,_,+0ge;, with parameters
a=14, b=0.3, and ¢ =0.03. The dynamical noises ¢; are assumed to be iid
with uniform distribution on [ —0, 5, 0.5]. A time series of length 3000 is
generated (after discarding the first 500 transient steps). The reconstructed
state vectors {X,=(x;,..,x,_,,;)'} from this time series are known to
have a fixed dimension around 1.25 for any p larger than 2 (e.g., Smith,
1992).

A prediction experiment is carried out as follows: the first 2000 values
are used as training data and /=15 is chosen. For various embedding
dimensions p =1, 2, ..., 8, one-step out-sample predictions are computed at
17 selected time steps between steps 2000 and 2100. Table 1 gives the
results of the prediction for the selected time steps. Note that the standard
deviation of the time series is about 0.73, so except for the two points 4 and

TABLE 1

Prediction Results for the Hénon Series

Predicted value
Time Time True
index step value p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8

1 2003 0.16 002 0.18 020 015 009 009 0.16 016
2 2004 0.70 1.14 069 069 068 068 065 058 059
3 2016 —-128 —128 —123 —127 —126 —125 —122 —122 —1.22
4 2017 —-090 —-092 —-092 —090 —090 —089 —0.86 —0.76 —0.70
5 2018 —0.50 0.07 —0.52 —-052 —0.56 —056 —0.52 —0.51 —0.28
6 2019 0.37 071 033 033 033 033 033 033 033
7 2044 1.15 088 114 114 113 110 110 110 1.06
8 2048 0.32 033 031 031 031 032 032 033 033
9 2059 1.08 098 107 108 108 1.05 1.05 101 101
10 2063 1.12 077 113 113 113 113 113 1.07 1.00
11 2064 —-08 —0.71 —088 —091 —0.89 —089 —0.89 —0.88 —0.87
12 2076 0.58 074 055 055 055 057 056 055 055
13 2077 0.69 057 072 071 071 071 067 0.69 0.64
14 2078 0.51 033 053 044 044 048 048 050 045
15 2086 1.10 1.07  1.09 108 1.08 108 108 1.08 101
16 2087 —-0.62 —0.67 —059 —0.60 —0.57 —0.57 —0.57 —0.55 —0.54
17 2089 —0.09 013 —-0.09 —0.11 —0.10 —0.12 —0.11 —0.11 —0.11

Note: The first column is the time index, the second column is the actual time steps at
which predictions are made, the third column is the true values. The fourth through the
eleventh columns are the one-step predicted values corresponding to the embedding
dimensions p =1, 2, ..., 8, respectively.
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5 which are at the boundary of the phase space the predicted values are
very close to the true values as p increases from 2 to 8. This example con-
firms Theorem 2 in that the accuracy of kernel prediction is independent of
the embedding dimension p when p is greater than the actual pointwise
dimension.

5.3. ExampLE 3 (Laboratory Data).

In this example, high-precision
measurements of a temperature time series from a fluid mechanics experi-
ment are used (cf. Read ef al., 1992, and Smith, 1992). The first 2000 obser-
vations are used for model fitting, while one-step out-sample predictions

TABLE II

Prediction Results for the Temperature Series

Prediction error

Starting  Starting

index time step p=1 p=2 p=3 p=4 p=5 p=6 p=T7 p=8
1 2000 0.149 0.136 0.151 0.167 0.190 0.200 0210 0.218

3 2040 0.059 0.055 0.062 0.071 0.074 0.075 0.075 0.077

5 2080 0.136  0.128 0.130  0.130 0.144 0.155 0.167 0.162

7 2120 0.039 0.038 0.041 0.040 0.047 0.050 0.051 0.049

9 2160 0.096 0.084 0.081 0.095 0.103 0.099 0.109 0.118

11 2200 0.043 0.039 0.034 0.036 0.038 0.039 0.038 0.044
13 2240 0251 0261 0279 0286 0286 0.285 0294 0.305
15 2280 0.067 0.054 0.067 0.068 0.071 0.076 0.077 0.082
17 2320 0.118 0.116 0.099 0.105 0.120 0.130 0.135 0.133
19 2360 0.044 0.033 0.032 0.031 0.032 0.033 0.038 0.042
21 2400 0.174 0.193 0.208 0217 0227 0.239 0234 0.239
23 2440 0.064 0.056 0.061 0.070 0.075 0.077 0.077 0.087
25 2480 0.096 0.104 0.105 0.110 0.119 0.133 0.133 0.136
27 2520 0.078 0.073 0.072 0.073 0.072 0.075 0.077 0.072
29 2560 0.047 0.051 0.045 0.053 0.057 0.057 0.057 0.064
31 2600 0.050 0.040 0.034 0.038 0.043 0.046 0.051 0.054
33 2640 0.139 0.137 0.129 0.122 0.121 0.142 0.143 0.142
35 2680 0.081 0.075 0.073 0.070 0.080 0.087 0.089 0.093
37 2720 0.104 0.090 0.096 0.111 0.106 0.103 0.096 0.102
39 2760 0.054 0.050 0.055 0.067 0.079 0.081 0.088 0.084
41 2800 0.139 0.121 0.126 0.109 0.120 0.143 0.138  0.123
43 2840 0.059 0.058 0.059 0.062 0.071 0.072 0.075 0.070
45 2880 0.107 0.085 0.105 0.104 0.115 0.119 0.126 0.127
47 2920 0.088 0.073 0.082 0.085 0.089 0.093 0.104 0.110
49 2960 0.113  0.094 0.091 0075 0.103 0.114 0.112 0.098
51 3000 0.088 0.081 0.088 0.097 0.100 0.101 0.093 0.092

