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ABSTRACT

Nonlinear dynamical systems often exhibit chaos, which is characterized by sensi-
tive dependence on initial values or more precisely by a positive Lyapunov exponent.
Recognizing and quantifying chaos in time series represents an important step to-
ward understanding the nature of random behavior and revealing the extent to which
short-term forecasts may be improved. We will focus on the statistical problem of

quantifying chaos and nonlinearity via Lyapunov exponents.

Predicting the future or determining Lyapunov exponents requires estimation of an
autoregressive function or its partial derivatives from time series. The multivariate
locally weighted polynomial fit is studied for this purpose. In the nonparametric
regression context, explicit asymptotic expansions for the conditional bias and condi-
tional covariance matrix of the regression and partial derivative estimators are derived
for both the local linear fit and the local quadratic fit. These results are then gener-
alized to the time series context. The joint asymptotic normality of the estimators
is established under general short-range dependence conditions, where the asymp-
totic bias and asymptotic covariance matrix are explicitly given. We also discuss
extension to fractal time series, where the finite-dimensional probability measure is
only assumed to possess a fractal dimension and can be singular with respect to the

Lebesgue measure.

The results on partial derivative estimation are subsequently applied to estimation of
Lyapunov exponents. Using the asymptotic theory of the eigenvalues from a random
matrix, we are able to characterize the asymptotic distribution for the estimators
of local Lyapunov exponents. The local Lyapunov exponents may provide a way of
quantifying short-term predictability in a system. The results may shed some light

on the estimators of Lyapunov exponents.
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Chapter 1

INTRODUCTION

1.1 Introduction

A time evolution is often described by the solution to difference (discrete-time) or
differential (continuous-time) equations. A nonlinear dynamical system can gener-
ate orbits which are typically aperiodic, irregular, and apparently random. This
phenomenon is popularly called chaos. Chaos has provided an alternative interpre-
tation of the erratic or random behavior in natural processes. Chaos theory has been
applied to many different fields including physics (e.g. in the study of turbulence,
Eckmann and Ruelle 1985), meteorology (Lorenz 1963), ecology, biology, epidemiol-
ogy (e.g. Sugihara and May 1990), economics, and finance. Recently, much interest
has focused on statistical analysis of chaotic time series. Chaotic time series have
potentially wide applications. Our main concern in this study is to provide the nec-
essary statistical theory for quantifying chaos, with focus on the Lyapunov exponent
approach. Since typically only limited noisy observations are available, the statistical
study of available chaos methods are crucial to their proper applications (e.g. Ruelle

1990, Smith 1992b).

A real system may be subject to various sources of small random noises, such as

computer roundoff error, measurement error, external environmental noise, etc. So a



reasonable model may be given by a noisy system, or a deterministic system subject

to small dynamical noises. See e.g. Smith (1992b), Nychka et al (1992).

The connection of chaos and dynamical systems to traditional nonlinear time series
analysis is discussed by Tong (1990). Most ideas in deterministic chaos can be ex-
tended to analyzing a noisy system. Consideration of chaos in a stochastic system
enables us to focus on the deterministic structure, particularly when it is the domi-
nating mechanism of the dynamical behavior. Thus, once chaos is found to be present
in a system, much more structure is known about the random dynamical behavior,
which will be particularly useful for short-term prediction. Chaotic time series may be
seen as consisting of three interrelated parts, detecting chaos, modeling, and nonlinear

prediction.

Recognizing and quantifying chaos in time series represents an important step to-
ward understanding the nature of random behavior and revealing the extent to which
short-term forecasts may be improved. Several approaches have been proposed, in-
cluding estimating fractal dimensions (e.g. Smith 1991, 1992a), nonlinear forecasting
(Sugihara and May 1990, and Casdagli 1992), estimating entropy (e.g. Eckmann and
Ruelle 1985), and estimating Lyapunov exponents (Wolf et al 1985, Abarbanel et al
1991, McCaffrey et al 1992).

Among the methods proposed, dimension estimation is perhaps the simplest ap-
proach. It provides a test about the finite dimensionality of a system. However,
the dimension estimates may be sensitive to substantial amount of measurement er-
rors in data, and may get even worse with the dynamical noises considered here, see
e.g. Smith (1992a). Similar difficulty may be expected for entropy estimates (e.g.
those in Eckmann and Ruelle 1985).

With the approach of determining Lyapunov exponents or assessing nonlinear fore-
casts, this problem can be avoided. Chaos is defined by the sensitive dependence
on initial values or the existence of a positive Lyapunov exponent. Consequently,

long-term prediction is impossible in a chaotic system since any uncertainty at the



initial step will be amplified exponentially fast. However, the presence of chaos also
reveals the possibility that short-term forecasts may be improved through nonlinear
methods. This in turn gives a test of nonlinearity through evaluating the quality of

nonlinear forecasts.

In addition, the Lyapunov spectrum is closely related to fractal dimension and en-
tropy. So we will focus on the approach of estimating Lyapunov exponents. For
detecting chaos, estimating the dominant Lyapunov exponent is most important. We

also consider estimation of other Lyapunov exponents.

The Jacobian-based approach should be used in estimating Lyapunov exponents in
a noisy system, see e.g. McCaffrey (1992). The estimators of Lyapunov exponents
are given in terms of the growth rates of the singular values of the estimated [-step
Jacobian matrix product of the system. For consistency of estimating Lyapunov
exponents, [ should be chosen to depend on sample size n and tend to infinity as n
does. There are difficulties in establishing the convergence rate, which is also tied

with the choice of [, as discussed in Ellner et al (1991), McCaffrey et al (1992).

To provide some insights on the problem, we investigate the following simpler prob-
lem: what is the asymptotic behavior of the estimators for any fixed I7 We expect
that the derived results will shed some light on the estimators of Lyapunov exponents.
This problem maybe worth studying in itself for its relevance to characterizing pre-
dictability in time series. Since chaotic time series are well-known for their long-term
unpredictability, considerable interest has focused on short-term predictability, e.g.
this is of much interest in weather forecasting. The local Lyapunov exponents, which
are defined as the finite-time average divergence rates, may provide more relevant
measures of predictability. A similar idea has also been used in Wolff (1992), who
has considered the one-dimensional case, and Bailey (1993), who has focused on the

maximum local Lyapunov exponent.

Nonlinear prediction or determining the Lyapunov exponents requires estimation of

the nonlinear autoregressive function or its partial derivatives. We will focus on the



nonparametric method of locally weighted polynomial fit. Most recent papers in chaos
literature, such as Eckmann and Ruelle (1985), Farmer and Sidorowich (1987), Sugi-
hara and May (1990), Casdagli (1992), and Abarbanel et al (1991), have considered
some versions of nonparametric techniques, particularly the local polynomial method.
The local polynomial method, or the locally weighted polynomial fit in its modern
form, is also of current interest in statistics literature, such as in Fan (1993) and Rup-
pert and Wand (1994). We will study the multivariate locally weighted polynomial

fit, with emphasis on partial derivative estimation.

There is a large literature on the mathematical aspects of chaos and dynamical sys-
tems, including Guckenheimer and Holmes (1990), Eckmann and Ruelle (1985), De-
vaney (1989), Sinai (1989), Ruelle (1989), and Ott (1993). Numerical implementation
is discussed in Parker and Chua (1989). Eckmann and Ruelle (1985) also give a good
review on some past work on the statistical aspects of chaos. Much statistical work
has appeared in physics literature such as Physica D. It is relatively recent that chaos
has attracted attention from the statistical community. See the special issue on chaos
of JRSS, Series B, 1992, which includes Nychka et al (1992), Smith (1992a), Cas-
dagli (1992), and Wolff (1992). See also a discussion paper by Bartlett (1990), two
reviews by Berliner (1992), Chatterjee and Yilmaz (1992) and accompanying discus-

sions therein.

This chapter is organized as follows. An introduction to the basic concepts of chaos
and dynamical systems is given in Section 1.2, where the Lyapunov exponents are
defined. Section 1.3 discusses the problem of detecting chaos in time series, with
focus on the approach of estimating Lyapunov exponents. The statistical problem of
estimating an autoregressive function or its partial derivatives is discussed in the non-
parametric regression setup, which is introduced in Section 1.4. The locally weighted
polynomial fit is emphasized. The application of partial derivative estimation to
estimating Lyapunov exponents is discussed in Section 1.5, where we define a finite-
time version of the (global) Lyapunov exponents, which we call the local Lyapunov

exponents. Finally, the organization of other chapters is given in Section 1.6.



1.2 What is Chaos?

A time evolution is often described by a dynamical system, which is given by the

solution to ordinary differential equations (ODE) in continuous time
dx(t)/dt = M(x(t)), where x(t) € R? for t € [0, 0), (1.1)
or difference equations in discrete time
Xn+1 = M(%,), where x,, € R? for integers n, (1.2)

where M is a RP — R? map. It is called a differentiable dynamical system if M is
differentiable. It is emphasized that the above system is finite-dimensional. Later
on, we will consider a noisy system, which is, strictly speaking, infinite dimensional.
However, even in that case, our focus is still on the detection of a finite-dimensional

structure, and the infinite-dimensional noise component plays a minor role.

A nonlinear deterministic system can produce typically aperiodic, irregular, and ap-
parently random orbit, a phenomenon often called chaos. For example, the sys-
tem z,41 = px,(l — z,) is known to go through a whole spectrum of simple (fixed
or periodic point) and complex dynamics (chaos) as p varies over [0,4] (Devaney,
1989, Sinai 1989). A simple higher-dimensional example is given by the Hénon map
M(z,y) = (by + 1 — az? z), where a,b are constants. Numerical study shows that
the Hénon map has complicated dynamics for parameter values a = 1.4,6 = .3. More
examples are given in Section 2.2. We will be mainly interested in dissipative sys-
tems, for which a main concept is the attractor, a limiting set A on which a trajectory
eventually settles down for a typical initial value. An asymptotic measure can also be

defined on an attractor. See Section 2.3 for more details.

A chaotic system is characterized by the exponentially fast divergence of nearby tra-
jectories for most initial values, or the prevalence of sensitive dependence on initial
conditions. This notion i1s quantified by Lyapunov exponents, which are defined as
the average exponential rates of divergence or convergence of nearby trajectories. Vi-

sually, imagine we can monitor and plot the evolution of a small sphere in the phase



space. The sphere will become an ellipsoid due to the local stretching and contracting
nature of the system, and the major axis of the ellipsoids will rapidly (at an expo-
nential speed) approach the size of the attractor. So at each point, corresponding to
different directions in the phase space, there may exist different divergence or conver-
gence rates, implying that there are p Lyapunov exponents in total, which we denote
by Ay > Xy > -+ > X,. The ¢th Lyapunov exponent A; is defined by the average
exponential rate at which the 7th principal axis of the ellipsoids expands or contracts

for any ¢ between 1 and p.

For example, if x is a fixed point (Mx = x) or periodic point with period
n (i.e. M"x =x) of a map M, the Lyapunov exponents are given by the logarithm
of the modulus of the eigenvalues of the Jacobian matrix Das(x) or Dym(x). Now we

will define the Lyapunov exponents for an aperiodic orbit.

Consider the discrete-time system (1.2). Let T'(x) = Dp(x) denote the Jacobian
matrix of M at x. The idea is to study the divergence or instability property of
the system through its linearized counterpart given by 7. The separation of two

infinitesimally close initial values xq, X after time [ is given approximately by
X1 = x) = M!(x0) — MY () = {T"(30) (0 — X5, (13)

where M' is the Ith composition of M with itself, and T"'(xg) denotes the Jacobian

matrix Dysi(xo). By the chain rule of differentiation,

THx) = T(x;_1) - T(x1)T(x0).

Denote the singular values of T"(xq) by & (1, %0) > 82(1,%0) > -+ 8,(I,%o) (or alterna-
tively, they are the square root of the eigenvalues of {T"(x0)}?T"(x0)). The Lyapunov

exponents, denoted by Ay > Ay > .-+ > A, are defined by
1
)\i:llim 7log5i(l,xo),z': 1,2,...,p. (1.4)

The existence of above limits are guaranteed by the multiplicative ergodic theorem of

Oseledec (1968) (see Section 2.4) for almost all xo wrt an ergodic invariant measure

p-



If Ay > 0, two trajectories from the linear system y, = T'(x,-1)y, diverge exponen-
tially fast for most choices of ygo. It can be shown this implies that trajectories from
the nonlinear system x,, = M(x,-1) will diverge exponentially fast for any infinitesi-
mally close initial conditions. Thus, A; > 0 gives a quantification of the property of
sensitive dependence on initial conditions. If for a typical initial value, a system has
a bounded solution and at least one Lyapunov exponent, it is said to be chaotic. We
will adopt this general definition of chaos. Though only discrete-time systems will be

studied, analogous theory may be given for continuous-time systems, see Eckmann

and Ruelle (1985), Ruelle (1989) for related discussions.

This definition of chaos in terms of instability can be generalized to a noisy system.

For simplicity, we consider following stochastic difference equation
Xn+1 - M(Xn) —|— GEn+1, (15)

where X, F,, are vectors in R?, and M : R? — R? is a differentiable map, and G
is some constant p x p matrix. Furthermore, we assume that F,’s are iid with zero
mean and covariance matrix ¥, and are independent of Xy. Under these assumptions,
the sequence { X, } is a p—dimensional Markov chain. A crucial assumption we make

is that the Markov chain (1.5) has an invariant measure p with compact support.

We can define product of Jacobian matrices:
T =T(X;_1)--- T(X1)T(Xo), (1.6)

where X;_1,..., X1, Xy are part of trajectory from (1.5). Let 6:(1) > --- > 6,(I) be
the singular values of 7. Oseledec’s theorem (Section 2.4) insures that the following

limits exist with probability one, for p-almost all Xy,

1
Ai :llim—logéi(l),i: 1,2,...,p. (1.7)
The quantities Ay > -+ > ), are called the Lyapunov exponents for noisy system

(1.5). If p is ergodic, the A;’s are constant. A noisy system which has bounded

solution and at least one positive Lyapunov exponent is defined to be chaotic.



Determination of Lyapunov exponents can be based on simulating a typical trajectory
using the algorithm e.g. in Parker and Chua (1989), if the system (1.5) is known.
However, in practice, often the only available information is a scalar time series {z;},
which represents observations from (1.5). Our focus is to determine the Lyapunov

exponents for a time series {z;}.

1.3 Chaotic Time Series

A scalar time series {x;} represents observations from a physical system, which usually
has a multidimensional attractor. How can we hope to study the original system
from analyzing the scalar signal {x;}? It happens that this is possible if our focus
is on determining the dynamical quantities of the original attractor. The state space
reconstruction is the basis for recovering the properties of the original attractor from

a scalar time series.

Specifically, given time series {z,}, a standard way to reconstruct the state vectors is

given by the delay coordinate vector, also called the time delay method,
Xe = (@4, Tterye ., $t_(pe_1)T)T,t =p.—7+1,...,

where 7 is the time delay, p. is the embedding dimension. In practice, 7 and p. are

often chosen by trial and error.

Usually, the desired quantity to be computed, such as a fractal dimension or the
largest Lyapunov exponent, will stabilize and converge to a fixed value as p. is in-
creased beyond a certain threshold. A justification for this approach in the deter-
ministic case is given by Takens’ theorem (Takens 1981). Takens’ theorem effectively
says that the reconstructed state vectors will have the same dynamical properties of

the original system if p. is large enough. See Section 2.9 for more details.

Since a time series is usually subject to various sources of dynamical and measurement

noises, we consider the following noisy model for our time series (without loss of



generality we take 7 = 1):

Topr = m(Tg, - Ty_pg1) + 041, (1.8)
where €1, €9, ... are 1id random noises with zero mean and unit variance, and ;41 1s
independent of z;, x4_1,.... This model is often called a nonlinear (pth-order) autore-

gressive model in time series, where m is called the autoregressive function. The time
series comprises two parts: a low-dimensional deterministic system plus an infinite-

dimensional random noise. Similar models are also considered in Smith (1992a),

Nychka et al (1992).

It is easy to rewrite (1.8) in its state space form (1.5) by the time delay method. The
Lyapunov exponents for the time series are defined based on its state space form. It
is noted that the Jacobian matrix 7' for the state space form consists of the vector
of partial derivatives of m as the first row, the next (p — 1) rows are given by the
identity matrix and the zero vector of dimension (p — 1). However, in practice, p
is often unknown. When the embedding dimension p, > p, it can be shown that
the first p Lyapunov exponents based on the reconstructed vectors are the same as
those based on p and the remaining ones assume —oc. In this sense, the Lyapunov

exponents for a time series are defined consistently.

Since the Jacobian matrix involves only the partial derivatives of autoregression, only
partial derivative estimation is needed in obtaining estimates of Jacobian matrices,
from which estimates of Lyapunov exponents are derived. We propose that the locally

weighted polynomial fit be used in the estimation of partial derivatives. This proposal

is also consistent with Eckmann and Ruelle (1985) and Abarbanel et al (1991).

Nonlinear prediction in chaotic time series in deterministic context is studied in e.g.
Farmer and Sidorowich (1987, 1988). The improvement of short-term forecasts may
be seen as an effective way to distinguish chaos and nonlinearity in time series, see
Sugihara and May (1990) and Casdagli (1992). The nonparametric regression esti-
mation to be discussed below can be used for nonlinear prediction in a noisy time

series, where the main issue is estimation of autoregression m based on past data.



