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Multivariate Locally Weighted Polynomial Fitting
and Partial Derivative Estimation

Zhan-Qian Lu

Geophysical Statistics Project, National Center for Atmospheric Research,
Boulder, Colorado 80307

Nonparametric regression estimator based on locally weighted least squares fit-
ting has been studied by Fan and Ruppert and Wand. The latter paper also studies,
in the univariate case, nonparametric derivative estimators given by a locally
weighted polynomial fitting. Compared with traditional kernel estimators, these
estimators are often of simpler form and possess some better properties. In this
paper, we develop current work on locally weighted regression and generalize
locally weighted polynomial fitting to the estimation of partial derivatives in a mul-
tivariate regression context. Specifically, for both the regression and partial
derivative estimators we prove joint asymptotic normality and derive explicit
asymptotic expansions for their conditional bias and conditional convariance
matrix (given observations of predictor variables) in each of the two important
cases of local linear fit and local quadratic fit. � 1996 Academic Press, Inc.

1. INTRODUCTION

Nonparametric regression estimation from a locally weighted least
squares fit has been studied by Stone (1977, 1980), Cleveland (1979),
Cleveland and Devlin (1988), Fan (1993), and Ruppert and Wand (1994).
The last paper also studied, in the univariate case, nonparametric
derivative estimators given by a locally weighted polynomial fitting. In this
paper, we develop current work on locally weighted regression and we
generalize locally weighted polynomial fitting the estimation of partial
derivatives in a multivariate regression context.

We consider the following setup: Given i.i.d. random vectors, [(Xi , Yi),
i=1, ..., n], where Yi # R1, Xi # R p and the latter has density function f.
The statistical issues are estimation of the regression function
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m(x)=E(Y | X=x) and its partial derivatives at any given point x # R p in
a domain of interest. Alternatively, if EY 2<� we can write

Yi=m(Xi)+&1�2(Xi) =i , i=1, ..., n, (1.1)

where =i 's are i.i.d. scalar random variables with E(=i | Xi)=0,
Var(=i | Xi)=1, and & is called the variance function. This setup is called the
random design model, as opposed to the fixed design model, given by

Yi=m(x i)+&1�2(xi) =i , i=1, ..., n,

where the xi 's are predetermined quantities and nonrandom. In this paper,
all results are given for the random design model, although similar results
hold for the fixed design model as well.

The two kernel regression estimators, namely the Nadaraya�Watson
(N�W ) estimator (Nadaraya, 1964; Watson, 1964) and the Gasser�Mu� ller
(G�M ) estimator (Gasser and Mu� ller, 1979), have been studied extensively
in the literature. Substantial recent attention focuses on a larger class
of kernel estimators given by the locally weighted polynomial fitting. (The
N�W estimator corresponds to the local constant fit). Chu and Marron
(1991) found it difficult to compare the N�W and G�M estimators in a
random design model. Subsequently Fan (1993) studied the nonparametric
regression estimator based on the local linear fit and showed that the local
linear regression smoother has advantages over both the N�W and G�M
estimators as well as a certain optimality property. Another important issue
is the boundary effect in the N�W and G�M estimators, namely both have
slower convergence rates near boundary points and require some boundary
modification for global estimation. As shown in Fan and Gijbels (1992) the
local linear regression estimator does not have this drawback.

Derivative estimation often arises in bandwidth selection problems (Ha� rdle,
1990) and in modeling growth curves in longitudinal studies (Mu� ller,
1988). Our motivation for studying partial derivative estimation arises from
a practical problem in chaos. Specifically, estimating Lyapunov exponents
is an important issue which involves estimating first-order partial
derivatives of a multivariate autoregression function. McCaffrey et al.
(1992) have proposed applying nonparametric regression to this problem
and they employed the derivative estimators given by differentiating certain
nonparametric regression estimators.

Traditionally another often employed approach to derivative estimation
is by kernel estimators using higher-order kernels. However, adaptations of
these approaches for partial derivative estimation in a random design
model are not very satisfactory since the derived estimators often have
complicated form and are not easy to analyze. For example, the asymptotic
bias and variance associated with the differentiation approach are difficult
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to work out. Furthermore, these approaches suffer from drawbacks similar
to those of the N�W and G�M estimators as discussed earlier.