Note: The first column is the starting time index, and the second column is the actual

starting time step from which one-step predictions are computed at the next 20 time steps. The
third through the ninth columns are the root mean squared prediction errors of 20 predicted
values corresponding to embedding dimensions p =1, 2, ..., 8, respectively.
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FIG. 4. Time series plot of the temperature series at steps 2000-3000. The circled points
denote the starting points at which predictions are computed.

for the time steps from 2000 through 3000 are calculated. We use the
/-nearest neighbor method with /=20. To assess the prediction error, the
square roots of the means of 20 squared prediction errors (root mse) starting
at every 20th step are computed. Table II shows the prediction errors at 26
selected time steps. Note that the standard deviation of this series is about
0.52. The prediction error is minimized for p =2 or p =3 most of the time

root mse
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L
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FIG. 5. Root mean squared prediction errors for p =2, 3, ..., § at selected time points. The

positions of these points are shown in Fig. 4.
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and it does not deteriorate much as p is increased from 2 to 8. This is con-
sistent with previous studies’ determination that this data set may have a
low fractal dimension (cf. Smith, 1992, or Read et al, 1992) and is anti-
cipated by Theorem 2. Interestingly, the prediction errors appear to depend
upon which part of the time series is predicted: for example, the smallest
prediction errors occur during the rise to the secondary peak within each
cycle (e.g., 4, 11, 19, 26, 34, 42) while the largest errors occur during the
fall to the longer tail (e.g., 13, 21, 36, 44). See Figs.4 and 5. This may
indicate that different predictability regimes exist in this time series. This is
in contrast to the Hénon example for which the prediction errors appear to
be relatively homogeneous.

6. CONCLUDING REMARKS

This paper develops a general theory for the popular Nadaraya—Watson
estimator which is applicable to the usual case as well as to the nonregular
situation in which the design measure has a fractal dimension. Our results
demonstrate the potential for applying the nonparametric regression
method to a high-dimensional model as long as the actual dimensionality
of the design measure is not large.

In principle, the results of this paper can be expected to be valid for
other nonparametric estimators such as higher-order polynomial fitting as
well. However, in order to obtain similar results for such estimators, an
extension of Lemma 1 to more general functions, and in particular to
moments of a spherically symmetric smooth function, is needed. Our
preliminary work indicates that additional conditions on the design
measurement beyond the specification of the probability of the locally
spherically symmetric sets may be necessary. This is an interesting open
problem involving the calculus of fractal measures (cf. Hutchinson, 1981).

In conclusion, we think that the issue of the curse of dimensionality may
be alleviated to some extent when the joint density assumption is not
attainable and the actual dimension of the probability measure is substan-
tially smaller than the number of variables. Our study reveals that singular
or fractal design is “good” for multivariate data. We also point out that
there is substantial scope for further investigation in high-dimensional and
fractal modelings.

APPENDIX: PROOFS

A.l. Proof of Lemma 1. Given any partition on [0, 1],

O=aqy<a,<a,< - <a,_<a,=1,
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and let
A=max (a,,,—a,).
i

Write

n—1
k(}’): Z k(ai) 1{a,»<y<al-+1}
i=0
n—1
+ 2 (k(y)—k(a) Viacyea,y & 1y)+1(p),

i=0

and by Assumption (C), the LHS of (2.4) is equal to

IX=xI\ . /1X—x| 1X—x|
Ek< ; >—EI< - >+EII< - > (A1)

The first term is equal to

n—1

Z k(ai){p(Bx(hai+ 1)) — p(Bx(hai))}

i=0

=ch? {nil k(a;)(a?, , — a?)}
i—0

=chdd{fw k(y) y*=! dy—l—od(l)},
0

where 0,4(1) — 0 as 4 - 0. Assumption (D) is used in the second equation.
On the other hand, the second term in (A.1) is bounded by

n—1
A Y, plha, < | X —x|| <ha;, ) =y Ap{| X —x[| <h}
i =0

i=

=7y, A%(x) I

Thus, (A.1) becomes

ch? {djw k(y)yd_ldy-l—od(l)}(l +o(1)) + O(A%h*)(1 +o(1))

0

o ch? {a’rok(y)ydl dy}

0

by taking 4 — 0. The proof of the lemma is complete. ||
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A.2. Proof of Theorem 1. Write
n X. — n X. —
z —m(x)) K <lhx> T V(X)) K<lhx> e,
m(x) —m(x)=1= - - +=— —
z < ) XK (5)
2 B,+R,. (A.2)