1.4 Nonparametric Regression

Nonparametric regression has been a flexible tool of modeling dependence relation-
ships between variables. We will be concerned only with the random design model,
which is given by:

Yi=m(Xi)+ "3 (X)e, i=1,...,n (1.9)

where X;’s are 1id random variables in R?, ¢;’s are iid scalar random variables with
zero conditional mean and unit conditional variance, m is the mean regression func-

tion, and v is the conditional variance.

The kernel method is the simplest and most widely used technique in nonparametric
regression. A promising class of kernel estimators, usually called the locally weighted
regression estimators has been studied in Fan(1993), Fan and Gijbels (1992), and
Ruppert and Wand (1994). The locally weighted polynomial fit can be seen as a
smooth version of the popular local polynomial fit, which is used e.g. in Stone (1977),
Eckmann and Ruelle (1985), Abarbanel et al (1991), and Casdagli (1992). Other
reasons for choosing the locally weighted polynomial fit include theoretical optimality
considerations such as Fan (1993); no boundary effect, e.g. Fan and Gijbel (1992);
less computation, particularly in multivariate data, e.g. Cleveland and Devlin (1988);

and derivative estimation, e.g. Ruppert and Wand (1994).

The multivariate locally weighted polynomial fit in the nonparametric regression setup
is studied in Chapter 3, where the two important cases, the local linear fit and the local
quadratic fit, are investigated in detail. Explicit calculations on the asymptotic condi-
tional bias and conditional covariance matrix of the regression and partial derivative
estimators are given, generalizing the results of univariate derivative estimation in

Ruppert and Wand (1994) to the multivariate case.

The results in Chapter 3 are then generalized to time series in Chapter 4. A related
reference is Masry and Fan (1993), who have studied the univariate locally weighted

polynomial fit for a mixing process. Asymptotic normality of the estimators will be

10



established, along with the asymptotic bias and the asymptotic covariance matrix,
under general short-range dependence conditions. We also discuss the extension of
nonparametric estimation to fractal time series, that is, the finite-dimensional prob-
ability measure for the time series is only assumed to have a fractal dimension and

may be singular with respect to the Lebesgue measure.

1.5 Estimation of Lyapunov Exponents

It is straightforward that estimates of the Lyapunov exponents can be defined based
on Jacobian estimates. Let 7' be the estimated matrix product given as in (1.6)
but with 7’s replaced by their estimates T7s. Denote the singular values of T! by
51(1) > > Sp(l). For any choice of [ which depends on sample size n and tends to

infinity as n does, the Lyapunov exponents estimators are given by

5\2(1) = —logé;(l),i=1,2,...,p, where [ = [(n).

There are at least two issues. One is numerical implementation. To insure numerical
stability, the Lyapunov exponents should be computed using a proper algorithm,
e.g. the QR algorithms as discussed in Eckmann and Ruelle (1985). See also Parker
and Chua (1989). Another question is how to choose [ and what is the associated
convergence rate of A\;({)? It appears that [ should be chosen as large as possible.
However, it seems difficult to prove the convergence rates for such estimators. In the
case of A1, McCaflrey et al (1992) and Nychka et al (1992) have given a conjecture,
concerning an estimator and the convergence rate. See also Ellner et al (1991). An

additional problem may be the asymptotic distribution of the estimators.

To provide some insights for the above problems, we propose to study the estimators

for fixed [. Obviously, the estimator 5\2(1) for fixed [ converges (in some sense) to

1
\(D) = —log (1),

11



for ¢ =1,2,...,p, where é6;(I) > ---6,(l) are the singular values of the true Jacobian
product 7"

We call A(1) > -+ > A\, (1) the [—step local Lyapunov exponents (for their dependence
on the local trajectory X;_1,..., X1, Xo). It should be pointed out that X, can be
any point in the phase space. For any given fixed starting point xq, the interest may
be in the behavior of X;()’s, which are functions of Fy,..., F;_1. For example, their
distribution functions, means or the variances may be of interest. To answer these
questions, it is important to study the estimators j\i(l)’s for any fixed x;_1, ..., X1, Xo.
We will show that the convergence rate of 5\2(1) for each 7 is the same as that of
the partial derivative estimators. Furthermore, under general conditions, we will

characterize the asymptotic distribution of the estimators.

It is noted that the problem of estimating the local Lyapunov exponents may be inter-
esting itself for its more direct relevance to characterizing short-term predictability in
time series. The local Lyapunov exponents provide measures of local divergence rates
(corresponding to respective eigendirections). The largest local Lyapunov exponent
is particularly important as it characterizes the largest possible divergence rate for
each local trajectory. Quantifying the changes of the local divergence rate may have
important implications for making forecasts, e.g. in weather forecasting, since we
know the changes of speeds in phase space at which any errors will be amplified. The

importance of the local Lyapunov exponents in time series analysis is also discussed

in Wolff (1992) and Bailey (1993).

1.6 Organization of Chapters

The other chapters are organized as follows. Chaos and dynamical system theory,
particularly the ergodic theory, is reviewed in Chapter 2. The main theory includes
Lyapunov exponents, fractal dimensions, entropy, and Takens’ embedding theorem.

Chapter 3 is on multivariate locally weighted polynomial fit and partial derivative

12



estimation. The nonparametric regression setup is considered, where the observations
are assumed to be iid random vectors. In the time series context which is our main
concern, the locally weighted polynomial fit is studied in Chapter 4. We also discuss
the extension of nonparametric estimation to fractal time series, where the design
probability measure is only assumed to have a fractal dimension. The application
of partial derivative estimation to estimating Lyapunov exponents is considered in
Chapter 5. We are able to establish the asymptotic distribution for the estimators of
the local Lyapunov exponents. Some possible developments of the present work are

discussed in Chapter 6.

13



Chapter 2

THEORY OF CHAOS

2.1 Introduction

A nonlinear dynamical system can generate orbits that are typically aperiodic, irregu-
lar, and apparently random, a phenomenon often called chaos. Chaos has provided an
alternative way of interpreting irregular behavior in nature, particularly in physical
sciences, e.g. turbulence in fluid mechanics. While a good understanding of the onset
of chaos has been achieved using the geometric theory of dynamical systems, moder-
ately excited chaotic systems require the ergodic theory of differentiable dynamical
systems. The main subjects are the theory of dimensions, entropy, and Lyapunov

exponents.

The theory of chaos has also been applied to economics, ecology, epidemiology, biol-
ogy, etc., where typically only limited observations are available, and the data may
be subject to various sources of noises, such as observational and dynamical noises
(see Smith 1992a, Nychka et al 1992). Consequently, we will focus on noisy systems
as our underlying models. The study of noisy chaos is still at its infant stage, so
except in Section 2.5 where noisy systems are considered, we will mainly discuss the
theory of deterministic chaos. Only discrete-time systems are discussed, since we will

only be interested in modeling time series that has been obtained at equal time inter-

14



vals. Analogous theory exists for continuous-time systems. See Eckmann and Ruelle

(1985), Ruelle (1989).

The theory of dynamical systems and chaos are given in Devaney (1989), Farmer et
al (1983), Guckenheimer and Holmes (1990), and Ott(1993). The ergodic theory of
chaos is given in Eckmann and Ruelle (1985), Ruelle (1989), and Sinai (1989). We
will review mainly the ergodic theory of chaos and will follow closely Eckmann and

Ruelle (1985) and Ruelle (1989).

This chapter is organized as follows. Some well-known chaos examples are given in
Section 2.2. Some basic concepts, such as dissipative systems, strange attractors,
and asymptotic measures are defined in Section 2.3. In Section 2.4, we discuss the
main theory of Lyapunov exponents. The important theorem, Oseledec’s multiplica-
tive ergodic theorem, is stated for a sequence of stationary random matrices. The
Lyapunov exponents for a deterministic map or system are then defined, while the
definition the Lyapunov exponents for a random map or stochastic dynamical system
is postponed until Section 2.5, where a general stochastic dynamical system is defined

and its ergodic properties are discussed.

Even though a simple system (refer to Section 2.2) still defies a mathematical anal-
ysis, some idealized systems, such as hyperbolic systems, Axiom-A systems, are well

understood. Section 2.6 reviews some of this theory of dynamical systems, including

the SRB measure.

The fractal dimensions remain the simplest concept, which are discussed in Sec-
tion 2.7. Finite dimensionality of a dynamical system is an important property, and
a fractal dimension gives a test of just that. The information-producing aspect of
chaos, quantified by entropy, is discussed in Section 2.8. Section 2.9 reviews the
state space reconstruction theory of time series, including Takens’ theorem, and the

invariance of dynamical properties.
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2.2 Some Chaos Examples

This section gives some well-known examples that are known or believed to exhibit
chaos. New concepts are often illustrated through these examples later on. These
systems may also serve as benchmark examples as tests of statistical methods to be

developed later on.

(a)Logistic Map

The logistic map is given by the quadratic function

mu(a) = pr(l — ),

where the interest is on g > 0,2 € I = [0,1]. The difference equation given by m,
has the form z,11 = m,(z,) or 2, = m}(xo), where mJ is the nth composition of m,

and zg € I =[0,1].

The logistic map mimics the dynamics of population growth in biology and is well
known to go through a whole spectrum of possible dynamics as p varies over [0, 4]
(Devaney 1989). This is best illustrated by the bifurcation diagram, see Figure 2.1
a,b, where the set {mi(xo)}f\iNo for a typical initial value zq is plotted against the
control parameter y. Here, xq = .2, Ng = 200, N = 400. Figure 2.1a corresponds
parameter p between 2.5 and 4.0. Figure 2.1b is a refinement of one section in Figure

2.1a, corresponding to p between 3.84 and 3.86.

The diagram visualizes the change of the dynamical behavior of m, as the control
parameter p varies (occurrence of bifurcation). It is seen that,when y < 3 the logistic
map has simple dynamics, since it can be shown easily that every initial value in (0,1)
is attracted to the fixed point p, = (. — 1)/p. As p passes through 3, the dynamics
of the map becomes slightly more complicated: a new periodic point of period 2 is
born. The scenario of period doubling occurs as p tends to ps, ~ 3.570, at which
the orbit converges to a set, the Feigenbaum attractor, which has the structure of the
Cantor set, in the sense that it is a closed, totally disconnected and perfect subset

(Devaney 1989).
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At p € (fioo,4) several types of behaviour occur. There are several windows where
the map has periodic orbit. However it is believed that the set {y : A, > 0}, where A,
is the Lyapunov exponent (to be defined later) for the map m,, i.e. the set of u’s at
which the map is chaotic(and furthermore its attractor has an absolutely continuous
invariant probability measure) has positive Lebesgue. However the dynamics in this
region are not completely understood yet! See e.g. Sinai (1989). It can be shown

rigorously that my(z) = 42(1 — ) is chaotic on the interval I = [0,1]. Furthermore,
the invariant measure has density f(z) = 1/7y/z(1 — ).

The logistic map is noninvertible. This map is typical of the one-dimensional chaos,
which occurs only for a noninvertible map. In the case of a diffeomorphism M, i.e.
the map is onto and one-to-one, both M and M~! are differentiable, chaos occurs
only in two or more dimensions (Ruelle 1989). In higher-dimensional map, a new
object is created, so-called the attractor, which describes geometrically the long-term
behavior of a system. The Hénon mapping is a famous example of a two-dimensional

mapping that is believed to exhibit chaos.

(b)Hénon mapping

The difference equations from the map are given by:

2
g1 = by, + 1 — ax;
Y41 = Ty

where a and b are constants. Values ¢ = 1.4 and b = 0.3 are often chosen for study

(Hénon, 1976).

The evidence of chaos for the Hénon mapping with above chosen parameters can be
seen through numerical study. The Hénon attractor is the scatter plot of the orbits
{(z¢,y:)}2_, for some typical initial value (zq,yo), where Np is the number of the
transient steps that are discarded. See Figure 2.2, where ¢ = 14,6 = 0.3,z =
D, yo = .6, Ng = 500, N = 30000 4+ Ng. The Hénon attractor is locally a product of a
line segment and a Cantor set. Another example is the Tkeda map, which is defined

in the complex z plane.
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(c)Ikeda map
2(n+1) = p+ Bz(n) exp{ik —ia/[1 + |2(n) "]},

where parameter values p = 1.0, B = 0.9,k = 0.4, and « = 6.0 are often chosen.
The Ikeda attractor is given in Figure 2.3, a plot of {Z(n)}._y. , where the above
parameter values are used, Ny = 500, N = 10000 + Ny, z(0) = 21.2 4 12.5¢.

The above examples are discrete-time dynamical systems given by difference equations
or mappings. In contrast, continuous-time dynamical systems are given by differential

equations. A celebrated example is the Lorenz system (Lorenz 1963).

(d)Lorenz System

It is given by the autonomous ordinary differential equations in R>.

dfl(tt) = —oz(t) + oy(t)
dil—(tt) = —z(t)z(t) + ra(t) — y(t)
dil(tt) = x(t)y(t) — bz(t)

where values o = 10,b = 8/3,r = 28 are often chosen for numerical study ( Lorenz

(1963)).

The Lorenz system is one of the mostly studied systems. See Guckenheimer and
Holmes (1990), Sparrow (1982). The Lorenz equations are obtained by truncation
of the Navier-Stokes equations, and give an approximate description of a horizon-
tal fluid layer heated from below. This is similar to what happens in the earth’s
atmosphere. For sufficiently intense heating (represented by r) the time evolution
has sensitive dependence on initial conditions, thus representing a very irregular and
chaotic convection. This fact was used by Lorenz to justify the so-called “butterfly
effect”, a metaphor of the imprecision of weather forecasting. The Lorenz system is
the first example that is derived from an actual physical process and gives rise to a
type of attractor which is nonclassical (neither periodic nor quasiperiodic). See Fig-

ure 2.4a,b. The Euler algorithm is used for numerical integration, with initial values
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z(0) = 4,y(0) = 10,2(0) = 8, step size A = .01, warm up steps Ny = 2000, plotted
steps N = 20000 which corresponds to time interval of length 7" = 200. Details of the
algorithm is given in Parker and Chua (1989), where more sophisticated and accurate

algorithms are also available.

Another continuous-time system, which is often studied in the literature for its sim-

plicity, is the Rossler system.

(e)Rossler System

It is given by the autonomous ordinary differential equations in R?.

dz(t)
= —(y(t t
-+ =)
WO (1) + ay(t)
dz(t
W b ()20 — ex(1)
dt
where a, b, ¢ are parameters to be chosen. Parameter values a = .15,b = .2,¢ = 10

are often chosen, see McCaffrey et al (1992). The Rossler attractor is given in Figure
2.5a,b. The Euler algorithm is used, where z(0) = 5,y(0) = 8,2(0) = 9, step size
A = 0.01, warm up steps Nog = 5000, plotted steps N = 30000 corresponding to time
interval of length 7" = 300.

2.3 Strange Attractor

Strange attractor. A discrete dynamical system is given by iterated maps x, =
M"xq, where xg is an initial value in a set D, M : D — D is a map satisfying
M°x = x and M™*" = M™ o M™, where o denotes composition. D is usually a
subset of R? but can be quite general. D is called the state space or phase space.
In the following we will be mainly concerned with dissipative systems, for which the
volume in the phase space is usually contracted. The Hénon map, Ikeda map, Lorenz

and Rossler systems are all dissipative systems.
For a dissipative system, one can generally assume that there is a set U in R? which
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is contracted by time evolution asymptotically to a compact set A = N5 M"U. The
limit set A is clearly an invariant set, in the sense that M™ A = A, for all n, and it

has zero volume as a result of contraction.

The set A is said to be attracting with fundamental neighborhood U, if for every open
set VO A we have M"U C V for all sufficiently large n. Its basin of attraction is
defined to be the set of initial points x such that M"x approaches A as n — o0, i.e.

Unco M™U.

An important concept is the attractor, named after the fact that it is an attracting
set. We will not attempt to give a mathematical definition of an attractor. See Ruelle
(1989) for more details. Operationally, it is a set on which experimental points M"
accumulate for large n for most initial values (i.e. attracting). An attractor A should
be invariant, but need not have an open basin of attraction. An attractor should
also satisfy irreducibility, i.e. there exists a point xqg € A such that for each x € A
there is a positive n such that M"xq is arbitrary close to x (topological transitivity).

Equivalently, there exists a dense orbit {M"X¢},>0 in A.

An attractor is called a strange attractorif it has the property of “sensitive dependence
on initial conditions”, i.e. the evolutions from two infinitesimally close initial values
will diverge exponentially fast. This property is related to the dynamical properties
of an attractor, not just to its geometry. A dynamical system is called chaotic if it

has a strange attractor.

For example, the Hénon and Ikeda attractors from discrete-time systems are believed
to be strange, and Lorenz and Rossler attractors from continuous-time systems appear
to be strange. None of the claims has yet been proved, but numerical study shows that

they are strange or chaotic, that is, they all have one positive Lyapunov exponent.

The presence of chaos implies a strong sensitivity to small fluctuations. In a computer
study, due to roundoff error, the simulated trajectory may be completely different
from the true one. How to interpret it is clearly an important question. This is

also important if we are interested in the study of situations where the systems are
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always affected by some noise. We expect that the properties which are investigated
should be stable under small fluctuations. So we require that an attractor should
have stability under small random perturbations, or more precisely the asymptotic

measure p should be stable under such small perturbations (see below).