We will show, generalizing Ruppert and Wand (1994), that the partial
derivative estimators given by the local quadratic fit have desirable proper-
ties. The following results will be proved in this paper. In each of the two
important cases of the local linear fit and local quadratic fit, for both the
regression and derivative estimators, explicit asymptotic expansions are
derived for their conditional bias and conditional covariance matrix, given
observations of predictor variables (in Theorem 1 and Theorem 3). In each
case, the joint asymptotic normality is also proved respectively (in
Theorem 2 and Theorem 4). The results on bias and variance calculations
of regression estimators in Theorem 1 and Theorem 3 correspond to those
of Ruppert and Wand (1994), but more explicit expressions are given here.
The results on derivative estimators generalize Ruppert and Wand (1994)
to the multivariate regression case.

In Lu (1995b; see also Lu, 1994), the multivariate local polynomial fit-
ting has been generalized to the multivariate time series context, where the
joint asymptotic normality is proved, and the method is applied to estimat-
ing the spectra of local Lyapunov exponents.

Higher order fit, such as local cubic fit, can also be studied similarly, but
the number of parameters to be estimated at each fitting increases very
rapidly and may not be practical except for very large data set. It should
be pointed out that, due to the curse of dimensionality in nonparametric
smoothing methods, in order for the local polynomial fitting to be consis-
tent, the sample size required grows exponentially fast as the dimension p
increases. So for large p and a moderate amount of data some dimension
reduction principle should be employed.

This paper is organized follows. Notations are given in Section 2. The
locally weighted polynomial fit is introduced in Section 3, where the local
linear fit is studied. Section 4 studies the main case of the local quadratic
fit. The proofs of theorems are given in Section 5.

2. NOTATION

Given a p_p matrix A, AT denotes its transpose. For A1 , ..., Ak (k>1)
which are square matrices, we denote

A1

diag[A1 , ..., Ak]=\ . . . + ,

Ak

where the suppressed elements are zeros.
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For a given p_q matrix A=(a1 , a2 , ..., aq), let vec A=(aT
1 , aT

2 , ..., aT
q )T.

If A=(aij) is a symmetric matrix of order p, let vech A denote the column
vector of dimension p( p+1)�2, formed by stacking the elements on and
below the diagonal; that is, vech A=(a11 , ..., ap1 , a22 , ..., ap2 , ..., app)T. Also
vechT A=(vech A)T.

Let U denote an open neighborhood of x=(x1 , ..., xp)T in R p, and let
Cd(U ) be the class of functions which have up to order d continuous pari-
tal derivatives in U. For any g=g(x1 , ..., xp) # Cd(U ) and a positive num-
ber k (less than d ), the k th-order differential Dk

g(x, u) for any given point
u=(u1 , ..., up) # R p is defined by

Dk
g(x, u)= :

i1 , ..., ip

C k
i1 } } } ip

�kg(x)
�xi1

1 �xi2
2 } } } �xip

p

ui1
1 } } } uip

p ,

where the summations are over all distinct nonnegative integers i1 , ..., ip

such that i1+ } } } +ip=k, and C k
i1 } } } ip=k !�(i1 ! } } } ip !). We also denote

Dg(x)=(�g(x)��x1 , ..., �g(x)��xp)T for g # C1(U ) and the Hessian matrix
by Hg(x)=(�2g(x)��xi �xj) for g # C2(U ).

For a p_p matrix A, we denote its determinant by |A|, and a certain
norm by &A&, for example, &A&=(� p

i, j=1 A(i, j )2)1�2. Given a random
sequence [an], we denote an=op(#n) if #&1

n an tends to zero in probability,
we denote an=Op(#n) if #&1

n an tends to zero in probability, we denote
an=Op(#n) if #&1

n an is bounded in probability. For a sequence of p_q
random matrices [An], write An=op(#n), or Op(#n) if and only if each
component An(i, j )=op(#n), or Op(#n), i=1, ..., p, j=1, ..., q. Then
An=op(#n)(Op(#n)) if and only if &An&=op(#n)(Op(#n)).