First, consider R, which we further write as (nh?)~! T,/S,, where

e £

<X"_X> e (A4)

i 1/2
It follows that ET, =0,

Var{T,} =nh“v(x) dc(x) <ro kz(y)yd_ldy> (1+o(1)).
0

Defining

2+0

i y2(x <Xih_ X> &

02 de(x) E a7 [ k744 ) (1 o),
0

we have
4, d\—5/2
(Var T )(2+a)/2: O((nh) )—0 (A.S)

as nh?— oo. This verifies the conditions of the central limit theorem for
sums of triangular arrays (Serfling, 1981, p. 32, Corollary 1.9.3).

Thus, we prove

1 [ee)
T,% N(O, 5%), where 5%2 v(x) de(x) J k() yd—l dy.

k" 0 (A.6)
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Since

S,=h""EK <X : h_ X> + 0, ((nh%)=12),

we have

where 0% =v(x) [ k*(y) y~ " dy/{de(x)(| k(y) y*~'dy)*}. That is, we
obtain

J/nh? {in(x) —m(x) — B,} <5 N(0, 62). (A7)

Next we show how to replace B, with a constant. Note that

E{m(X,) —m(x)} K(th_x>

<E ) -mo)| K (2
X,—x
<oE X —x K (25,
= e 197 ([ 3k 34 ) (1 +o(1)

Similarly,
Var {(M(Xl) _m(X)) K (leh_x>} — O(hd+2s)_

We obtain that

=nE{m(X,)—m(x)} K <X1h X) + 0, (nh*+9)

is of order nh?(O(h*) + O, (h*(nh®)~'7)).
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Defining

| Elntn) - K S

h

which is seen to be of order O(/4*), it can be shown that

B,=b,+h0,((nh")~"?), as h—0, nh’— oo,

Thus, replacing B, with the constant b, in (A.7) will not affect the
asymptotic normality. The theorem is thus proved. ||

A.3. Proof of Theorem?2. The following lemmas will be used.

LEMMA 2. We have that, for a dy-dimensional Hausdorff measure u,

IK(vvh_X> u(dw) ~ hn, as h—0.

The proof follows from Falconer (1990, Property 2.1, p.27) and the fact
that L1y <o <K() <Lyl <1y for some a, Ly, L, from assumptions
on K.

Lemma 3. Assumption (G) implies that

Y 1CoV{ & X)) B X0} <, [ o) pldu) [ I (w) (dw),  (A9)
=1

for any functions g,, h, € L*(R?) and g, >0, h,>=0.

Proof. Note that (4.3) implies that (A.9) is satisfied by g,=1,, h,=1g
for any Borel sets A, B. It follows that (A.9) holds for any positive simple
functions. The general case follows from approximating g,, /,, respectively,
by a monotone sequence of positive simple functions. ||

The following lemma is immediate.

LemMA 4. For g, € L*(R?) and g, >0, Condition (G) implies that

$ w0 =npe )+ 0, (uh | [esmatam| ). a10)
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Proof. Note that

S (X)) =nEg,(X,)+ 0, (n Y Covign(X,. 1), gn<X1>}|),

i=1 j=1

where the remainder term is of order Op(nﬁ,,[f g,(w) u(dw)]?) by virtue of
Lemma 3. |

Proof of Theorem 2. We use the same notations as those used in the
proof of Theorem 1. By assumption (F), (nh?) =2 T, is the array sum of
the martingale difference

1 X, —
Ci=—— Vl/z(Xi) K( : X> ;-

nh? h

Now we check the Lindberg condition in Theorem 3 of Shiryayev (1984,
p.511):

n

ECTMMERES It

i=1

Iéml“‘s

1
WZW

1/2 i)|2+5

<K (T Bl 7,0)

1
SW sup E{[e;1>*° | 7,_1}

i=1

Xi Ivl/Z(X,-)Iz”K(X';X). (A.11)

i=1

Applying Lemma 4 with g,(X,) = [v"*(X,)|?>*° K((X,—x)/h) and also using
Lemma 1, we see that

Z |V1/2 X)|2+5K<Xh > O(I’lhd)+0 (nﬁn}ﬂdﬁ)

i=1

So under Assumption (F), the RHS of (A.11) tends to zero in probability
as nh?— co. We have thus verified the Lindberg condition.
In addition,

3 (G171} = X000 & () =07 +0,1)

i=1 i=1
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where 6, =v(x) pe(x) [§° k*(p) p?~ "' dy. Thus, by Theorem 4 of Shiryayev
(1984, p. 511),

1
/nh?
Using Lemma 4, the rest of the proof follows the same steps as those
in the proof of Theorem 1. Employing the Cramer-Wold device, joint
asymptotic normality can be proved similarly. Joint asymptotic inde-

pendence follows by using Lemma 3 and the fact that K has finite support.
We thus complete the proof. ||

T, % N0, 52).
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