Invariant measure. An attractor A gives a global picture ( a geometrical property)
of the long-term behavior of a dynamical system. More details about an attractor are
given by a probability measure p on A, which describes how frequently various parts
of the attractor are visited by the orbit. We will review some concepts in ergodic
theory, and will use the abstract setup. Given a probability space (X, A), M is a
measurable transformation, p is a probability measure. p is called invariant wrt M,

if p(A) = p(M~'A), for any A € A.

The set A is an invariant set if M~'A = A. The measure p is ergodic if p(A) =0 or 1
for every invariant set A € A. The existence of an invariant probability measure on
the attractor is guaranteed in the following situation: if A is a compact invariant set
wrt M, there exists an invariant probability measure p with support contained in A.

Moreover, p can be chosen to be ergodic.

The property of ergodicity enables one to study an invariant ergodic measure on an

attractor from one typical orbit, as shown by the ergodic theorem.

Theorem 2.1 (Ergodic Theorem) Given a probability space (X, A,p), and a
measure-preserving map M, i.e. p(A) = p(M~'A), for any integrable function ®,
the following limit

1 n—1 ) B
lim — 3" ®(Mixo) = ®(xo) (2.1)

exists for p almost all xo. If p is further ergodic, then ® is constant and ® = E®(xo).

An important case in Theorem 2.1 is to choose ® = 14 for A € A. If p is ergodic,
equation (2.1) becomes:
1 n—1

lim — Z Limixgeay = p(A) as.. (2.2)
=0

n—oo p “
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Notice that the left-hand sides of equations (2.1) and equation (2.2) are time av-
erages, while the right-hand sides are one-time phase averages, i.e. averages over
the phase space weighted according to the probability p. The ergodic theorem says
“time average=phase average” for an ergodic invariant probability measure. In par-
ticular in the case of equation (2.2), the right-hand side is the average time spent
by the dynamical system in A and equation (2.2) says that the invariant probability
measure can be obtained from one complete orbit from a typical initial value under
the ergodicity assumption. This implies that it is in principle possible for us to do

statistical analysis of an asymptotic measure by analyzing a typical orbit.

However, p may be singular with respect to the Lebesgue measure, so that the initial
values for which the orbits can generate p may be in a set of Lebesgue measure zero.
Thus, a singular p may not be realizable in practice. Furthermore, in typical cases

there are uncountably many distinct ergodic measures.

Example Consider the map m : [0,1) — [0,1) defined by m(z) = 2z(mod 1). Each
number in [0,1) has a binary expansion 0.aiazas- - -, where for each ¢,a; = 0 or 1.
Clearly, f is a shift replacing 0.a1aqa3 - - - by 0.aza3 - - -. For any given value r between
0 and 1, a probability distribution p, can be defined by requiring that a; be 0 with
probability r, and 1 with probability 1 — r (independently for each ¢). Then p, is
invariant under the shift, and in fact ergodic. There are uncountably many such

measures, corresponding to the different values of r in (0,1).

The invariant measure on an attractor A given by the time averages of an orbit is
called an asymptotic measure, which describes how frequently various parts of A are
visited by the orbit. A natural choice of an asymptotic measure for a dynamical
system is the one given by the time averages for typical initial values, such as those in
a set of positive Lebesgue measure. For example, if p is absolutely continuous wrt the
Lebesgue measure, it is our choice because it is given by initial values in a positive
Lebesgue set and will be easily observed. The SRB measure (given in Section 2.6)

satisfies this selection condition.
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Going back to above example, the measure pg 5 corresponding to the Lebesgue mea-
sure [ 1s the natural choice because it is given by the time averages for almost all
initial values wrt the Lebesgue measure. It can be shown that all other measures
pry7 # 0.5 are singular with respect to [. Another example is given by the lo-

gistic map m(xz) = 4z(1 — z). A natural measure is given by the beta density
f(z) =1/{m\/z(1 —z)}.

Another selection process is related to the requirement of stability of the measure
under random perturbation. A physical system is often subject to some random
noises at a small level o, and it can be considered as a Markov process. In a computer
study, roundoff errors play the role of the random noises. A Markov process often
has only one stationary measure p,, and we may hope that p, tends to a specific

measure, often called the Kolmogorov measure when the noise level 0 — 0 (Eckmann

and Ruelle 1985).

These proposals can be substantiated in some simple systems, such as Axiom A

systems which are defined in Section 2.6.

2.4 Lyapunov Exponents

In this section, we will justify the existence of Lyapunov exponents introduced in
Chapter 1. We will first define Lyapunov exponents in the general context of a
stationary sequence of random matrices, then define them for a deterministic system.
The Lyapunov exponents can also be defined rigorously for a stochastic dynamical

system, as will be done in Section 2.5.

Consider a sequence of stationary p x p matrices Ay, Ag,.... Denote logtz =

max{0,log z}, where z > 0, we assume that
Elog* || A1 < <.

The sequence is said to be ergodic if all sets in its tail c—field F,, have probability 0
or 1, where F, = N, F., F, = c{A,, Ant1, ...}
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Define the product of matrices:
Tn — An st A2A1.

We will be concerned with characterizing the growth rates of 7™ as n grows. The
following theorem on the products of random matrices was first proved by Oseledec
(1968), who generalized an earlier result on the norm of products of stationary random
matrices (maximum growth rate) due to Furstenberg and Kesten (1960). We state

the theorem in the general context of a stationary sequence of random matrices { A;}.

Theorem 2.2 (Multiplicative ergodic theorem) With probabilily 1, the follow-
ing limit exists:

lim {(T™)TT™}1/ @) = A (2.3)

n—od

(where (T™)T is the transpose of T™.)

The logarithms of the eigenvalues of A are called Lyapunov exponents, denoted by
A > Ay >0 > A, If the sequence {A;} is also ergodic, the Lyapunov exponents are
constant, though A may be random in general. Let XV > X3 > . be the distinct
Lyapunov exponents, and d¥) the multiplicity of XD, Let E® be the subspace of R”
spanned by the eigenvectors associaled with eigenvalues < exp AV of A (the E)’s
are random in general). Then R? = B0 D E®) 5 ... and the following holds, with
probability 1,

Tim %bg T = AD, ifu € EO\E+), (2.4)
In particular, for all vectors u that are not in the subspace E(?) (thus for Lebesgue
measure almost all v ), the limit of left-hand side of Equation (2.4) is the largest

Lyapunov exponent.

Lyapunov exponents for deterministic systems. Consider a discrete-time dy-

namical system on R? given by:

Xnt1 = M(X,) (2.5)
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where M : R? — RP is a differentiable map. We denote by T'(x) the p x p Jacobian
matrix of M at x. The Jacobian matrix for the nth iterate M"™ is given by the chain

rule:

T7 = T(M"'x)--- T(Mx)T(x).

Now, assuming that there exists an invariant measure p wrt M with compact sup-
port, the sequence of random matrices {T'(M"~'x)} is stationary and satisfies the
conditions of Theorem 2.2, given x being randomly distributed according to p. So we

have the following theorem for a deterministic system M.

Theorem 2.3 (Lyapunov exponents in dynamical system) The limit

lim {(TT)TTr Y@ = A, (2.6)

n—oo

exists for p-almost all x. The logarithms of the eigenvalues of Ax are called Lyapunov
exponents, denoted by \y > Ay > ... > X,. If p is further ergodic, the Lyapunov

exponents are independent of X.

Furthermore, let XV > X2 > be the distinct Lyapunov exponents, and d¥) the
multiplicity of \). Let E{) be the subspace of R? spanned by the eigenvectors associ-
ated with eigenvalues < exp XD of A. Then R* = E( > E?) > ... and the following
holds, with probability 1,

1 : : :
lim —log ||T7ul| = A9, if u e EO\ED, (2.7)
In particular, for all vectors u that are not in the subspace E{?) (thus for Lebesgue
measure almost all v ), the limit of left-hand side of Equation (2.7) is the largest

Lyapunov exponent.

Intuitively, if there is a small change 6xq in the initial value x, the corresponding

change at time n is given by:

6%, T3 0%

= T(M"'x)---T(Mx)T(x)6xo.

29



For most 6xg, i.e. for §x¢ ¢ E?), we have 6x(n) ~ §xpe™™. So A\; > 0 corresponds
to exponential divergence. In the case of a bounded attractor which is our main
interest, if 0Xq is finite rather than infinitesimally small, the growth of 6x,, will not go
on infinitely, since 6x,, cannot be larger than the diameter of the attractor. Actually,
what we often observe is that, the initial exponential growth is rapidly followed by

folding and contracting.

Next, we discuss a stochastic dynamical system, and show how Lyapunov exponents

can be defined for such a system.

2.5 Noisy Systems

A finite-dimensional deterministic system may not be attainable in practical model-
ing due to small random noises, such as computer roundoff error, external noise from
the environment, measurement error, or even lack of fit due to some high-dimensional
component in the system which is impossible to estimate with limited data. More
discussions are given in Ruelle (1989), Smith (1992a,b), Casdagli (1992), Nychka et
al (1992), Chan and Tong (1994), and Lasota and Mackey (1994). Consequently,
we will consider a stochastic dynamical system as our underlying model. This view-
point appears to bring us closer to traditional stochastic modeling framework, such
as that discussed e.g. in Jazwinski (1970), Tong (1990). However, the differences
may be more important. The present approach emphasizes the finite-dimensional
deterministic structure, and deals with the case when the random noises (high to

infinite-dimensional component) are small enough and play a minor role.
A general vector stochastic difference equation (in discrete-time) is given by:
Xy = M(X5) + G(Xo) B, (2.8)

where M (-) is usually a differentiable map in R?, (G is a px p matrix whose components
are p—variate functions, £, ’s are assumed to be iid p—dimensional dynamical noises

with zero mean, and covariance matrix Y. Further, the £,’s are independent of xq.
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As a consequence, F, is independent of X,,_1,..., X7, Xo for any n, and the sequence

{X,} is a p—dimensional Markov chain.

We will assume that the Markov chain {x,} has an invariant and ergodic measure p
which has compact support. Jusfication of this assumption may be provided by the
Markov chain theory as given e.g. Nummelin (1984). A progress in this direction has
been made in Chan and Tong (1994).

We have given a discrete-time stochastic dynamical system. Continuous-time dynam-
ical systems can also be given which involves more advanced stochastic differential
equation theory, see e.g. Lasota and Mackey (1994). Equation (2.8) may be seen as
the system equation. An observation model may also be given which may include
the measurement noises. We will not go further into this framework, see e.g. Smith

(1992a), Jazwinski (1970) for more details.

Now we justify the definition given in Chapter 1 of Lyapunov exponents for a noisy
system. Consider model (2.8), where for simplicity we take (¢ to be a constant matrix.
Denote T'(x) as the tangent map of M evaluated at x, and denote the product of n

random matrices by

T" =T(Xp_1)- - T(X1)T(Xo).

One motivation for considering 7™ is that, the system (2.8) starting at Xy and
Xy = Xo + 6Xo(6Xo small), for which we assume same noise sequence Fi, Fs, ...,

the separation at the nth step is given by 6X,, = X] — X,, = T"6 X,.

If Xg is chosen according to p, the sequence { X, },>0} is stationary and ergodic. So
the sequence of random matrices {T(X,){n>01} is stationary and ergodic, and the
conditions of Theorem 2.2 are satisfied. The Lyapunov exponents for {T'(X,)} (>0

can thus be defined and are called the Lyapunov exponents for a noisy system (2.8).

From another viewpoint, equation (2.8) may be regarded as generated from compo-

sitions of independent random maps



where H;(-) = M(:) + G(-)E;,i = 1,2,..., and M, are fixed as defined before, but
E;’s are iid. So we may say that the Lyapunov exponents are defined for the random
map H. Lyapunov exponents for a general random map can also be defined, see e.g.
Kifer (1986). A stochastic dynamical system or a random map with at least one
positive Lyapunov exponent is said to be chaotic. In this work, what we mean by

chaos or noisy chaos should be interpreted in a noisy system in above sense.

2.6 Some Advanced Theory

Now we go back to deterministic systems. We will state some mathematical results
for some idealized systems. It is noted that properties of some simple systems, e.g.

in Section 2.2, remain to be proved.

We need some basic concepts. We say that M is a C°—diffeomorphism or home-
omorphism if M is one-to-one, onto, and continuous, and M~! is also continuous.
We say that M : D — D is a C"— diffeomorphism, if M is one-to-one, onto, and
both M and its inverse M~! are r—times continuously differentiable. We will use the
word “smooth” and diffeomorphism to mean C', unless stated otherwise. A smooth
d—dimensional manifold D C R? is a set for which each x € D has a neighborhood U
for which there is a smooth invertible mapping (diffeomorphism) ® : R — U(d < p).
Intuitively speaking, a d—dimensional manifold looks locally like R?. We say that a

subset D in R” is compact if its every open cover has a finite subcover.

In dynamical system theory, an important concept is hyperbolicity, which plays a
crucial role in the development of much of the mathematical theory. It is easy to
explain it in case of a fixed or a periodic point x. A fixed point (or periodic point
of period n,)x is said to be hyperbolic when Djps(x) (or Dyn(x)) has no eigenvalues

with zero real part.

For a fixed point x, the stable subspace E of the linear map Dys(x) is the span of n

eigenvectors whose eigenvalues have modulus< 1. The unstable subspace F} is the
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span of n, eigenvectors whose eigenvalues have modulus > 1. The center subspace
E is the span of n, eigenvectors whose eigenvalues have modulus = 1. Consider the
system from linear map 1" = Dy (%), i.e. y, = T"yo. The orbits {y,} in £ and EY
are characterized by contraction and expansion, respectively. Hyperbolicity implies

that the center space does not exist. Similar statements can be said about the linear

map Dy (%) in case of a periodic point x.

Nonlinear analogues of linear spaces £ and E} can be defined for nonlinear M, which
are called the invariant stable and unstable manifold, respectively. In the case of a
fixed point x, the stable manifold, denoted by W}, is a smooth invariant curve (in
general a manifold), with dimension equal to that of E, passing through x tangent to
E:, and composed of points y such that d(M"y,x) — 0 when n — +o0. The unstable
manifold can be defined in the same way, replacing n with —n in the definition. Similar

definition can be given for a periodic point.

In general, given an invariant ergodic measure p for M, for p-almost all point x, the
multiplicative ergodic theorem asserts the existence of linear spaces E{) > E®) > ...
such that

lim —log ||T7ul| < A9, if u € B,

n—oo n

The exponential expansion or contraction for the linear system 7' has important
implication for the nonlinear M. Actually, one can define a nonlinear analog of E{.

If \() < 0, one can define global stable manifolds as

. 1 .
W = {y: lim —logd(M"x, M™y) < A},

n—0oo n
These global manifolds, though locally smooth, tend to fold and accumulate in a very

complicated manner. We can also define the stable manifold of x by
1
W; ={y: lim —logd(M"x, M"y) < 0}.
n—0od n

(It is the largest of the stable manifolds, equal to W{)* where A() is the largest
negative Lyapunov exponent.) The unstable manifolds W} can be defined simply
through replacing n by —n in above definitions. Eckmann and Ruelle (1985) give

more details.
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A point x € R is wandering if it has a neighborhood U such that M™(U)NU = {)
for n large enough. The nonwandering set Q(M) is the set of all points which are
not wandering. The Q(f) is a compact M —invariant subset of R?, and contains the

attractor of the dynamical system.

An M —invariant set A is hyperbolic if there exists a continuous invariant direct sum
decomposition TyR? = FY% & FY% with the property that there are constants C' > 0
and 0 < A < 1 such that:

(1) if v € £, then | Dy (x)v]| < CA*|v|;

(2) if v € EZ, then | Dy (x)v| < CN'|v|.

See Eckmann and Ruelle (1985), Guckenheimer and Holmes (1990).

If the whole compact manifold D is hyperbolic, M is called an Anosov diffeomorphism,
e.g. Thom’s toral automorphisms and Arnold’s cat map in Eckmann and Ruelle
(1985), and Devaney (1989) are Anosov diffeomorphisms. If Q(M) is hyperbolic, and
the periodic points of M are dense in Q(M), M is called an Axiom-A diffeomorphism.
Every Anosov diffeomorphism is an Axiom-A diffeomorphism. Other examples in-
clude Smale’s horseshoe, and the solenoid. See Devaney (1989), Guckenheimer and

Holmes (1990) for details.

We now introduce the concept of structural stability. We will follow Ruelle (1989).
Two diffeomorphisms S, M : D — D are topologically conjugate if there exists a
homeomorphism ® such that ®05 = M o®. Then, a diffeomorphism M of a compact
manifold D is structurally stable if it has a neighborhood V' in the C'* topology (i.e.
M and S are close if both the diffcomorphisms and their (partial) derivatives are
close), such that every S in V is topologically conjugate to M.

The concept of structural stability is completely different from that of dynamical
stability (Lyapunov stability). The latter refers to individual orbits and requires that
there is no sensitive dependence on initial conditions. The former refers to the whole
system and asks that, under small C'' perturbations of the system, the qualitative

features of the system are preserved.
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It is known that if M satisfies Axiom-A, together with a hypothesis of strong transver-
sality, it 1s structurally stable. Strong transversality means that every intersection
point of W and W} is transversal for all x,y € Q(M) (W3 and W intersect transver-
sally in a point z = W2 N WY, if the tangent spaces T5x W2, Tx W span TxR?).