3. LOCAL LINEAR FIT

The local linear estimators of regression and partial derivatives at any
given x are given by the locally weighted least squares fit of a linear func-
tion, i.e., derived by minimizing the weighted sum of squares

:
n

i=1

[Yi&a&bT(Xi&x)]2 |H | &1 K(H &1(Xi&x)), (3.1)

where K( } ) is the weighting function, H is the bandwidth matrix, and a and
b are parameters.

We denote Y=(Y1 , ..., Yn)T,

W=diag[ |H |&1 K(H &1(X1&x)), ..., |H | &1 K(H &1(Xn&x))],
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and use X to denote the n_( p+1) design matrix

1 (X1&x)T

X=\ b b + .

1 (Xn&x)T

If there are at least ( p+1) points with positive weights, (XTWX) is inver-
tible with probability one, and there is a unique solution to the minimiza-
tion (3.1) given in matrix form by

;� L=(XTWX)&1 XTWY, (3.2)

which is an estimator of ;L(x)=(m(x), DT
m(x))T.

Use of a bandwidth matrix H in a multivariate smoothing context is
sometimes advantageous as discussed by Ruppert and Wand (1994) (whose
H corresponds to the H 2 here) and is also adopted in this paper following
the suggestion of a referee.

We assume that:

(A1) The bandwidth matrix H is symmetric and strictly positive definite.

One choice is H=hI, where h is a scalar bandwidth and I is the identity
matrix of dimension p. This choice implies that all predictor variables are
scaled equally. However, since this special bandwidth matrix is simple and
only one smoothing parameter needs to be specified, it remains the
predominant choice in practice. If the predictor variables do not have the
same scale, some transformation before smoothing, such as normalization
by the respective standard deviations, may be advisable.

The weighting or kernel function K is generally a nonnegative integrable
function.

For simplicity, we make the following assumptitions on the kernel function:

(A2) The kernel K is a spherically symmetric density function i.e.,
there exists a univariate function k such that K(x)=k(&x&) for all x # R p.
Furthermore, we will assume that the kernel K has eight-order marginal
moment, i.e.,

| u8
1 K(u1 , ..., up) du1 } } } dup<�.

Consequently, the odd-ordered moments of K and K 2, when they exist, are
zero; i.e., for l=1, 2

| ui1
1 ui2

2 } } } uip
p K l(u) du=0 if :

p

j=1

ij is odd.
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Also let +l=� ul
1 K(u) du, Jl=� uip

pK l(u) du for any nonnegative integers l.
Intuitively, by using a spherical symmetric kernel the weight is a function
of Mahalanobis distance between data and the point of interest, and the
bandwidth matrix H controls both the shape and scale of smoothing.

The following smoothness assumptions are made on the regression and
design density:

(A3) For the given point x=(x1 , ..., xp)T with f (x)>0, &(x)>0,
there is an open neighborhood U of x such that m # C3(U ), f # C1(U ),
& # C0(U ).

Since unconditional moments of the estimators considered here may not
exist in general, following the tradition of Fan (1993) and Rupert and
Wand (1994), we will work with their conditional moments (given observa-
tions of predictor variables Xi 's). Their large-sample behavior as &H& � 0,
n |H | � � is studied in detail. We also establish joint asymptotic normality
of the estimators.

The following theorem gives the asymptotic expansions for the condi-
tional bias and conditional convariance matrix of the local linear
estimators. Recall that Hm(x) denotes the Hessian matrix of m at x, i.e.,
(�2m(x)��xi �xj).

Theorem 1. Under model (1.1) and assumptions (A1)�(A3), for
&H& � 0, n |H | � � as n � �, the conditional bias of the local linear
regression and derivative estimators given by (3.2) have the asymtotic expansions

E {\ m(x)@

Dm(x)@ +&\ m(x)
Dm(x)+ }X1 , X2 , ..., Xn=

BL(x, H )+diag[1, H &1] &H&2 [op(&H&)+Op([n |H |]&1�2)], (3.3)

where

BL(x, H )=diag[1, H &1] \
1
2

+2 Tr(Hm(x) H 2)

1
3! +2

b(m, H )+
1

2+2 f (x)
b1(m, H )+ , (3.4)

where

b(m, H )=| uD3
m(x, Hu) K(u) du, (3.5)

b1(m, H )=| u[uTHHm(x) Hu][DT
f (x) Hu] K(u) du

&+2
2HDf (x) Tr[Hm(x) H 2].
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The conditional variance-covariance matrix has the asymptotic expansion

Cov {\ m(x)@

Dm(x)@ + }X1 , X2 , ..., Xn=
=

&(x)
nf (x) |H |

diag[1, H &1] _\J0

0
0

(J2�+2
2)++op(1)& diag[1, H &1].