Now the SRB measure can be defined. Intuitively, due to the stretching in the unstable
direction, we may expect that an invariant measure is smooth along the unstable
directions. Such a measure is called an SRB measure. More precisely, consider a p-
measurable set of the form S = J,c4 Sa, where the S, are disjoint pieces of unstable
manifolds W*(each S, can be constructed by the intersection of a local unstable

manifold with S). If this decomposition is p measurable, then one has
p restricted to S = /pal(da),

where [ is a measure on A, and p, is a probability measure on S, a conditional prob-
ability measure associated with the decomposition S = J,c4 Sa. The p, are defined
[—almost everywhere. The ergodic measure p is an SRB measure (for Sinai-Ruelle-
Bowen) if its conditional probabilities p, are absolutely continuous with respect to

Lebesgue measure for some choice of S and its decomposition.

The SRB measure turns out to be the natural choice in many cases. It can be
shown that the time average of an orbit (Equation (2.2)) in section 2.3 tends to
the SRB measure p when n — oo, not just for p—almost all x, but for x in a
set of positive Lebesgue measure. We have the following result on SRB measures
for Axiom-A systems (refer to Eckmann and Ruelle (1985)). Consider a dynamical
system determined by a twice differentiable diffeomorphism M on a p-dimensional
manifold D. Suppose that A is an Axiom-A attractor, with basin of attraction U.
(a) There is one and only one SRB measure with support in A.

(b) There is a set S C U such that U \ S has zero Lebesgue measure, and

) 1 n—1
lim — Z darix = p whenever x € S.
n—oo p 4
=0

The following result due to Pugh and Shub (1984) given in Eckmann and Ruelle
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(1985) shows that the requirement of Axiom A can be replaced by weaker information
about the Lyapunov exponents. Let M be a twice differentiable diffeomorphism of an
p—dimensional manifold D and p an SRB measure such that all Lyapunov exponents
are different from zero. Then there is a set S C D with positive Lebesgue measure

such that
1 n—1

hm — Z 5Mix =p
=0

for all x € S. (P.640 of Eckmann and Ruelle (1985).)

It i1s worth mentioning a shadowing property for a hyperbolic invariant set. One
says that a sequence x = {z;}’_, is an a-pseudo-orbit for M if d(z;11, M(z;)) < «
for all @ <4 < b. A point y B-shadows x if d(M'(y),x;) < B fora < i < b. If
A is a hyperbolic invariant set, then for every § > 0, there is an a > 0 such that
every a-pseudo-orbit {z;}’_, in A is B-shadowed by a point y € A. This result is
known as Bowen’s shadowing lemma, see p.251 of Guckenheimer and Holmes(1990).

It implies that, while a computer may not calculate the exact orbit, what it does find

is nevertheless an approximation to some true orbit of the system.

At last, we mention that strong stochastic properties may be obtained for the asymp-
totic measure of a hyperbolic attractor. For example, the correlation function may
have exponential decay and the central limit theorem may be proved, see Pesin and
Sinai (1981). An important tool is using the simple representation in terms of sym-

bolic dynamic and Markov partitions, see also Guckenheimer and Holmes(1990).

In next two sections, we discuss the other two important class of ergodic quantities:

the fractal dimensions and entropy.

2.7 Fractal Dimension

Even though real objects are often well approximated by smooth sets, it is argued
that many real shapes are actually fractals (see e.g. Mandelbrot 1982, Barnsley 1988).

Fractal geometry deals with complicated and irregular sets. For example Cantor sets
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serve as a pathology in real analysis but are the very basic and prototype of a fractal.
There does not appear to exist a universal definition of fractals. In general it has
nonintegral dimension (defined below). Usually a fractal set has a very fine structure
and has some kind of (e.g. statistical) self-similar property, i.e. the structure of any
small portion resemble the whole in some sense(e.g. statistically). Because of the self-
similar property, fractals can be easily generated by simple algorithms, for example

using the iterated function systems of Barnsley(1988).

The main tool of studying fractals is the dimension in its many forms. There are
several fractal dimensions, which address different geometrical or statistical aspects of
a set. Fractal dimensions can be classified into two categories: one is set(metric)-based
dimension such as Hausdorff dimension, the other is measure-based dimension, such
as information dimension, pointwise dimension, correlation dimension, and Lyapunov
dimension. Generally, it may be expected that the fractal dimensions in each category
assume the same value, see Farmer et al (1983), Eckmann and Ruelle (1985), Ruelle
(1989). Other references of fractals and fractal dimensions include Mandelbrot (1982),
Barnsley (1988), and Falconer (1990).

The importance of fractals in the study of a dynamical system is that, most strange
attractors are fractals, e.g. the Hénon, lkeda, Rossler, Lorenz attractors are all frac-

tals, so that a fractal dimension is often an indication of chaos.

Hausdorff dimension is defined in terms of a metric of a set. Let A be a nonempty set
with a metric, and r > 0, and denote by o(r) a covering of A by a countable family

of sets o with diameter dp = diamo < r. Given a > 0, let
mo(A) = 1?1; Z(dk)a.
al\r k‘
When r | 0,m%(A) increases to a limit m®(A) (possibly infinite) called the Hausdorff

measure of A in dimension a. We define
dimgA = sup{a: m“(A) > 0}
and call this quantity the Hausdorff dimension of A. Note that m*(A) = +oo for

a < dimgA, and m*(A) = 0 for a > dimpy A.
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Given a probability measure p, its information dimension dimgp is the smallest Haus-
dorff dimension of a set S of p measure 1. The Hausdorff dimension dimg(suppp)
of the support of p may be strictly larger than dimpgp, see p. 641 of Eckmann and
Ruelle (1985).

A simple fractal dimension for p is given in terms of the probability mass of a small

ball. Let B,(x) be a ball of radius r centered at x, i.e.

B,(x) ={y : d(y,x) <r}

where d is some distance in R? such as the FEuclidean distance or the maximum norm.

If

r—0 log r

(2.9)

for p-almost all x, and d is independent of x, then d is called the pointwise fractal
dimension of p. In particular, if p is ergodic, the existence of limit (2.9) implies that

d is independent of x (see Ott 1993).

When an attractor has the pointwise dimension, it is called a homogeneous fractal.

However, it may often happen that
p[Bx(r)] ~ %,

namely the scaling index a depends on x, in which case we call the attractor an inho-
mogeneous fractal or multifractal. A multifractal measure p is not ergodic. See Ruelle

(1989), Ott (1993), Falconer (1990) for more discussions on multifractal measures.

Closely related to pointwise dimension is the correlation dimension. Since p[Bx(r)]

will in general depend on x, we consider the expectation wrt p, i.e.

EplBx(r)) = [ plBe(r)]p(dx), (2.10)
and define the correlation dimension as

4. — Tim 108 PrLBx(r)]

r—0 log r
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Another interpretation of (2.10) is given by

Elyxyysrn = / / Haeey)<ryp(dx)p(dy),

where X, Y are iid with distribution p. Above quantity is often called the correla-
tion integral, and is easy to estimate from time series. The correlation dimension
has perhaps received most attention due to a popular algorithm of Grassberger and

Procaccia (1983), which enables us to compute it easily based on time series, see e.g.

Eckmann and Ruelle (1985), and Smith (1992a).

Denote the Lyapunov exponents for a map M in R? wrt an invariant measure p
by Ay > --- > A, (also collectively called the Lyapunov spectrum). The Lyapunov
spectrum not only refers to the dynamical properties of the attractor, it also reveals

its geometrical aspects through the Lyapunov dimension.

Denote the sum of the k largest Lyapunov exponents by

Notice that the maximum of ¢,(k) is the sum of the positive Lyapunov exponents, and
that ¢,(k) becomes negative for sufficiently large k. (This is the case for dissipative
systems, where ¢,(p) < 01in a p—dimensional system.) When ¢,(k) > 0 and ¢,(k+1) <
0, we define the Lyapunov dimension as

cp(k) _
pyasy

dimy p=Fk+

The connection of Lyapunov dimension with other fractal dimensions are discussed in
Farmer et al (1983), Eckmann and Ruelle (1985), and Ruelle (1989). In particular, a
well-known Kaplan and Yorke conjecture says that the information dimension equals
the Lyapunov dimension if p is an SRB measure. In some special cases, this conjecture

is proved. Refer to Eckmann and Ruelle (1985) for more discussions.

39



2.8 Entropy

Lyapunov exponents quantify how much sensitivity to initial conditions, or chaos, is
present in a system. The entropy, defined as the average rate that information is
produced, is closely related to sensitive dependence on initial conditions. Two close
values which are indistinguishable at certain precision will become quite distinct at
some time later since they diverge exponentially fast in a chaotic system. In this sense
information is produced in a chaotic system. For example consider the dynamical
system given by m(z) = 2z(mod 1) for x € (0,1). This map has sensitivity to initial
conditions, and A = log 2. Clearly any two values which are different but cannot be

observed in given precision will become observable at some later time.

If p is an ergodic probability measure for a dynamical system M, the concept of mean
rate of creation of information h(p), often called the Kolmogorov-Sinai entropy can be
defined for p which has a compact set with a given metric. Given any finite partition
A= (A,..., A,) of the phase space, define
H(A) = =3 p(Ai)log p(Ay),
i=1
with the convention that ulogu = 0 when u = 0. We use A to denote the partition
generated by A in a time interval of length n through the evolution of M, which

consists of all the pieces given by
A, D M7T A, NN M AL

The following limits can be shown to exist: h(p, A) = lim,_., 2H(A™), and h(p)
is defined as the limit of h(p,.A) as the diameter of the partition A tends to zero.
Clearly, h(p,A) is the rate of information creation with respect to the partition A,
and h(p) its limits for finer and finer partitions. The last limit may be avoided, that is,
we actually have h(p, A) = h(p). This is the case if A is a generating partition. This

holds in particular if the diameter of A tends to 0 as n — oo. Refer to Eckmann

and Ruelle (1985) for more details.
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The relation of entropy to Lyapunov exponents is very interesting. We have the
following general inequality. Let M be a differentiable map of a finite-dimensional
manifold and p an ergodic measure with compact support. Then

hip) < 37 A (2.11)

A; >0
The equality corresponding to (2.11) seems to hold often for the physical measures
in which we are mainly interested. This equality is called the Pesin identity:

hip) = 32 A (2.12)

A >0

An important result due to Pesin is the following: if p is invariant under diffeomor-
phism f, and p has smooth density with respect to Lebesgue measure, the Pesin
identity holds. More generally, the Pesin identity holds for the SRB measures. The
following result due to Ledrappier and Young (1984) is given in Eckmann and Ruelle
(1985).

Theorem 2.4 Let M be a twice differentiable diffeomorphism of an m—dimensional
manifold D and p an ergodic measure with compact support. The following conditions
are then equivalent:

(a) The measure p is an SRB measure, i.e. p is absolutely continuous along unstable
manifolds.

(b) The measure p satisfies Pesin’s Identity.

Furthermore, if these conditions are satisfied, the density functions defined along un-

stable manifolds are differentiable.

The estimation of entropy provides another way of quantifying chaos. We refer to

Eckmann and Ruelle (1985) for related discussions and references therein.

2.9 State Space Reconstruction

Takens theorem. The state space reconstruction technique used in recovering prop-

erties of the original process from an observed scalar time series is justified by Takens’
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theorem in the deterministic case. Main references include Takens (1981) and Sauer

et al (1991).

First we review some basic concepts in differential topology. A smooth map M on D
is an ¢mmersion if the derivative map Dys(x) (given by the Jacobian matrix of M at
x) is one-to-one at every point x of D, or equivalently Dys(x) has full rank on the
tangent space. This can happen whether or not M is one-to-one. An embedding of D
is a smooth diffeomorphism from D to its image M (D), that is, a smooth one-to-one
map which has a smooth inverse. The map M is an embedding if and only if it is a
one-to-one immersion. We will use the word “generic” to mean that there exists an
open and dense set in the C''—topology of maps whose elements satisfy the stated

property. We state Takens’ theorem (Takens, 1981) in the discrete-time case.

Theorem 2.5 (Takens,1981) Let D be a compact manifold of dimension d. For
pairs (S,h), S : D — D a smooth diffeomorphism and h : D — R a smooth measure-

ment function, it is a generic property that the delay coordinate map ®(S,h) : D —
R¥*+L given by

®(S, h)x = (h(x), h(Sx), h(5*x),.. ., h(S*'x))

is an embedding.

Takens’ Theorem is extended to more general cases by Sauer et al (1991), where D is
a fractal subset with box-counting dimension dj, “the generic property” is replaced by
“probability-one” in a properly prescribed probability space, and the delay coordinate
map ®(S,h) : D — RPe is given by

®(S, h)x = (h(x), h(5x), h(S*)), ..., h(SP"'x))

where the integral embedding dimension satisfies p. > 2d;,. We refer to Takens (1981),
Sauer et al (1991) for more details, including the related theorems for the continuous-

time case. In the following we shall discuss the implications of Takens’ theorem
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for data analysis, including estimations of fractal dimension, entropy, and Lyapunov

exponents.

The following diagram shows the process of embedding the observation process

{h(s"z)} into a higher-dimensional process in R?

(S, h)
D —  ®(D) C TRr
Sl ! M
D —  ®(D) C TRr
(S, h)

where M is the induced map on the embedded space R defined by M = ®Sd~1,
The existence of ®~! or M is ensured if p, > 2d + 1 from Takens’ theorem. We have

the following relation among the maps
Mo =5, (2.13)

and in general we have

M = o5". (2.14)

Let’s look closely at how the reconstructed map M can given in the embedded space

RP. From (2.13), we have
M(®(S, h)x) = ®(S, h)(Sx) = (h(Sx), h(S?%), ..., h(Sx))
Clearly, M has the form
M(2o, 21, .., Tpt) = (21,22 - . ., (0, 1y« Tpomt))s (2.15)

for any point (g, x1,...,2p,-1) in RP*, where m : RP* — R is a smooth function

given by the univariate time series
Ty = m(a:t_pe, Tt—pe+1s Zl’,'t_l), t = 0, 1,2, e (216)

It is noted that, the fact that Takens’ reconstruction map M has the simple form
of (2.15) is from the use of the delay coordinate technique. This may be another
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advantage for use of the delay coordinate method in reconstructing the underlying
dynamics. As a result, the difficulty of reconstructing a p.—dimensional map is re-
duced to the problem of estimating only a p.—variate real function m. The latter is

a problem of multiple regression estimation.

Recovery of dynamical properties in time series. We now show how the geo-
metric and dynamical properties including fractal dimensions, entropy, and Lyapunov
exponents of the original system f can be derived from that of the reconstructed delay
map m in (2.16) or M in (2.15). These facts are often taken for granted in the liter-
ature. However, they do not follow immediately from Takens’ theorem. The needed
arguments will be stated below, but first some more concepts in ergodic theory are

needed.

Let S : X - X and M : Y — Y be two maps. Recall we say that S and M
are topologically conjugate if there exists a homeomorphism ® : X — Y such that,
&S = M®. The homeomorphism @ is called a topological conjugacy. Mappings which
are topologically conjugate are completely equivalent in terms of their dynamics. For
example, if S is topologically conjugate to GG via @, and x is a fixed point for S, then
Oz is fixed for M. Indeed, ®z = ¢(Sz) = &Sz = MPx. Similarly, ¢ gives a one-to-
one correspondence between periodic points of S and periodic points of M. One may
also also check that eventually periodic and asymptotic orbits for S go over via @ to
similar orbits for M, and that S is topologically transitive(i.e. S has dense orbits) if
and only if M is. For more discussions of topological conjugacy, and its important
applications in the analysis of dynamics via symbolic dynamics theory, we refer to
the excellent book by Devaney (1989). Next we will discuss the measure-theoretic

consequences of topological conjugacy.

Let (X, A, p) be a probability space, let M : X — X be a one-to-one onto map such
that both M and M~' are measurable: M~'A = MA = A. Assume further that
p(M™YE) = u(FE) for all E € A, that is, M is a measure-preserving transformation.
This system will be denoted by (X, A, u, M). We say that two systems (X, A4, u, 5)

and (Y, B, v, M) are metrically isomorphic if there is a one-to-one onto map ¢ : X —
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Y such that both ® and ®~! are measurable,
&S =M on X,

and

w(®'E) = v(E) for all E € B. (2.17)
The map ® is called an isomorphism.

[somorphic systems share many ergodic properties. An important isomorphism in-
variant the entropy h(M) of M defined in Section 2.8. The entropy can be used
to distinguish some nonisomorphic systems, and is in fact a complete isomorphism
invariant within certain classes of systems. The measure-theoretic fractal dimensions
and entropy for the asymptotic measure of S will be the same as that given by M,
if the corresponding measures are isomorphic. The invariant measures for S and M
are isomorphic, if they are defined by time averages of corresponding orbits through
®. Next, we shall discuss how the Lyapunov spectrum can preserved, where the

differential structure will be involved.

Since they are smooth, the tangent maps given by the Jacobian matrices for M, ®, S
satisfy
DM((I)X)Dq)(X) = D@(SX)Ds(X), (218)

for every x € D from (2.13). It is noted that Dg(x) has full rank but may not
be a square matrix, so its inverse may not be defined. More generally, we have the

following which corresponds to (2.14),

DM((I)Sn_IX) s DM((I)SX)DM((I)X)D@(X) = D@(Snx)Ds(Sn_IX) e Ds(SX)Ds(X).
(2.19)

From (2.18) and (2.19), it is seen that if x is a fixed point (or a periodic point with
period n), and if Dg is a square matrix and hence has an inverse, since Dy (Px) is
similar to Dg(x) (or Dam(®x) is similar to Dgn(x)), their eigenvalues will remain the
same, and consequently, the Lyapunov exponents at x, defined by the logarithms of

modulus of the eigenvalues, are preserved. More generally, for any given point x, if
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S has Lyapunov spectrum A(x) > Aq(x) > ... > A\, (x) at x, the first p Lyapunov
exponents of M from the corresponding orbit through ® will be the same. Under
an ergodic measure p, S has Lyapunov spectrum which is independent of the initial
values, the first p Lyapunov exponents of M will be the same as those of S under the

corresponding ergodic measure p®~!.
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Chapter 3

MULTIVARIATE LOCALLY
WEIGHTED REGRESSION

3.1 Introduction

Regression models have been used in modeling dependence relationships among vari-
ables. Suppose we are given data (Y1, X1),...,(Y,, X)) which are assumed to be a
set of independent and identically distributed RP*!'-valued random vectors, where
the Y,’s are the scalar response variables and the X;’s are the RP-valued predictor
variables with density function f. The multivariate (mean) regression problem is that

of estimating the conditional mean function
m(x) = E(Y]X = x)

at a p—dimensional point x in the support of f. We denote the conditional variance

function by v(x) = Var(Y|X = x). A specific model formulation is given by:
Yi=m(X;) + v (X)e, i=1,...,n (3.1)

where ¢;’s are independent and identically distributed scalar random variables with

E(&i]Xi) = 0 and Var(e;|X;) = 1. The above setup with X,’s being random variables
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is called the random design model. When {x;} are predetermined quantities, and
{Y;} are the corresponding response random variables, a model similar to (3.1) is
formulated as

}/i = m(XZ) + VI/Q(XZ')&Z', 1= 1, e,y

where m(x) is the mean of Y for any given x, and {e;} are iid with zero mean and
unit variance. This latter formulation is called the fized design model. Since we will
be concerned with applications in time series which belong to the random design
setup, we will only state results for the random design model. However, the methods

presented here are equally applicable to the fixed design model as well.

Since in many applications a parametric form is not known, considerable interest
has centered on nonparametric regression. In a nonparametric setup, a parametric
functional form is not specified, instead m is only assumed to satisfy some general
smoothness conditions. The mostly studied nonparametric regression methods in-
clude the kernel method and the smoothing spline, see Hardle (1990), Miiller (1988),
and Rosenblatt (1991).

The kernel estimators seem to be the simplest and are often used. There are two pop-
ular kernel estimators of regression, one often called the Nadaraya- Watson estimator
myw, the other the Gasser-Muller estimator magas. For simplicity, we only discuss
the two estimators with univariate predictor (p=1). The Nadaraya-Watson estimator

myw 1s given by

ﬁ’LNw({L') =

(nh)~" i, K((Xi —x)/h)Y;

(nh)=' iy K((Xi —x)/h)
where K is a kernel function, often given by a density function, and A is the bandwidth
parameter, which controls the neighborhood of data points used. myw generalizes the
concept of local averages or means. Another interpretation is that muyw minimizes
the weighted sum of squares " (Y; — @)K (%:=2). The Gasser-Miiller estimator

megar 1s given by

t;
tem(x) =Y Ye | RTK(x —t/h)dt,

=1 ti—1
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where 1y = —o00, 1, = 00, t; = (X + Xgig1))/2 fori=1,...,n—1,and X(),..., X()

are order statistics among the X’s and Y(y),...,Y¥(,) are the corresponding ¥’s.

Chu and Marron (1992) have compared the two regression smoothers based on the
criterion of (pointwise) asymptotic mean squared error, which comprise two parts,
the squared bias and the variance. Under some regularity conditions, for an interior
point z, the bias of the two estimators have the following expansions corresponding

to (4.3) and (4.4) of Chu and Marron (1992).

Bias(rmnw(z)) = %/t2h2{m(2)($) + Qm’(x)@} + O(n_l/th/Q) + 0(h2),

i)
Bias(ihau(2)) = guh'm®(z) +O(™) + ofh?),

where m/(z), m®(z) denote first and second derivatives of m at z, etc., and p, =
Ju?K(u)du. Tt is easy to see that the biases are not comparable. In particular, the
asymptotic bias of ryw involves the extra term poh?m’(f'/f), which be undesirable
in some sense, e.g. in a minimax-theoretic sense as demonstrated by Fan (1993). On

the other hand, the variances of the two estimators have expansions which correspond

to (3.5) and (3.6) in Chu and Marron (1992):

Var(iiuyw) = 7’;2?(‘10) + o((nh)™),
Var(fgy) = g:]i?(‘f) +o((nh)™),

where Jo = [ K(u)*du. Tt is seen that mgas is not as efficient as ryw in terms of

the asymptotic variance.

A resolution to the choice of kernel estimators is given by Fan (1993), who has made
the interesting discovery that the local linear regression estimator, which will be de-
fined in Section 3.3, can have advantages of both estimators, namely the local linear
smoother attains the same asymptotic bias expression of mgy while maintaining the
same asymptotic variance as myw. See Section 3.3 for more details. Fan also finds
that the local linear regression estimator has some nice optimality properties in terms

of minimax efficiency, see Fan (1993) for more details. Moreover, the nice properties
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of the local linear regression estimator at an interior point also carry over to a bound-
ary point. In particular, the local linear estimator automatically has bias of order
O(h?) near the boundary, so it is free from the boundary effect which happens with
myw, maum- See Fan and Gijbels (1992) for further details.

The local linear regression estimator, given by the local linear fit, is a special case
of the locally weighted regression estimators or estimators from the locally weighted
polynomial fit, as studied in Stone (1977, 1980), Cleveland (1979), Cleveland and
Devlin (1988), and Ruppert and Wand (1994). The local polynomial method, partic-
ularly the local linear fit, is easy to implement. This is particularly important in the
multivariate case, where computation is often one of the main concerns. Multivariate
locally weighted regression is studied in Cleveland and Devlin (1988), and Ruppert
and Wand (1994), where the local linear fit and the local quadratic fit are considered.

Nonparametric derivative estimation of a regression function is often required for
constructing confidence intervals or bands for a regression function or in a bandwidth
selection procedure for a nonparametric regression. It also has some real applications,
for example in the study of growth curves in a longitudinal study (e.g. Miiller 1988).
Our interest is motivated by application in estimating the Lyapunov exponents, which
are defined in terms of the partial derivatives of the autoregression function, see

Chapter 5.

Nonparametric regression estimates of derivatives have often been studied in a fixed
design context, e.g. Miiller (1988). It is usually given by either differentiating regres-
sion estimators, or using a higher-order kernel. A drawback with these estimators is
that they often have complicated form and are not easy to analyze, particularly in the
case of random design setup, which is our main concern. On the other hand, Ruppert
and Wand (1994) have studied the local polynomial estimators in the univariate case,
which turns out to be easy to interpret and to study. Moreover, the boundary effect

in connection with traditional nonparametric derivative estimation is eliminated.

In this chapter, the locally weighted polynomial fit is studied in the multivariate
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predictor case. Two important cases, the local linear fit and local quadratic fit,
are studied in detail. We will derive the large-sample behavior of the conditional
bias and conditional covariance matrix of the regression and derivative estimators
for both cases. The results on regression estimators have appeared in more general
form in Ruppert and Wand. The problem on partial derivative estimation seems to
be considered for the first time here, and our results generalize directly Ruppert and
Wand'’s results in the univariate case. The results will also be useful for the bandwidth

selection problem. Results of this chapter will be generalized to dependent data in

Chapter 4.

This chapter is structured as follows. Section 3.2 gives some notations and preliminar-
ies. Section 3.3 discusses the local linear fit. Section 3.4 discusses the local quadratic

fit. The proofs of theorems are given in Section 3.6.

3.2 Some Notations

Given a p x p matrix A, AT denotes its transpose. For A;,---, A,(p > 1) which are

square matrices or numbers, we denote

Aq
diag{Ala"'7Ap}: s
Ap
where the suppressed elements are zeros.
We denote vecA as the column vector stacking the columns of A. That is, let A =
(a1,---,a,), then
ai

(5]
vecA =

Aq

If A = (a;;) is a symmetric matrix of order p, we use vechA to denote the column
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vector of dimension p(p + 1)/2 by stacking the elements on and below the diagonal

column by column, that is

T
vechA = (a1, -+, Gp1, a2, Apa, 5 App)

vech” A is used as a shorthand notation for {vechA}7.

We need some notations and preliminaries in multivariate calculus. For a given point
x = (z1,-++,7,)T in RP, let U denote an open neighborhood of x, let C*(I/) denote
the class of functions whose (mixed) partial derivatives up to dth order exist and are

continuous in U. For g(x1,---,z,) € C4U), define the first-order differential operator

d
dz;

s by
0 _ Jg(x)

define product of two differential operators Dy, Dy by

1 <i<p,

Dy Dyg(x) = Dy(Dqg(x)), for any g € C4U),

where Dy, Dy are any of %’s. Then higher-order differentials are defined based on
products of first-order differentials, e.g. the second-order partial derivative operators

are given by
L )

I v 2 . .
&r? (&m) ’ 8:(:28:(:] 6:(:2 al’j’Z 7£ J:

k3

and more generally denote the [th-order partial derivative operators by

9! ] 9!
(

0z 0z -~ Oz Oxy 0% --- Oz

)7

where ¢1, ..., 1, are nonnegative integers and 2; + - - - + 14 = [. The [th-order operator

on function ¢ is defined by

g = — L)

0z 0x3 -+ Oz 02 0% -+ - Oz

for any ¢ € CD(U),1 < d. The Ilth-order differential of ¢ at x is given by

(zp: ailfjiui)lg(x) — Z Ol 0 g(X) ' (Ul)il . (up)ip7

11 lp i p [
i=1 1 yenrtp al‘faxf - Oxy
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where the summations are over all distinct nonnegative integers ¢4, ...,7, such that

it iy = Land O = 1/(i ).

k3

Given a random sequence {a,}, we denote a, = o0,(7,) if 7, 'a, tends to zero in
probability. We denote a, = O,(7,) if - a, is bounded in probability, that is, for
any € > 0, there exists an M., N, such that

Py, an| > M,) < ¢, for all n > N..

The concept of stochastic order can be extended to a sequence of vectors or matrices
{A,}, through definition of its components. In particular, we denote a sequence of
p X p matrices A, = O,(~,) if and only if each component A, (¢,7) = Ou(yn), 1,5 =
1,...,p. Letting ||A] denote a norm of a matrix A, say ||A]| = (327, Ai, )22,
then A, = O,(7,) if and only if ||A,|| = O,(7.).

3.3 Local Linear Fit

In this section we study the local linear fit with multivariate predictor variables.
Specifically, at any given x, the local linear estimators of regression and partial deriva-

tives are derived by minimizing the weighted sum of squares

i{Yi —a—bT(X; — X)}QK(Xih_ X). (3.2)

where K (-) is the weighting function, h is the bandwidth, and a and b are parameters.

The solution @ = m(x) is an estimate of m(x), and b = D;ZX) is an estimate of
D, (x) = (0m(x)/dz1,--+,0m(x)/dz,)T. Written in matrix form, the local linear

estimator 3 = (a, ?)T)T is given by:

B=X"WX)"'X"Wwy
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where Y = (Yy, -+, V)T, W = diag{[&’(%), e ,K(%)}, and we use X to denote
the n x (p+ 1) design matrix

(X —x)T

1 (X, —x)T

The weighting or kernel function K is generally a density function. For example one
possible choice is the standard multivariate normal K,(x) = (27)7?/? exp(—||x||?/2).
The uniform kernel K,(x) = Cb_ll{||x||§1} is often used by practical workers, where

Cy = Wp/Q/F(¥) is the volume of the p-dimensional unit sphere.

A large family of kernels is given by

Coa(l—|x||*)?, if x| <1

P = D
0, otherwise,

for > —1,a > 0, where (3 is the normalizing constant which makes K integrate

to one, and is given by: Cus = 272 B(f+1, 2)/(al'(£)), where B is the beta function,

I' is the gamma function.

Some important cases:

Ky(a=2,8=1): Epanechnikov;
Ky(a=2,8=2): biweight;
Kays(a=2,8=3): triweight;
Kss(a=3,8=3): tricube.

In practice, the choice of a particular kernel is often based on considerations of smooth-
ness and computational efficiency. For example, with some care in programming,

kernels of finite support speed up computation considerably.

Instead of using A"? K ((X — x)/h), more general |B|"'K(B~'(X —x)), where B is a
positive definite matrix, can be used as our weighting function. We will not pursue
this generalization further, but refer interested readers to Ruppert and Wand (1994)

for related discussions.
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For simplicity, from now on K will be assumed to be spherically symmetric,i.e. there
exists a function k such that K(x) = k(||x||), where || - || is the Euclidean norm.
Without affecting the estimators, K is normalized to integrate to 1. Most kernels in

use, including all the kernels given above, satisfy these conditions.

Since the unconditional moments of the estimators considered here may not exist
in general, in this chapter we will work with their conditional moments (given ob-
servations of predictor variables X;’s). More insights are given by considering the
large-sample behavior as h — 0,nh? — oo. The following theorem gives the large-
sample expansions for the conditional bias and conditional covariance matrix of the
local linear estimators. We assume that the kernel K is a spherically symmetric

density function and satisfies the moment condition,

/uf[&’(ul, e up)dug - - duy, < oo, (3.3)

Theorem 3.1 For an interior point x = (x1,+--,z,)] inside the support of design
density f and f(x) > 0,v(x) > 0, if there exists an open neighborhood U of x such
that m € C3(U), f € CYU),v € C°(U) then for h — 0,nh? — oo as n — oo, the
conditional bias of the local linear regression and partial derivative estimators have

the asymptotic expansions

Lh2 0, V2 (x) + B2 (o(h) + O, ({nh?}~4))

= 2 2 1 7 (34)
b(m, K) + g sbi(m, K) + h(o(h) + Oy ({nh?} %))
where
P 9%m(x)
2 _
Vm(x) - ; al’? 9
b(m, K) = / 1> L) K (w)du
’ re = Oy



/Mﬁ—l +3p3 Y gﬁa;
2°m(x
_ 4 31‘( ) 3:“2 2iz2 Ta(m) (3.5)
pa g 4 3y 2l
and
bi(m, K) = / u{u’ i, (x)u} K (u) DY (x)udu
RP
~d / ul H,,,(x)uk (u)du} D;(x)
RP
(1a u%)aamg W 4oy yr, S o
_ | (e 3)° éx) e +2/‘ Ez’;éz T A
x) 9 1 32m(x) df(x
(;u - IMQ) xf% ) f E Sxpﬁ(r,) gz(p)
The conditional variance-covariance matriz has the asymptotic expansion
m(x)
COV o Xl,XQ,...,Xn —
D, (x)
(x)Jo 0
hP f(x) o (3.6)
0 rtomme ]

—|—#diag{1, h' I} o(1) 4+ O,({nh?}~2)]diag{1, L~ I},
where [ is the identity matriz of dimension p,
= /u’iK(ul, Ug, -+ Uy )dugduy - - - du,
Jr = /uf[&’z(ul, Ug, -y Uy )durduy - - - du,

for any nonnegative integers £.

REMARKS ON THEOREM 3.1:

1. For the results on the regression estimator to hold only, the assumptions m €

C3(U), f € CY(U) are not necessary. Instead weaker assumptions such as m €

C*U), and f € COU) will suffice.
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2. With this theorem, the asymptotic expansion for the conditional mean squared
error (CMSE) of the partial derivative estimator at an interior point can be
easily given. The optimal h which will balance the asymptotic conditional bias
and asymptotic conditional covariance matrix is given by the rate n~ 7. The
convergence rate in the sense of CMSE of the estimator using the optimal A is
seen to be of order n_zﬁ, which attains the optimal rate established in Stone

(1980).

3. In the special case p = 1, the conditional mean squared error of m/’(\r) is ap-

proximated by

! — 12 mI(z) f(x v(x).J.
h4l_4m(3)x Ha — Py (2) /()2 ()2
32 =)+ 2412 f(z) } p2’ f(z)nh?

3.4 Local Quadratic Fit

In this section we consider the main case, the local quadratic fit with multivariate
predictors. The local quadratic estimator is derived by minimizing the weighted sum

of squares

SV - a = (X =) - (X - TEG - 0PRSS, (3

where @ is a real number, b is a p—dimensional vector, and L is restricted to be a lower
triangular matrix for identifiability. Note that the solution a = m/(;() is an estimate
of regression function, b corresponds to an estimate of D,,(x), and I corresponds

to estimates of elements in the Hessian matrix of H,,(x). Let H,,(x) = (h;;) is the

Hessian, L(x) = (I;;) satisfies
lij=1q hi/2 ifi=j
0 i<
Note that the number of parameters in a,b, L is given by ¢ = 1(p + 2)(p + 1). The
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following table illustrates values of ¢, p for p < 10, which demonstrates the polynomial

growth of parameters with respect to the number of predictor variables.

dimension ‘1 2 3 4 5 6 7 8 9 10
3 6 10 15 21 28 36 45 55 66

parameters

Denote the solution by
B = (a,b", vechT{L})T.
Then B is given in matrix form by
A= X"WwxX)"'X"wy (3.8)
where Y = (Y1,---,Y,)T, W = diag{ K (¥7*),. .-, K(¥2=X)} and
1 (X; —x)T vech™ {(X; — x)(X; —x)7}
1 (X, —x)T vech™{(X, —x)(X, —x)T}
nxgq

We will assume the kernel K is spherically symmetric as in Section 3.3. We also

assume that K satisfies the moment condition,
/u%ZK(ul, ey )dug - - duy, < oo.