(3.6)

The regression result of Theorem 1 duplicates exactly Theorem 2.1 of
Ruppert and Wand (1994) (hereafter R6W) and the derivative result is a
new contribution of this paper and serves as a comparison to the local
quadratic fit in the next section.

The joint asymptotic normality of the local linear estimators follows
under the additional assumptition that

(A4) there eixsts a $>0 such that E |Y | 2+$<�.

Theorem 2. Under conditions of Theorem 1 and A4, we have that

(n |H | )1�2 diag[1, H ][;� L&;(x)&[BL(x, H )+diag[1, H &1] o(&H&3)]]

tends in distribution to N(0, [&(x)�f (x)] diag[J0 , (J2 �u2
2)]), where BL(x, H )

is given by (3.4).

Remark 1. For the results on the regression estimator alone to hold,
weaker assumptions in (A3) such as m # C2(U ), and f # C0(U ) will suffice.

Remark 2. The convergence rate of the derivative estimator corre-
sponding to H=O(n&1�( p+6)) I is of order n&2�( p+6), which attains the
optimal rate as established in Stone (1980). For p=1, the conditional
mean squared error of m$(x)@ is approximated by

h4 { +4

3! +2

m(3)(x)+
+4&+2

2

2+2

m(2)(x) f $(x)
f (x) =

2

+
&(x) J2

+2
2 f (x) nh3 .

It can be checked that above expression corresponds to Theorem 4.2 of
R6W (with p=1, r=1 in R6W's notation).

Remark 3. The bias of the local linear derivative estimator depends on
the partial derivatives of the design density. This may be undesirable in
some sense, e.g., in the minimax sense, analogous to criticism of the N-W
estimator in Fan (1993). Furthermore, the local linear derivative estimators
have boundary effect; i.e., at boundary points the asymptotic bias is of
order O(&H&).
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4. LOCAL QUADRATIC FIT

Local quadratic fit is sometimes desirable for regression estimation as
discussed in Cleveland and Devlin (1988). We will show that the local
quadratic fit is suitable for first-order partial derivative estimation. The
local quadratic estimators at a given point x are derived by minimizing the
weighted sum of squares

:
n

i=1

[Yi&a&bT(Xi&x)&(Xi&x)T L(Xi&x)]2

_|H |&1 K(H &1(Xi&x)), (4.1)

where a, b, L are parameters and L is restricted to be a lower triangular
matrix for identifiability. Note that the total number of parameters in (4.1)
is q= 1

2 ( p+2)( p+1). Denote Y, W as in Section 3,

1 (X1&x)T vechT[(X1&x)(X1&x)T]
X=\ b b b + .

1 (Xn&x)T vechT[(Xn&x)(Xn&x)T] n_q

If there are at least q points with positive weights in (4.1), then XTWX is
invertible with probability one, and there is a unique solution given in
matrix form by

;� =(XTW X)&1 XTWY, (4.2)

which is an estimator of ;(x)=(m(x), DT
m(x), vechT[(x)])T. Here

L(x)=(lij) satisfies lij=hij if i> j and hii �2 if i= j, where Hm(x)=(hij) is
the Hessian.

We will assume that:

(A5) The kernel K is as in (A2) and has 12th-order marginal
moment, i.e.,

| u12
1 K(u1 , ..., up) du1 } } } dup<�.

(A6) For the given point x with f (x)>0, &(x)>0, there is an open
neighborhood U of x such that m # C4(U ), f # C 1(U ), & # C0(U ).