As in Section 3.3, our purpose is to study the conditional bias and conditional covari-

ance matrix of B In particular, the conditional bias is given by
E(B| X1, X,) = 8= (X"WX)T'X"W(M - X8), (3.9)

and the conditional covariance matrix is given by

A

Cov(B | X1, -, X,) = (XTWX) ' X"TWVWX(X"TWX) ™, (3.10)

where

M = (m(X1), -, m(X,)),V = diag{v(Xy), -, v(X,)}.

The large sample asymptotic expansions for the conditional bias and covariance ma-
trix of the local quadratic regression and derivative estimators are given in the fol-

lowing theorem.
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Theorem 3.2 For an interior point X inside the support of design density [ and
f(x) > 0,v(x) > 0, if there exists an open neighborhood U of x such that m €
CYU), f € CYU),v € C°U), then for h — 0,nh? — oo as n — oo, the conditional

bias of the local quadratic regression and derivative estimators have the asymptotic

ETPANSION:
m(x) m(x)
E DHX) - Dm(X) X1,X2,...,Xn =
vech{L(x)} vech{L(x)}
E0(m, K) + 501 (m, K)

5 b(m, K) (3.11)
h27<7n7]()'+'}%;jvi(nial()
+ diag {h%, B2, hIy}o(h) + O,({nh?} 7)),

where Iy, Iy are the identily matrices of dimensions p and p(p + 1)/2, respectively,
b(m, K) is defined in (3.5) in Theorem 3.1 of Section 3.3, and

15 — pafis 84m(x)
O(m, K) = Z 8;1; —6m 2 856281;2’

Ha __ﬂQ i=1 1<Z<]<p

2 P53
M — Pape = 0°m(x) 0f(x) 5 *m(x) df(x)

0 K) = E — E
i(m, &) pa—p3 = 0z} O, 32 oy, Oni0z} O, ’

E]

and y(m, K) and v (m, K) are vectors of dimension p(p+ 1)/2 with components

7(”17]() ::(7ﬁ17"'77%177?27'"77@27"'77%p)T7

1 pe — papg 9*m(x) + L piapi > d'm(x)

TEE g pa — p3 Ox? 1;54 —u3 dzx2oz?’

<k<p

ki
for1 <1 <np.
s O'm(x) | O'm(x) 1 d*m(x)
T 3!@{8:1;?3% + Jz;0x? 3 2/ 2 dz}dx;0x;’

1<k5p
k#1,]

for1 <j<i<p.

and

yi(m, K) = (ya(1), (1), 922(1), - 2(1), 5 (1))
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i 3 papa — p3) @J:? @:1:Z 2 fz e @:1328:1;k oxy, '

k#£1
for1 <1 <p.
s Pm(x) If(x) ;L_Q{ag’m(x) daf(x) N 2*m(x) 8f(x)}
H2 Oxp0z;0x; Oxy, 2 @xi@a:? Oz 0x20x; Ox;

%ii(1) =
1<k<p
k#2,7

for1 <y <i<p.

The conditional variance-covariance matriz is given by:

m(x)
Cov Dy (x) X1, Xoy oo, X p =
Vech{L/()\()}
0 ph~2vech™{I}
v(x) 2p
nh? (x) 0 Jopy “h==1 0
dh~2vech{I} 0 h={A — %Vech{]}vech:r{]}}
I .. 11y
+ Wdlag{l, R, b2 1 o(1) + O, ((nkh?)~2)]diag{1, A " I, A2}, (3.12)
where

p=(pa—p3) H{Jo(pa+ (p—1)p3)? = 2pJopia(pa + (p— Vp3) + ppa(Ja+ (p— 1)J3)},

¢ = (pa — 13) " {Japa + (2p — 1)Jap — (p — 1) I3 p2 — Japa — Jopapa — (p — 1)Jopi3 },

A= diag{)‘la)‘Qa"'7)‘27)‘17)‘27'"7)‘27"'7)‘17)‘27)‘1}7

p—1 p—2

where
M= (Jo = J5) (e — p3) 7% e = T3 g

Note that pig, J; are defined in Theorem 3.1 as moments of K and K?, respectively.
REMARKS ON THEOREM 3.2:

1. For the results on the first-order partial derivative part to hold, the assumptions
m € CYU),f € CYU) are not necessary. Instead, the weaker assumptions

m e C3(U) f e C°U) will suffice.
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2. The assumptions m € C*U), f € C'(U) are necessary for the regression estima-
tor and the estimators of second-order (mixed) partial derivatives, i.e. Hessian
matrix estimation. Under weaker assumption m € C3(U), f € CO(U), their

bias have lower orders of O(h*) and O(h), respectively.

3. We can compare the performance of first-order partial derivative estimator from
the local quadratic fit to that from the local linear fit in Theorem 3.1 of Section
3.3 ( under the same smoothness assumption on the regression function). It

is seen that the local quadratic approach eliminates the undesirable bias term

h2

mbl(m, K) in the local linear derivative estimator.

4. It can be shown that the order of bias and covariance matrix for the first-order
partial derivative estimator at the boundary remains the same, i.e. the locally
quadratic polynomial approach to estimating first-order partial derivatives is
free from the boundary effect in the sense that the asymptotic convergence rate
is unaffected at the boundary, though more variability may result due to fewer
observations being used. On the other hand it can be checked that the local
linear estimator of partial derivatives suffers from boundary effects, in that the

order of bias at the boundary points is of O(h) instead of O(h?).

The following corollary discusses the properties of the local quadratic partial deriva-

tive estimator as a consequence of Theorem 3.2

Corollary 3.1 The pointwise conditional mean squared error (CMSE) of the gradient

vector Dy, (x) is given by
E{[D(%) = DI | X1, Xz, X} =
R pJav(x)

—||b(m, K)||* + ———t—.
ey M e

The locally optimal h which minimizes (3.13) is given by

(3.13)

9p(p—|—2)]2y(x)}p%n_#‘
Jx)[o(m, K)|*

hopt(x) = {
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The minimum pointwise CMSE is given by plugging in hopt(X)

_4 2p+4
2)J. »+6 ||b K)| | »te 4
CMSEqp(x) = {p(p+2) 22pl/+gx)} +% || (Zn, )| # .
3 4 f(x) 7

It is seen from Corollary 3.1 that the convergence rate of the estimator with the opti-
mal & is given by n_#, which attains the optimal rate as established in Stone (1980).
The asymptotic analysis provides some insights on the behavior of the estimator. The
bias is quantified by the amount of smoothing and the third-order partial derivatives
at x for each coordinate. Bias is increased when there is more third-order nonlinearity
given by b(m, K) and more smoothing. On the other hand, the conditional variance

will be increased when there is less smoothing and sparser data.

3.5 Discussion

The local polynomial fit can also be applied to estimate other conditional functionals
rather than the conditional mean. Examples include the conditional variance and the
conditional distribution function. When the conditional distribution is asymmetric,
percentile regression may be more informative, which also has the robustness property.

The idea of local polynomial fit is also useful for density estimation.

Another research problem is data-based bandwidth selection of the regression esti-
mator, for which the result on the Hessian matrix estimation is particularly useful.
The local polynomial method can also be used in time series analysis, e.g. in model
identification and nonlinear prediction. Results in this chapter will be generalized to

time series in Chapter 4.

In principle, generalization to a higher-order polynomial fit can be considered simi-
larly. However, there are serious limitations to higher-order local polynomial fits. The
local polynomial method suffers from the usual “curse of dimensionality” problem in
nonparametric regression estimators, that is, the data required for a given precision

goes up exponentially as the dimension p of predictor variables increases. The prob-
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lem gets worse for higher-order fit, such as third-order, or fourth-order polynomial

fit.

In some situations, the global estimation of a regression or partial derivative is of
interest. Since the regression or derivative surface may be smoother at some parts,
and rougher at other parts, while the design density may be higher at some parts and
lower at other parts, it is certainly advantageous to require an estimator to be spatially
adaptive in the sense it chooses the bandwidth locally to adapt to local conditions.
By using ideas of variable bandwidth and nearest neighbor estimation, the estimators
considered here can be modified to have the adaptation property. Consult Fan and

Gijbels (1992) for results in the univariate case.

Other approaches have been proposed in the literature to deal with high-dimensional
data, including CART, Projection Pursuit, MARS, and neural net. CART and MARS
also possess the adaptation property. Essentially, these methods search for a lower-
dimensional representation of the underlying data, and hence avoiding the dimension-
ality problem. In principle, the local polynomial fit can be used in combination with

CART, Projection Pursuit, and MARS to reduce the curse of dimensionality.

Though polynomial functions provide a natural local representation for smooth func-
tions based on the principle of Taylor expansion, there are certainly some other rep-
resentation functions which are worth considering in some situations, such as the
wavelets basis. The wavelets estimator is nonlinear, in the sense that it is a nonlinear
function of {Y;}, as opposed to the linear estimator, which can be written as a linear
combination of the Y’s with the weights depending only on the X’s, e.g. the local
polynomial estimators are linear. In some situations, linear estimators cannot be im-
proved, and nonlinear estimators such as wavelets may do better. Furthermore, the
wavelets estimator automatically has the adaptation property which makes it attrac-
tive. However, since the local polynomial method is easy to interpret, to study, and
to implement, and many theoretical properties are known about it, the local polyno-
mial approach will remain a popular choice among so many nonparametric smoothing

methods.
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3.6 Proofs

Theorem 3.1 is considered easier to prove and follows along the lines of Theorem 3.2.

So we only prove the latter here.

Some notations. We introduce some notations to simplify expressions in (3.9) and

(3.10).
Rewrite

()T vechT (22 (X))

X = diag{l,hly, P21} | : : : ;

()T vechT{(Kamx)(Xamx)T)

where [; and [y are identity matrices of dimension p and p(p + 1)/2, respectively.

Then,
1
—XTWX = diag{l, hly, h*1,} - S, - diag{1, h1y, h*I,},

nh?

where we denote

5 - #;S(n@, (3.14)
where
su(n,i) sp(n,i) s (n,i)
S(n,i) = so1(n, 1) s2a(m, 1) 33Tz(n7z)

whose components are given by

Sll(n,i)Zf’(Xih_X)aSm(na@'):( K (——),

531(n,z')zvech{(Xih_x)(Xih_x)T}K( ).
XZ'—X XZ'—X XZ'—X
(= —%),

) K(

S9a(nyi) = (

s32(n, 1) :Vech{(Xih_X)(Xih_X)T}(Xill_x)TK(Xii:X)’

XZ'—X XZ'—X XZ'—X Xi_XT ,XZ'—X

s33(n, 1) = vech{( ) Y vech” {(
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Also rewrite

1
WXTW(M — X3) = diag{1, hI;,h*I,} R,,,
n
where we denote
1 n
R, = WZR(n,z’), and R(n,1) = (ri(n, ), ro(n,i),r3(n,))7, (3.15)
n =1

with its components given by

XZ'—X

1, 8) = fm(X5) = m(x) = DA =) = 5 (X =) i (x) (X~ )} (2 %)
rni) = (22 m(X0) — m(x) — DEX)(X; ~x)
_%(XZ» —x)" H,, (x)(X; — x)}K(X"h_ %),
i) = veeh{(Z XX () — () — DE(x)(X: %)
_%(XZ» —x)TH,,,(x)(X; — x)}K(Xih_ ).

Similarly,

1
—X"WVWX = diag{1, hl1, h*1,}C,diag{1, b1y, h*I,},

nh?

where denote
1 n
= —ZC(n,i), (3.16)

P
nh =1

n

C
cin(n, i) eq
C(n,i) = ca1(n, 1) e
(n,1)  esa(

3

3

c
c3i(n,1) c3

3

whose components are given by

enn(n, i) :v(Xi)KQ(Xih_X),cgl(n,z'): (Xi}L_X)V(Xi)I’Q(Xi}:X),
es1(n, 1) :Vech{(Xih_X)(Xi}:X)T}I/(Xi)f(Q(?)a

ean(n, i) = (Xih_X)(Xih_x)%(xi)fx’?(?),
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XZ'—X Xi_XT Xi_XT - XZ'—X
() THE ) T (X K,

es2(n, 1) = vech{(

XZ'—X XZ'—X

XZ'—X

c3s(n,1) = vech{( )T }vech”{ (X)) K2 ).

Note that the argument of n in S(n,), R(n,t),C(n,¢) denotes the dependence on
sample size n through h, which tends to zero proportional to n. Using the introduced

notations, the conditional bias of B can be re-expressed as:
E(B| Xy, X,) — 8 =diag{1,h "I, k2 L,}S.'R,,. (3.17)
The conditional variance-covariance matrix of the estimator can be rewritten as:

Cov(B| Xy,+, X,) =
1
Wdl&g{l, h_ljl, h_QIQ}S,;lCnS,;ldiag{l, h_ljl, h_2]2}. (318)
n

Some preliminaries on stochastic order. Given matrices A, = A+ 0,(w,), B, =

B+ O,(v),an — 0,7, — 0 we have
A, B, = AB 4+ Oy,(max{an,¥.}). (3.19)

We also have the following proposition on the inverse of a random matrix.

Proposition 3.1 Lel {A,} be a sequence of random p X p matrices such that
A, — A= 0,(m),
where A is a constant p X p matriz and v, — 0 as n — 0. If A is invertible, then

AT = AT 1 0,(1). (3.20)

Proof: Note that by the matrix differential dA™' = —A~1.dA - A~!, we have
ATV — AT = AT A, — A)AT +o(||A, — Al]).

It follows that,
AT = A7 = 0,()

i
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by assumption. O

If a random sequence {Z,} has second moments, KZ*> < oo for every n, a natural

stochastic order is given by its standard deviation, that is
Z, = EZ, + 0,({Var(Z,)}?). (3.21)

This can be shown to follow easily from the Chebyshev’s inequality.

Since sums of triangular arrays are frequently encountered later on, we have the

following proposition as variations of (3.21).

Proposition 3.2 Given random variables 7,1, ..., Zn, which are defined on the same

probabilily space for each n = 1,2,..., and which satisfy
EZ? < oo, for1<k<nmn=1,2,...

we have
n

Zn: Tk = znj E Zn + Op({Var(3Y_ Zu)}7). (3.22)

k=1 k=1 k=1
In particular, if Z,1,..., Zu, are tid for each n,

N Zok = nEZy + O,({nVarZ,} 7). (3.23)

k=1

We now give several lemmas which are needed in our proofs. The behaviors of S;*

and R, which appear in the conditional bias of (3.17) are studied in Lemma 3.1-3.5.

Several lemmas.

Lemma 3.1 For S, given in (3.14), as nh? — oo, we have
S, = A(h) + O,({nh?}~7). (3.24)

where

A(R) = | an(h) an(h) af(h) |, (3.25)



and

an(h) = / K(u)f(x + hu)du,

an(h) = / ukK (u) f(x + hu)du,

an(h) = / vech{uuT} K (u) f(x + hu)du,
ass(h) = / uu” K (u) f(x + hu)du,

ass(h) = / vech{uu” JuT K (u) f(x + hu)du,

ass(h) = / vech{uu? Jvech? {uuT} K (u) f(x + hu)du.

Proof: Recall that S, = (nh?)~' 7, S(n,7) and S(n,4)’s are iid random matrix for
each n. Note that
ES(n,1) = kP A(h),

by change of variables u = (x; — x)/h in the integrals. Similarly, it can be shown
that the variance of each element in S(n, 1) has order O(h?). Apply equation (3.23)

in Proposition 3.2 to each element of S,,, we have
S, = h™PES(n,1) 4+ 0,({nh?}7) = A(h) + O,({nh?}"?).

The lemma is verified. O

By letting h — 0, A(h) in (3.25) can be simplified. By substituting Taylor expansion
for f e CY(U)

f(x+ hu) = f(x)+ D] (x)u+ o(h),as h — 0,

we obtain the following lemma.

Lemma 3.2 For an interior point X, if there exists a neighborhood U satisfying [ €
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CYU), then as h — 0

1 0 pyvech™ {1}
A(R) = f(x) 0 pal 0
pavech{l} 0 D

0 p2DF(x) 0
+h| mDyx) 0 H | +o(h),
0 HT 0

where

D = /vech{uuT}vechT{uuT}K(u)du,

= F + p2vech{I}vech™{I}, (3.26)
where we define
E = diag{jia — p13, 13, -+, 15, fa — fios iy, -+ iy -+ fla — s fios fta — 3} (3.27)
S——— S———
p—1 p—2
and
H = /uvechT{uuT}K(u)D?(X)udu =
of(x)pe  Of(x) .. 9f(x) 3f(x) 0 0 .. Afx 0 3f(x)
dxq ,u% dxo dxyp dzq dxq dxq
i) A .. g U®p X .  2x) ., 2f(x 0 9/(x)
2 dxo dzq dxo /_L% dxs dxyp dxo dxo
Ha
Ix) o ... 2 A o L. AIG) . D) DI DG
dxyp L dzp dxo dxyp dzp_1 dzp pj

Proof: It can be verified that D, K, and H have the given forms in the lemma. O

Now let’s make some calculations for matrices in Lemma 3.2. By using a formula for

matrix inverse (e.g. see problem 2.8 of p33 Rao (1973) ), and the relation
E~'vech{I} = (ju4 — p3) 'vech{I}, (3.28)

the inverse of matrix D in (3.26) is given by

2
D= BT - & h{I}vech {1
(ja — 13)(pa+ (p— Dyid) (vl
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where

E™Y = diag{(pa —p3) 7 pa o py s (pa — p3) T gt g
—_— T N —
p—1 p—2

co (e = py) 7 gt (e — p3)
Next, we use

-1
1 T 1 {1 Tt
b O d\ _c-1p do-' +Ccmto-t |

where bis a vector, while C' is a symmetric matrix and C'~! exists, and d = 1—b7 C~1b.