Additional notations are introduced. We define a square matrix C(H ) of
p( p+1)�2 such that vech[HuuTH ]=C(H ) vech[uuT] for any u # R p.
Explicitly C(H )=L1(H�H ) D1 where � denotes the Kronecker product
and L1 is the elimination matrix defined so that L1 vec A=vec A for any
p_p matrix A, and D1 is the duplication matrix defined so that
D1 vech A=vec A for any symmetric matrix A. Further properties on these

194 ZHAN-QIAN LU



File: 683J 163209 . By:CV . Date:04:11:96 . Time:13:31 LOP8M. V8.0. Page 01:01
Codes: 2547 Signs: 1058 . Length: 45 pic 0 pts, 190 mm

special matrices are given in Magnus and Neudecker (1980). In particular,
we have C(H ) i=L1(H i�H i) D1 for any i= } } } , &2, &1, 0, 1, 2, ... . Let-
ting & }& denote the matrix norm given by the largest singular value and
using the fact that H is symmetric, we have that &C(H )&=&H&2. Hence
&C(H )&=O(&H&2) for any matrix norm & }& as &H& � 0.

As in Section 3, we analyze the conditional bias and conditional
covariance matrix of ;� . The large sample asymptotic expansions are given
in the next theorem.

Theorem 3. Under model (1.1) and assumptions (A1), (A5), and (A6),
as &H& � 0 and n |H | � � as n � �, the conditional bias has the
asymptotic expansion:

m(x)@ m(x)

E {\ Dm(x)@ +&\ Dm(x) + } X1 , X2 , ..., Xn+vech[L(x)@] vech[L(x)]

=B(x, H )+diag[1, H &1, C(H )&1] &H&3

_[op(&H&)+Op([n |H |]&1�2)], (4.3)

where

1
4!

%(m, H )+
1

3! f (x)
%1(m, H )

B(x, H )=diag[1, H &1, C(H )&1] \ 1
3! +2

b(m, H ) + , (4.4)

1
4!

#(m, H )+
1

3! f (x)
#1(m, H )

where b(m, H ) is as in Theorem 1, and

%(m, H )=d &1 | D4
m(x, Hu) K(u) du&c vech[I] | vech[uuT]

_D4
m(x, Hu) K(u) du,

%1(m, H )=d &1 | D3
m(x, Hu)[DT

f (x) Hu] K(u) du

&c vech[I] | vech[uuT] D3
m(x, Hu)[DT

f (x) Hu] K(u) du,
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#(m, H )=&c vech[I ] | D4
m(x, Hu) K(u) du

+E &1 | vech[uu] D4
m(x, Hu) K(u) du,

#1(m, H )=&c vech[I ] | D3
m(x, Hu)[DT

f (x) Hu] K(u) du

&QT(x, H ) | uD3
m(x, Hu) du+E &1 | vech[uu]

_D3
m(x, Hu)[DT

f (x) Hu] K(u) du,

and
d=(+4&+2

2)�(+4+( p&1) +2
2), c=+2 �(+4&+2

2),

E=diag[+4&+2
2 , +2

2 , ..., +2
2

p&1

, +4&+2
2 , +2

2 , ..., +2
2

p&2

, ...,

+4&+2
2 , +2

2 , +4&+2
2], (4.5)

Q(x, H )=&cHDf (x) vechT[I]

++&1
2 {| u vechT[uuT][DT

f (x) Hu] K(u) du= E &1.

The conditional variance�covariance matrix has asymptotic expansion,

m(x)@

Cov {\ Dm(x)@ + } X1 , X2 , ..., Xn=vech[L(x)@]

=
1

n |H |
diag[1, H &1, C(H )&1][7(x)+op(1)]

_diag[1, H &1, CT(H )&1], (4.6)

where

7(x)=
&(x)
f (x)

\
\ 0 , vechT[I]

+ , (4.7)
0 J2 +&2

2 I 0

, vech[I] 0 4&
+2(J2&J0 +2)

(+4&+2
2)2 vech[I] vechT[I]
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where

\=(+4&+2
2)&2 [J0(+4+( p&1) +2

2)2&2pJ2 +2(+4+( p&1) +2
2)

+p+2
2(J4+( p&1) J 2

2)],

,=(+4&+2
2)&2 [J2 +4+(2p&1) J2 +2

2&( p&1) J 2
2 +2&J4 +2

&J0 +2 +4&( p&1) J0 +3
2],

4=diag[*1 , *2 , ..., *2

p&1

, *1 , *2 , ..., *2

p&2

, ..., *1 , *2 , *1],

where *1=(J4&J 2
2)(+4&+2

2)&2, *2=J 2
2 +&4

2 .

Further, in regard to the matrix Q(x, H ) defined in (4.5), it can be
checked that the following result holds.

Lemma 1. Let (a1 , a2 , ..., ap)T=HDf (x), the matrix Q(x, H ) of (4.5)
has the form

a1 a2 } } } ap&1 ap

a1 a2 } } } ap&1 ap

+&1
2 \ . . .

. . . } } } + ,

a1 a2 ap&1 ap

a1 a2 ap&1 ap

where the suppressed elements are zeros.

Proof. Let G(x, H )=� u vech[uuT][DT
f (x) Hu] K(u) du, which has the

form:

+2
2\

+4

+2
2

a1 a2 } } } ap a1 0 } } } 0 } } } a1 0 a1

+ . (4.8)
a2 a1 } } } 0

+4

+2
2

a2 a3 } } } ap } } } a2 0 a2

b b b b b b b b b

ap 0 } } } a1 ap 0 } } } a2 } } } ap ap&1

+4

+2
2

ap

It can be checked that Q(x, H ) has the given form. K
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The regression part of Theorem 3 corresponds to the results in Section 3
of R6W. The derivative part of this theorem in the multivariate case is new
and is the main contribution in this paper.

In order to see more clearly the connections between the results in this
paper and the corresponding results in R6W, we give the explicit calcula-
tions of the matrix A(H ) (corresponding to Nx of R6W) which is used in
our proofs. Define

1

A(H )=| \ u + (1 u vech[uuT]) K(u) f (x+Hu) du.

vech[uuT]

We have the following lemma, whose proof is given in Section 5.

Lemma 2. If f # C1(U ) and f (x)>0, as &H& � 0, we have

A&1(H )

d &1 0 &c vechT[I]
=

1
f (x) \ 0 +&1

2 &f (x)&1 Q(x, H )++o(&H&),

&c vech[I] & f (x)&1 Q(x, H )T E &1

where d, c, E, Q(x, H ) are as in Theorem 3.

Explicit expressions for Theorem 3 and Theorem 4 are available in the
important case that H=hI.

Corollary 1. In the special case H=hI, we have that C(H )=h2I2 and
|H |=h p, where I2 is the identity matrix of dimension p( p+1)�2, and the
bias expressions in (4.4) have the explicit forms

b(m, H )=h3\
+4

�3m(x)
�x3

1

+3+2
2 :

p

i=2

�3m(x)
�x2

i �x1

+ (4.9)
+4

�3m(x)
�x3

2

+3+2
2 :

i{2

�3m(x)
�x2

i �x2

b

+4

�3m(x)
�x3

p

+3+2
2 :

p&1

i=1

�3m(x)
�x2

i �xp
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and

%(m, H )=h4 _+2
4&+2 +6

+4&+2
2

:
p

i=1

�4m(x)
�x4

i

&6+2
2 :

1�i< j�p

�4m(x)
�x2

i �x2
j & ,

%1(m, H )=h4 _+2
4&+2 +6

+4&+2
2

:
p

i=1

�3m(x)
�x3

i

�f (x)
�xi

&3+2
2 :

i{ j
1<i, j�p

�3m(x)
�xi �x2

j

�f (x)
�xi & ;

and #(m, H ) and #1(m, H ) are vectors of dimension p( p+1)�2 with com-
ponents

#(m, H )=(#11 , ..., #p1 , #22 , ..., #p2 , ..., #pp)T,

#ii=h4 _+6&+2 +4

+4&+2
2

�4m(x)
�x4

i

+6
+2 +4

+4&+2
2

:

k{i
1�k�p

�4m(x)
�x2

i �x2
k

, for 1�i�p& .

#ij=h4 _4
+4

+2 {
�4m(x)
�x3

i �xj
+

�4m(x)
�xi �x3

j =+12+2 :

k{i, j
1�k�p

�4m(x)
�x2

k �xi �xj& ,

for 1� j<i�p,

and #1(m, H )=(#11(1), ..., #p1(1), #22(1), ..., #p2(1), ..., #pp(1))T,

#ii (1)=h4 _ +2 +6&+2
4

+2(+4&+2
2)

�3m(x)
�x3

i

�f (x)
�xi

+3+2 :

k{i
1�k�p

�3m(x)
�x2

i �xk&
for 1�i�p.