Applying it to the leading matrix term of A(h) given by

1 0 pgvech™{I}
0 pal 0 ,
pavech{l} 0 D
by identifying
0 I 0
b= =" . (3.29)
pavech{l} 0 D
Note that
G 0
0_1 B ( " 1 w2 T ) ) (330)
0 B (#4—@)(#42-1-(;0—1)#%)VeCh{]}VeCh {]}
we have

0
po B~ vech{I} — ( it 2)vech{]} )

pa—p2) (pa+(p—1) 2

0
7#&(52—1)@ vech{/}

by using the relation (3.28).
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Further,

d = 1-0"C7"
= 1 — plvech™{I}D 'vech{I}

4
- Ho T 2
= 1 — pivech {I}E~'vech{I} + vech” {I}vech{[l}
’ (i — )+~ D) )
Py P
pra =45 (pa = p3)(pa + (p — i)’

= 11—

after simplification,

d = (pa — p13)/(pa + (p = Dps3)- (3.31)

Note also that

0
CeTO! = .
0 piD 'vech{I}vech” {1} D"

Using (3.28), it can be shown that
D™ 'vech{I}vech™ {I} = (s + (p — 1)pi3) " 'vech{I}vech™ {I}.

Noticing vech{I}vech” {I}D~! = D~'vech{I}vech” {I}, we have

0 0
copt Tt = , .
0 “72)2vech{]}vechT{]}

(pa+(p—1)u3

Combined with formulas (3.30) of C~" and (3.31) of d, we obtain

Azl 0
de=' L oot = | O .
0 dE-!

In all, the inverse of (3.6) is given by

! 0 —pa(pa — p3) " vech {1}
0 pitl 0 ,
—pi2(pa — p3)~'vech{l} 0 E7

where d is given in (3.31).
Now we can give the Taylor expansion of A(h)~" in next lemma.
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Lemma 3.3 Under assumptions of lemma 3.2 and f(x) > 0, we have as h — 0:

! 0 —pa(pa — pd) " vech {1}
AV (k) = ﬁ 0 pptl 0
—pi2(pa — p3)~'vech{I} 0 E7
0 0 0
—#(X)Q 0 0 N |+ofh) (3.32)
0 NT 0

where d = (prg — p3)/(pa + (p — 1)p3), N is a p x (p(p+1)/2) matriz, and is defined

as
Af(x)  9f(x) If(x)  9f(x)
dzq dxo dzp_1 dxyp
3f(x) f(x) f(x)  9f(x)
dzq dxo dzp_1 dxyp
f(x) 2f(x) f(x)  9f(x)
dzq dxo dzp_1 dzp
f(x) 2f(x) f(x) 9f(x)
dxq dxa dzp_1 dxyp

where the suppressed elements are zeroes.

Proof: The first-order term A(0)~! has already been shown to have the given form.
By employing the matrix differential

dA™ = —A71.dA - A7,

the second term in (3.32) is given by

d-! 0 —cVT 0 ,MQD?: 0 d-! 0 —cVT
h
) 0 pw'l 0 w2D; 0 H 0 pu'l 0
-V 0 E1 0 HT 0 —cV 0 E!
, 0 d_lD):f —cpy'VTHT 0
) euz’ HV 0 —eDgVT 4 p ' HETY |
0 —cVD}F +uy BT HT 0
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here V = vech{/} and ¢ = 2.

Ha—H5
Note that
HV = (pa+ (p — 1)p3) Dy,
thus
— 1)l 1
oy Hat(p Z)IMQDf _Lp,
2 [ta =[5 d
1.e.

d'Dy — cu; 'HV =0,
d_lD? —cep;'VITHT = 0.
On the other hand, by using the explicit expression for H given in Lemma 3.2, it can

be easily checked that
N=HE" — jeD; VT

has the form given in the lemma. O

In summary, we have the following lemma on S !.

Lemma 3.4 For an interior point x with f(x) > 0, if there exists an open neighbor-

hood U such that f € C*(U), we have that as h — 0,nh? — oo,

St = A7N(h) + O,({nh"}"7), (3.33)

n
where A(h)™! has expansions as given in Lemma 3.3.

Proof: Using Lemma 3.1, Lemma 3.3, and applying Proposition 3.1 to 5,, we have

that, as h — 0,nh? — oo,

St = ATY(R) + Op((nh?)~%).

O

Next, we consider the behavior of R, which is defined in (3.15). We have the following

lemma.
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Lemma 3.5 Assume that K is spherically symmetric and satisfies
/u}2f((u1, o ) - - duy, < o0,
and that m € CYU), f € CY(U), then as h — 0,nh? — oo,
R, = K*{R(h,x) + o(h) + O,({nh?}"7)}, (3.34)
where R(h,x) is defined by
h (30, 8$ u;)? (X)K(U)D}F(X)udu

1
R(h,x) = 57 | f(x) fu(Shy 2 uZ)Sm(X)K(u)du
h [ vech{uu }(37_, 8$ u;)’m(x) K (u) D (x)udu

J (i 5= u)*m(x) K (u)du

=1 3z

0 . (3.35)
fvech{uuT} (30, -Zu;)*m(x)K (u)du

zlaz

J(x)h

ST

Proof: Note that
ER(n,1) = (Ery(n,1), Ery(n,1), Ers(n,1))T
— /Rp(l,u,vech{uuT})T
{m(x 4+ hu) — m(x) — DL (x)u — %hQUTHm(X)u}K(u)f(X + hu)du,
by using change of variable u = (x; — x)/h in the integral.

Since m € CW(U), we have the Taylor expansion for m(x + hu), as h — 0
R EL 0
m(x+hu) = m(x)+hD,(x)u+ h2 THypu+ 5 (Z 7w 'm(x)

k3

W9, \
+ Z(; 8—1:2%) m(x) + o(h®).
Substituting Taylor expansions for m and f, we have that

S sgw) m(x) K (u) f(x + hu)du
Ju(Ei gw) m(x) K (u) f(x + hu)du
[vech{uu®}(XF, ai u;)*m(x)K (u) f(x + hu)du

ER(TL, 1) = hp+3 5
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I flaiU) m(x)K (u)f(x + hu)du
o1 | JuS (S anu) m(x) K () f(x + hu)du + o(h)
Jvech{uuT } (52, 52-u;)*m(x) K (u) f(x + hu)du
. h [ (Ehzy az-ui)®m(x) K (0) D (x)udu
B 3 | T JulEi s-ui)*m(x) K (u)du
h [ vech{uu” }(S1_; 2-u;)*m(x) K (u) D (x)udu

S %ui)‘lm(x)ﬁ’(u)du

0 +o(h)|
[veeh{uu} (325, 55w m(x) K (u)du

= kPP (R(h,x) + o(h)),

J(x)h
ET

where R(h,x) is given in (3.35).
Similarly, it can be shown that
Cov{R(n,1), R(n,1)} = O(h**®).

By applying (3.23) in Proposition 3.2 to n iid q-dimensional random vectors R(n,t)’s,
we obtain
R = B{R(h, %) + o(h) + Oy ((nh")77)}.
Lemma 3.5 is thus proved. O
Proof of bias part of Theorem 3.2.

Combining Lemma 3.5 with Lemma 3.3 and Lemma 3.4, we obtain the asymptotic

expansion for the conditional bias of the estimator B given by:

E{B—B| X1, Xy, X, }
= diag{1,h"' I}, *L}S 'R,
= diag{1,h "', k2 L}[A7(h) + O,({nh?}~?)]
[B*{R(h,x) + o(h) + O,({nh"}~3)}]
= Bidiag{1, k" [, AT LY AT (R)R(R, %) + o(h) + O,({nh?}77)}
= Bdiag{1,h" 1, A2} f(x) 7
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d=t 0 — mifu% vech’ {1}

—1 h
0 po 1 _qu(x)N
-2 2vech{]} —M)},L(X)NT E!

b (S0 2w m(x) K (u) D (x)udu

L1 160 Pty w0 K ()
h [ vech{uu} (Y0, 2 u;)*m(x)K (u) DY (x)udu

=1 Bz,
S %Ui)[lm(X)K(u)du
0
Jvech{uu” } (0, 2Zu)*m(x) K (u)du
to(h) + O, ({nh"} %)}
BO0(m, K) + 55 01(m, K)
= | F=b(m, K)
Wy (m, K) + fo5m(m, K)
+diag{h®, h*I;, h1;}[o(h) + Op({nhp}_%)],

f(x)h
4!

_|_

if h — 0,nh? — .

Here,

him Ky = PP (570 ) K () (D ()

fla — 3 = Oy
-l (3 u2)(32 L) K (w)(DF (x)u)du
Ha — 'M% i=1 ' =1 axZ d 7

by plugging in the value of d in Lemma 3.3.
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I . ,
Am,K) = G {F /Vech{uu E@;{: x) K (u)du

2 ech{I} / zp: aiz Vim(x) K (u)dul,

o —

and

mn(m,K) = %{E‘l/vech{uuT}(i %ui)?’m(x)[((u)(l)?(x)u)du
12 cechl / (ij ai%ui)g’m(x)[((u)(l)?(x)u)du

—u'NT / u() 5w m(x) K (u)du}.
It can be checked that 6(m, K),0:(m, K), and v(m, K),v1(m, K) have the forms given
in the Theorem 3.2.
This completes the proof of the “bias” part of Theorem 3.2. O
Proof of covariance part of Theorem 3.2. The conditional covariance marix of

3 is given in (3.18). We need the following lemma on C,, defined in (3.16).

Lemma 3.6 For an interior point x in the support of f such that f(x) > 0,v(x) >
0. If there exists an open neighborhood U such that v € CO(U), f € CY(U), as

h — 0,nh? — oo, we have

Cp = C(x) + O(h) + O,((nh?)~%),

where
Jo 0 Jyvech {I}
C(x) = v(x)f(x) 0 Jo 1y 0 : (3.36)
Jovech{I} 0  Ej+ J2vech{I}vech” {I}
and

E; = dlag{‘]4 o J227 J227 T J227 Jy — J227 ‘]227 T J227 T Ja — ‘]227 J227 Ja — ‘]22} (337)
1 2
p— p—

Here J; = [ u! K (u)*du.
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Proof: Going through similar calculations to S,,, and using Proposition 3.2, we have
that
Cp = hPEC(n,1) + O,((nh?) %),

where

EC(n,1)
Jo 0 Jovech {1}
= h(x)f(x) 0 Jo Iy 0 +o(1)
Jyvech{l} 0  Ej+ Jivech{I}vech™{I}
= WH{C(x) +o(1)},

where C'(x) is given in (3.36) of the lemma. The lemma is thus verified. O

Combining Lemma 3.6 with Lemma 3.4 and Lemma 3.3, we obtain the asymptotic

expansion of the conditional covariance matrix as h — 0,nh? — oo.

COV(B | X1, Xo, -+, X))
= ding {147 T B YA (O + o 1)AG) ™+ 0,((h?) )]
diag{1, ™" I, h* I}

p 0 Lvech” {I}
= v(x) 0 LT 0
nh? f(x) uyh?

Zvech{l} 0 LET'E;ET'- u2lBa=Jova) yech{ }vech” {1}

(pa—p3)% R

—I—%diag{l, K I, b2 LYO(R) + O,((nh?)~2)]diag{1, A~ 11, h™21,}.
n

where p and ¢ are defined at the end of Theorem 3.2, and constant matrices £ and

Ej are defined in (3.27) and (3.37), respectively.

This completes the proof of Theorem 3.2. O
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Chapter 4

NONPARAMETRIC
ESTIMATION WITH TIME
SERIES

4.1 Introduction

The multivariate locally weighted polynomial fit with independent observations has
been considered in Chapter 3, where the two important cases, the local linear fit
and the local quadratic fit, have been studied. In this chapter, the locally weighted
polynomial fit is extended to time series. Nonparametric smoothing has been a useful
tool for time series analysis, e.g. in model identification and nonlinear prediction, see
Tong (1990). Nonparametric estimation with dependent data has often been studied
in the literature, see Rosenblatt (1990) and references therein. We will focus on the
locally weighted polynomial fit and its applications to estimation of autoregression

and its partial derivatives.

Since the observations in time series are dependent, the conditioning approach em-

ployed in Chapter 3 is no longer appropriate. Instead, following Masry and Fan
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(1993), who have studied the univariate local polynomial fit with time series, we will
establish the joint asymptotic normality of the estimators under general conditions.
Furthermore, under these conditions, the asymptotic bias and asymptotic covariance

matrix are shown to be the same as those in the independent case.

We will assume that the stationary vector time series comes from a general regression-
type time series model, typically a nonlinear autoregressive model, and satisfies
a short-range dependence condition as defined, e.g. in Castellana and Leadbetter
(1986), which is based on the differences between bivariate joint density and product
of marginal densities. Under these assumptions, a central limit theorem for martin-
gale arrays can be used to prove the joint asymptotic normality of the estimators. In
the context of a general stationary sequence, nonparametric estimation has been con-
sidered by Masry and Fan (1993), Rosenblatt (1990), and Castellana and Leadbetter

(1986) using stronger mixing conditions.

At last, we discuss some issues in nonparametric fit from a genuinely chaotic time
series. A chaotic time series is often finite-dimensional, e.g. the chaotic time series
observed from a deterministic system is always so. In general, the time series can
have a fractal (nonintegral) dimension. We call a time series fractal time series, if
its finite-dimensional probability measure has a pointwise fractal dimension. It is
noted that a probability measure which has a pointwise dimension can be a singular

measure, so it may not have a density.

We will discuss extension of nonparametric estimation methods, in particular the
locally weighted polynomial fit to fractal time series. To fix ideas, we consider the
Nadaraya-Watson estimator of a nonparametric regression. We assume that the prob-
ability measure for the predictor variables has a pointwise fractal dimension. We will
establish a convergence rate which involves only the fractal dimension. For the general
local polynomial fit, we give a conjecture on the convergence rates for the estimators

of regression and partial derivatives.

A related problem which also arises in fitting a chaotic time series is the deterministic
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fit, or the interpolation of data. See Farmer and Sidorowich (1987, 1988) for more
details in connection with nonlinear prediction in chaotic time series. For simplicity,
we consider fitting a regression model without the noise term from iid observations.
It will be noted that the approximation error is the same as the asymptotic bias of the
noisy case. The bandwidth A should be chosen large enough to have sufficient points
for the interpolation problem. If the probability measure of predictor variables has
pointwise dimension d, it is expected that A scales as n~/%, and so an approximation

error can be given accordingly which depends on the interpolation method used.

This chapter is organized as follows. Section 4.2 gives a general regression-type setup
for time series. Section 4.3 considers the local linear fit. The main case, the local
quadratic fit, is studied in Section 4.4. In Section 4.5, nonparametric estimation in
fractal time series is discussed. Section 4.6 discusses the interpolation case. The

proofs of Theorem 4.1 and Theorem 4.2 are given in Section 4.7.

4.2 Regression-type Time Series Model

Consider the following regression-type model in time series,
Vi =m(Xi) + v"A(Xes, i=1,2,..., (4.1)

where Y;’s are scalar response variables and X;’s are RP-valued predictors. Here, we

assume

(A) IID Noises. The noises {¢;} are iid scalar random variables with zero mean

and unit variance. Furthermore, it is assumed that ¢; is independent of

Xi Xiq . X,
(B) Ergodicity. Vector sequence {X;} is stationary and ergodic.

(C) Short-range dependence. Under (B), and assume that the joint density of
X1, X;41 exists for any j > 1, which is denoted by f;(-,-), and the marginal
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density is denoted by f(-). Define an index by

2 sup Y 1(wv) — S (V)] (42)

u,veRP =1

ﬂn

We assume 3, = O(1), that is, there exists an M > 0 such that 3, < M for all

n.

(D) Moment Condition. There exists a § > 0 so that F|c|?*® is finite.

The above general setup includes most models in multivariate and univariate time

series. In particular, it includes the nonlinear autoregressive (NAR) model given by
Tig1 = m(Tiy Tic1, o, Tipgr) + Vl/z(ffu Ti1, sy Tipt1 )Eitd- (4.3)

Usually it is assumed that noises {e;} are iid random variables with zero mean
and unit variance. Moreover, we assume that £; is independent of initial values
To,T_1,...,T_py1. Consequently, this implies that ¢; is independent of z;_1,z;_o,...
for any ¢ > 1. To see how NAR fits into the general regression setup, let Y; = z;, X; =
(;_1,%i 9, ,7i_,)T, then (4.3) has the form of (4.1).