#ij (1)=h4 _6+2 :

k{i, j
1�k�p

�3m(x)
�xk �xi �xj

�f (x)
�xk

&3+2 {�3m(x)
�xi �x2

j

�f (x)
�xj

+
�3m(x)
�x2

i �xj

�f (x)
�xi =& for 1� j<i�p.

The joint asymptotic normality of the local quadratic estimators is given
as follows.

Theorem 4. Under conditions of Theorem 3 and (A4), we have that

(n | H )1�2 diag[1, H, C(H)]

_[;� &;(x)&[B(x, H )+diag[1, H &1, C(H )&1] o(&H&4)]]

tends in distribution to N(0, 7(x)), where B(x, H ) and 7(x) are given as in
(4.4) and (4.7) of Theorem 3, respectively.
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The following remarks are relevant:

Remark 4. For the results on the first-order partial derivatives to hold,
the assumptions in (A6) can be weakened to m # C3(U ), f # C0(U ).

Remark 5. It is seen that the local quadratic derivative estimator
eliminates the extra bias term [h2�(2+2 f (x))] b1(m, K ) of the local linear
derivative estimator while retaining the asymptotic covariance matrix.

Remark 6. In the special case H=hI, the conditional mean squared
distance of error (CMSDE) for the local quadratic gradient estimator
Dm(x) is given by

E[&Dm(x)@ &Dm(x)&2 | X1 , X2 , ..., Xn]

r
h4

(3 ! +2)2 &b(m)&2+
pJ2 &(x)

+2
2nh p+2f (x)

, (4.10)

where b(m)=b(m, H )�h3. The locally optimal h which minimizes (4.10) is
given by

hopt(x)={9p( p+2) J2&(x)
f (x) |b(m)&2 =

1�( p+6)

n&1�( p+6).

The minimum pointwise CMSDE is given by plugging in hopt(x),

CMSDEopt(x)=
[ p( p+2) J2&(x)]4�( p+6) &b(m)&(2p+4)�( p+6)

3(2p+4)�( p+6)4+2
2 f (x)4�( p+6) n&4�( p+6).

The asymptotic analysis provides some insights on the behavior of the
estimator. The bias is quantified by the amount of smoothing and the
third-order partial derivatives at x for each coordinate. Bias is increased
when there is more third-order nonlinearity quantified by b(m, K ) and
more smoothing. On the other hand, the conditional variance will be
increased when there is less smoothing and sparser data near x.

5. PROOFS

We only give the outlines of proofs of Theorem 3 and Theorem 4.
The proof of Theorem 3 follows along the same lines as Fan (1993) and
Ruppert and Wand (1994), and readers can refer to Lu (1995a) for a
more detailed proof. Theorem 1 and Theorem 2 can be proved similarly.
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5.1. Outline of the Proof of Theorem 3

The conditional bias and conditional covariance matrix are given respec-
tively by

E(;� | X1 , ..., Xn)&;(x)=(XTW X)&1 XTW(M&X;)

=diag[1, H &1, C(H )&1] S &1
n Rn ,

Cov(;� | X1 , ..., Xn)=(XTW X)&1 XTWVW X(XTW X)&1

=
1

n |H |
diag[1, H &1, C(H )&1] S &1

n Cn S &1
n

_diag[1, H &1, CT(H )&1]

where M=(m(X1), ..., m(Xn))T, V=diag[&(X1), ..., &(Xn)],

Sn=
1
n

:
n

i=1

X� X� T |H |&1 K(H &1(Xi&x)),

Cn=
1
n

:
n

i=1

X� X� T&(Xi) |H | &1 K 2(H &1(Xi&x)),

Rn=
1
n

:
n

i=1

X� _m(Xi)&m(x)&DT
m(x)(Xi&x)

&
1
2

(Xi&x)T Hm(x)(Xi&x)& |H |&1 K(H &1(Xi&x)),

where

1

X� =_ H &1(Xi&x) & .

vech[H &1(Xi&x)(Xi&x)T H &1]

The proof of the bias part of the theorem consists of combining the follow-
ing key steps with Lemma 2

Sn=A(H )+Op([n | H |]&1�2),

S &1
n =A&1(H )+Op([n | H |]&1�2), (5.1)

Rn=[R(x, H )+&H&3 [o(&H&)+Op([n | H |]&1�2)]],
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where

| :
p

i=1

D3
m(x, Hu)[DT

f (x) Hu] K(u) du

R(x, H )=
1
3!\ f (x) | u :

p

i=1

D3
m(x, Hu) K(u) du +h | vech[uuT] :

p

i=1

D3
m(x, Hu) K(u)[DT

f (x) Hu] du

| D4
m(x, Hu) K(u) du

+
f (x)
4! \0 + .

| vech[uuT] D4
m(x, Hu) K(u) du

The proof of covariance part of the theorem consists of combining (5.1.),
Lemma 2 with

Cn=C(x)+O(&H&)+Op((n |H | )&1�2),

where

J0 0 J2 vechT[I]
C(x)=&(x) f (x) \ 0 J2I1 0 +J2 vech[I ] 0 EJ+J 2

2 vech[I ] vechT[I]

and

EJ=diag[J4&J 2
2 , J 2

2 , ..., J 2
2

p&1

, J4&J 2
2 , J 2

2 , ..., J 2
2

p&2

, ..., J4&J 2
2 , J 2

2 , J4&J 2
2].

5.2. Proof of Lemma 2

Using the Taylor expansion

f (x+Hu)= f (x)+DT
f (x) Hu+o(&H&), as &H& � 0,

we obtain that

1 0 +2 vechT[I]
A(H )= f (x) \ 0 +2I 0 ++2 vech[I] 0 D

0 +2HDT
f (x) 0

+\+2 HDf (x) 0 G(x, H )++O(&H&),

0 G(x, H )T 0

202 ZHAN-QIAN LU



File: 683J 163217 . By:CV . Date:04:11:96 . Time:13:31 LOP8M. V8.0. Page 01:01
Codes: 2474 Signs: 848 . Length: 45 pic 0 pts, 190 mm

where

D=E++2
2 vech[I] vechT[I],

and E as in Theorem 3 and G(x, H ) as in (4.8).
Denote A(H )=A0+B(H )+o(&H&), where A0 , B(H ) corresponds to

the matrices in the expansion of A(H ) above. Note that

A(H )&1=A&1
0 +A&1

0 B(H ) A&1
0 +o(&H&),

where

d &1 0 &c vechT[I]
A&1

0 =
1

f (x) \ 0 +&1
2 I 0 + ,

&c vech[I ] 0 E &1

using matrix inverse formulae such as those in page 33 of Rao (1973).
Now we only need to check that the second term A&1

0 B(H ) A&1
0 , which

is & f (x)&2 multiplied by

d &1 0 &cV T

\ 0 +&1
2 I 0 +&cV 0 E &1

0 +2(HDf)
T 0 d &1 0 &cV T

_\+2HDf 0 G+\ 0 +&1
2 I 0 +0 GT 0 &cV 0 E &1

0 d &1(HDf)
T&c+&1

2 V TGT 0

=\d &1HDf&c+&1
2 GV 0 Q+ ,

0 QT 0

where V=vech[I] and G=G(x, H) and Q=Q(x, H).
Since

G(x, H ) V=(+4+( p&1) +2
2) HDf ,

which can easily be checked from the explicit expression for G(x, H ) in
Lemma 1, thus

c
+2

G(x, H ) V=
+4+( p&1) +2

2

+4&+2
2

Df=
1
d

Df ;

i.e., d &1HDf&c+&1
2 G(x, H ) V=0, d &1(HDf)

T&c+&1
2 V TG(x, H)T=0. The

lemma is thus proved. K
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5.3. Outline of the Proof of Theorem 4

We write

(n |H | )1�2 diag[1, H, C(H )]

_[;� &;(x)&diag[1, H &1, C(H )&1] S &1
n Rn]=S &1

n Zn , (5.2)

where

Zn=(n |H | )&1�2 :
n

i=1

X� K(H &1(Xi&x)) &1�2(Xi) =i .

The joint asymptotic normality of Zn can be established using the
Cramer�Wold device and Theorem 1.9.3 of Serfling (1980) under the addi-
tional assumption (A4). The theorem is then proved by combining with
previous results (5.1) in Subsection 5.1, and replacing the LHS of (5.2) by
the bias given in Theorem 3 using Slusky's theorem (Theorem 1.5.4 of
Serfling (1980)).
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