In our general regression setup, under (A), it is easy to verify that the process
{Y;, FXY'} is a Markov chain, and the system {e;, 7V} satisfies the martingale dif-

ference property: F{e;|FY} = 0. Here we define

FXY = J{Yi7Xi+17Yi—17Xi7 e 71/27)(1} = U{Xk+17€k : k S I’}

k3

Condition (C) is also used by Castellana and Leadbetter (1986), and Rosenblatt
(1990). Castellana and Leadbetter (1986) have called 3, in (4.2) a “dependence in-
dex”. Assumption (A) can be avoided, but at the expense of using some extra mixing
conditions, such as those used in Masry and Fan (1993), Castellana and Leadbetter
(1986), and Rosenblatt (1990). We feel that our model setup seems more natural
than a more general stationary sequence context where stronger mixing conditions
are often imposed, which are hard to verify in practice. The following example shows

how condition (C) is satisfied in the case of a stationary normal sequence.
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Example. We consider the scalar stationary Gaussian process {X;} with mean zero,
autocovariance function ry, we want to show that the process satisfies (C) if r; is

summable, that is, 3272, |r;] < oc.

Proof: Without loss of generality, we can assume that the variance is one. Since

ry — 0 as k — oo, the joint density function of X, X; evaluated at (z,y), given by

1 2?4 y? — 2rjay
—————exp{— 5
21\/1 —r? 2(1 =r3)

}7

g('rayarj) = f](xvy) =
has expansion as j — o0,

g(:li,y,?“j) ~ g(:t:,y,()) + Tjg/(xaya())a

where ¢'(z,y,0) is W evaluated at r = 0. Some calculations shows that
dg(z,y,r) 1 r 5 2?4 y? — 2rjzy
_ _ 1 _ _ .
07" 277.(1 _TQ){ 1 — 2 —I_( +r ):Cy r(:l:—l—y)}exp{ 2(1 _TJQ) }
So
2 .2
Ty "ty
9'(z,y,0) = = exp{— }-

27 2

Thus, we have shown that for j large,

Tita,y) = f@)[(y) ~ i3 1 (@) ().

where the right hand side is clearly bounded by My|r;| for some constant M, by

noting that x f(z) = \/%exp{—gi} is bounded. Thus,

By = sup Y_|fi(z,y) — f(2)f(y)] < MOZ: 75l

z,y€ER ;1
and (C) is satisfied if 3772 |r;| < oo, O
A similar statement can be made for a stationary normal vector sequence. Conse-

quences of (C) will be discussed in Lemmas 4.5-4.7, where the connection to the usual

sense of short-range dependence in terms of the covariance function will be further

clarified.
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4.3 Local Linear Fit

In this section, we will study the multivariate local linear fit with dependent data.
The local linear fit with independent observations is studied in Section 3.3. As in
Section 3.3, we will use the same notations and assume that the kernel K is spherically
symmetric and satisfies [ ufK (u1,- -+, u,)duy - - - du, < 0o. Under model (4.1) and the
assumptions (A)-(D), joint asymptotic normality of estimators from the local linear

fit is established in the following theorem.

Theorem 4.1 For [ distinct interior points Xq,...,X; inside the support of design
density f and f(x;) > 0,v(x;) > 0 for all j, and there exist open neighborhoods
U; of x; such that m € C*(U;), [ € CY(U;),v € C°(U),j = 1,2,...,1. Then for
h—0,nh? — oo as n — oo, the local linear estimators B(Xl),...,g(xl) in (3.2)
are asymptotically independent and jointly normal. In particular, at each point say

x = (21, +,2,)T, we have

(nh?)* diag{1, AT} {fi(x) — A(x) + B(x. h)}
is asymplotically normal N(0,X(x)). Here B(x,h) is the asymplotic bias given by:
12,2, (%) + of i)

2 p(m, K) +

3lug

B(x, h) = (4.4)

bi(m, K) + o(h?)

h2
2p2 f(z)

The asymptotic covariance matriz is given by

U(X)JO 0
N(x) = )
0 U(X)J2 ]
w22 f(x)

Here V2 (x),b(m, K),bi(m, K), ps, J, are defined as in Theorem 3.1.

REMARKS ON THEOREM 4.1:

For part of the results on the regression estimator to hold only, the assumptions
m € C3(U),f € CYU) are not necessary. Instead, weaker assumptions such as
m e C*(U), f € C°(U) will suffice. It can be checked easily that the asymptotic bias

and asymptotic covariance matrix have the same forms as if (V;, X;)’s are iid.
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4.4 Local Quadratic Fit

We consider the main case of the multivariate local quadratic fit with dependent data.
The local quadratic estimators with independent observations are given in Section 3.4.
The same notations will be used here, and the kernel K is assumed to be spherically
symmetric and satisfies [ui?K (u1, -+, u,)duy -+ du, < oo. Under model (4.1) and
assumptions (A)-(D), the joint asymptotic normality of the local quadratic estimator

is given in next theorem.

Theorem 4.2 For [ distinct interior points Xq,...,X; inside the support of design
density f and f(x;) > 0,v(x;) > 0 for all j, if there exists open neighborhoods
U; of x; such that m € C*U;),f € C(U;),v € C°U),; = 1,2,....,1, then for
h—0,nh? — oo as n — oo, the local quadratic estimators B(XQ,...,B(X;) in (3.7)
are asymptotically independent and jointly normal. In particular, at each point say

x = (21, +,2,)T, we have
(nh?)Ediag{1, b1, h* 1} (B(x) = B(x) — B(x, h))

is asymptotically normal N(0,X(x)). Here I, 1y are identity matrices of dimension

p and p(p + 1)/2, respectively, and B(x,h) is the asymplotic bias given by:
BO(m, K) + #?X)Ql(m, K) + o(h*)
B(x,h) = ib(m, K)+ 0(h3)

3lug

h2y(m, K) + Fo5m(m, K) + o(h?)

The asymptotic covariance matriz is given by:

%xi)l 0 J—lﬁf’(xx) VechT{] }
(x) = 0 el 0 . (45)

fo)lvech{]} 0 M(A - Mvech{]}vech:r{]})

>—Jo
7( (pa—p2)?

Here b(m, K),0(m, K),v(m, K),v1(m, K), p, ¢, A are defined as in Theorem 3.2.

REMARKS ON THEOREM 4.2:
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1. For part of the results on the first-order partial derivative, the assumptions
m € CYU),f € CYU) are not necessary. Instead, the weaker assumptions
m e C3(U), f € C°(U) will suffice.

Do

The assumptions m € C*(U), f € C'(U) are necessary for the regression estima-
tor and the estimators of second-order (mixed) partial derivatives, i.e. Hessian
matrix estimation. Under the weaker assumption m € C3(U), f € C°(U), their

bias have lower orders of O(h?) and O(h), respectively.

3. The asymptotic bias and asymptotic covariance matrix are the same as if

(Y, Xi)’s are iid.

In next two sections, we will discuss some issues in nonparametric fit from a chaotic
time series. The density assumption on the predictor variables will be relaxed, and
the multivariate predictor can have a singular probability measure ( which means
the measure is continuous and is singular with respect to the Lebesgue measure) .
Another issue is deterministic fit or interpolation. The implications of the present

results for the approximation error in the interpolation problem will be pointed out.

4.5 Nonparametric Estimation with Fractal Time

Series

In this section, we will discuss some open questions in nonparametric estimation
from a genuinely chaotic time series. A genuinely chaotic time series is often finite-
dimensional (up to certain scale) and has a fractal (nonintegral) dimension. For exam-
ple, a time series observed from a deterministic system is always finite-dimensional. A
simple example is given by z;11 = 42,(1 — ), with 2o randomly distributed according
to density f(z) = 1/(m\/2(1 — z)). This sequence is stationary and the dimension
of the embedded time series (4,7 1, -+, %;_p41)7 is always one for any p > 1 using

any dimension definition. More examples are given in Chapter 2. In this section, we
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discuss nonparametric estimation in a noisy time series. The nonparametric fit in a
deterministic time series or the interpolation problem will be discussed in the next

section.

Specifically, we will consider a fractal time series, that is, we assume that the finite-
dimensional probability measure for (z¢,z: 1,...,2:_p41)] has a fractal pointwise
dimension d(for large enough p). A measure with a pointwise dimension may be
continuous and singular with respect to the Lebesgue measure and does not have
a density function in the usual sense. For fractal time series , we expect that the
convergence rate of a nonparametric estimator is independent of p and it depends on
the fractal dimension d only. So the “curse of dimension” problem associated with
fitting high-dimensional models may not occur with fractal time series. For simplicity,
we will assume iid observations in a regression setup. We expect that similar results
may still hold for time series under some short-range dependence conditions, but we

will leave those as future problems.

Nonparametric regression. Consider model (4.1), where for simplicity we assume
that {(V;, X;),7 = 1,2,...,n} are iid observations, and v(x) = o*. We assume that
the probability measure of X; denoted by p has a pointwise fractal dimension d,
which will be typically smaller than p. See Chapter 2 for more discussions on singular

measures and fractal dimensions.

For simplicity we will make the following stronger assumption, letting B,(x) denote

a sphere of radius r centered at x, then for p-almost all x,
p(B,(x)) = e(x)r*(1 4+ o(1)) as r — 0, (4.6)
or as a shorthand notation,
p(BL(x)) ~ c(x)r, as =0,

where we use “~” to mean that the ratio of both sides converges to 1. If p is absolutely
continuous, ¢(x) coincides with the density function f(x) (apart from a normalizing

constant).
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Note that we can rewrite the above as
X —x

r

EK(

) ~e(x)rt, as r — 0,
where K(x) = lyjx|<13- We can extend the scaling relation to a general spherically

symmetric function K(x) = k(||x||), as shown in the following lemma.

Lemma 4.1 Suppose x is such thal (4.6) holds. Assume that k is a univariate ker-
nel function with finite support, i.e. k(x) = 0 for x outside [0,1], and satisfies the

Lipschitz condition, i.e. there exists ¢, 0 < a <1 such that
|k(x) = k(y)| < exle —yl*, (4.7)
for all z,y in [0,1]. Then,

X —
pr X =Xl - X hdd/k 4y as h — 0. (4.8)

PROOF: Given any partition on [0, 1]:

O0=ap< a1 <ay<- dp1 <a,=1, and let A = max;(a;41 — a;).

Write
n—1
k(y) = E k(a 1{a <y<aiqr} T Z k(ai))l{ai<y<az‘+1}
=0
A
= 1(y)+ (y),
and
X — X - X -
Xl - Xy _ X=Xl gy XX - xlly (4.9)
The first term in (4.9) is given by
X -, _ =
EI( ; ) = 2 lai) Bl cixe oy,
n—1

I
™

s
Il
- O

F(ai)(p(Bhaigr (%) = p(Bhai (%))

3
|

= Y Ka)e(h?(ady, — af)(1+ o(1))

-
Il
=]

= hd{Zk z+1 d)}(1‘|‘0(1))

ash—>0.
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The boundedness of & is used in the last operation.

Since A is arbitrary, by letting A — 0, the term inside {} tends to

/k(y)dyd = d/k(y)yd‘ldy,

or write as

Now consider the 2nd term in (4.9),

X —x]|

X
prd® 2y < 8 X

) k(ai)|1{ai<@<ai+1}

n—1
< A” Z plha; < || X —x|| < hajz1}
1=0

— G A%{IX — x| < B)
= CkAaC(X)hd(l—l—O(l))

as h — 0.

Thus, (4.9) becomes
IX —x||, _
T) =
x)hd [ K(y)y™ dy + oa(1)}1 + o(1)) + O(AA)(1 + o(1)).

Ek(

Since A is arbitrary, by letting A — 0, and noticing that the second term is negligible
compared with the order O(h?) of the first term, we have

Ek(w) hd{d/k 1y (1 + of1)).

The lemma is proved. O

Next, we will prove a theorem on the Nadaraya-Watson estimator given by

Zz 1[&( X)YZ
Ez IIX( X) .

We assume that K(x) = k(||x|| with k satisfying the conditions in Lemma 4.1. We

m(x) =

also assume that F|e;|*T® < oo for some § > 0.

89



Theorem 4.3 Assume that probability p of X1 has the scaling relation (4.6). For
any given x such that (4.6) holds with ¢(x) > 0. Let Ux be an open neighborhood
of X, and assume that m is Lipschiltz continuous with exponent s, i.e. there exists a

Cm > 0, such that for any y1,y2 tn Uy,
Im(y1) = m(y2)| < enllyr — yall*, where 0 <5 < 1.
Then as h — 0,nh? — oo,
Vil {in(x) — m(x) - b}

is asymptotically normal N(0,6%), where constant b, = O(h*), and

o [ k(y)*y*~'dy
(f k(y)y?=tdy)?de(x)’

6% =

By choice of optimal h = O(n“ﬁ), the pointwise convergence rate (in probability)

of m(x) is seen to be Op(n_ﬁ%).

Proof: Note that

() - m(x) = Dt (mX) = mEDK(ER) | Tk, oeiK (B0
Yy K (F5) S, K (%)
2 B.+R,.

Now let’s first consider the 2nd term R,. By Lemma 4.1,

E[((th_x) ~ dc(x)hd/k(y)yd—ldy, (4.10)
Var{]((th_X)} ~ dc(x)hd/k(y)de‘ldy.
Using
anK(Xih_ X) o nEK (DX | Op(\/nVar{K(Xl — ),

by Proposition 3.2 in Chapter 3, we have as h — 0,nh? — oo,

X, —x X; —x

h

S, = # zn:[(( )= h T EK( )+ O,((nh?)77). (4.11)
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Denote the numerator of R, by

XZ'—X

7,23 ek ( (4.12)
=1

Note that KT, =0,

XZ'—X

VarT, = no’Var{K( ;

)}~ nhdUch(X)/k(y)de_ldy.

And

XZ'—X

> EloeK( )|2+e

=1

= no®P B P EK(

-
3
Il

Xi — X)2+5

~ nhio?de(x) Ble [* / K2+ (y)y T dy.

Thus,
A,

———" o = O((nh") ™/ 4.13
N = Ol (113
which tends to zero as nh? — oo. This implies that conditions of the central limit
theorem for sums of triangular arrays with independence within rows (e.g. P. 32,

Corollary 1.9.3 in Serfling (1981)) are satisfied.

We have proved,

1
vnh

Tn i) N(075%)7 ‘Nhere 5% = 0‘2dc(x> f k(y)de—ldy‘

Combined with (4.11) and (4.10), we have

e (AR,
n S
d 2 2 U2fk(y)2yd_1dy
— N(0,6%), where 6* = TR do e

That is, we obtain

Vnht{im(x) — m(x) — B,} 5 N(0,8%). (4.14)
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Now consider the first term B,,. Since B, is random, the asymptotic normality result
in (4.14) cannot be used directly in practice. We will show next how to replace B,

by a constant.

Applying Lemma 4.1 and using the Lipschitz continuity of m and finite support of

K., we have

Xl—X
h

X1 —X)
h

Xl—X

—)

~ cmdc(x)hd+s/ysk(y)yd_ldy.

[E{m(X1) —m(x)} K (

)| < Elm(Xy) —m(x)|K(

< enE||l X — x|IPK(

I.e.
B{m(X1) ~ (0} K (=) = 0(**) 15)
Similarly,
B{m(X,) — m(x) K%)= o),
So
Var((m(X,) — m(x)) K(Z=2)) = 0(n*+)

Applying above to

Xl—X

nE{m(Xy) — m(x)} K ( )+ Op(\/nVar{(m(Xl) = m(x) K (——)}),

which is given by using Proposition 3.2, we obtain

1 n . XZ — X
> m(X) = m(x)) K (2 =

Xl—X
h

R B{m(X1) — m(x) K ( ) + B0, ((nh?)~172),

Define
- h™E{m(X1) — m(x)} K (3=X)
" h—dEK(—th_x)

which is of order O(h*) from (4.10) and (4.15).

(4.16)
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Combining (4.11) and (4.16), we have
B, = b, + h*0,((nh?)7Y?), as h — 0,nh? — oc.

So replacing B, by constant b, in (4.14) will not affect the asymptotic normality. The

theorem is thus proved. O

A general conjecture. Note that the generalized scaling relation (4.8) for the
expectation of a spherically symmetric smooth kernel function is obtained from the
assumption (4.6) on the probability of a small ball. The question arises whether the
scaling relation (4.8) still holds for more general functions. In particular, in order to
extend Theorem 4.3 to a more general case, such as estimating regression and partial
derivatives by fitting a higher-order local polynomial, we need similar scaling relation
to (4.8) to hold for moments of a spherically symmetric smooth function. We make
the following conjecture. There is a possibility that more conditions on p may be

needed.

Conjecture 4.1 Assume that a probability measure p salisfies (4.6). For a smooth
spherically symmetric function K, we have

X —x
h

X11 — I le — .I'p

- )11...( -

E( )P K ( ) ~ e(x)hJ(K), (4.17)

as h — 0, where X = (X11,++, X1,)T,x = (21, -+, 7,)T, and L,... .1, are nonneg-
ative integers, and J(K) is a constant depending on K and its moments of order

ooy,

Under Conjecture 4.1, we can establish similar convergence rates on the regression
and partial derivative estimators for the local linear fit and the local quadratic fit.
More generally, we give the following general conjecture on the convergence rates for
estimators of a nonparametric regression and its partial derivatives of any order from

a local polynomial fit.

Let U denote an open neighborhood of a given x. Let C'* (where s > 0) be the class of

s—times continuously differentiable functions if s is an integer, or if s is a noninteger
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the [s]th-order partial derivatives satisfy the Lipschitz continuity with exponent s—|s].

Here [s] denotes the integer part of s.

Conjecture 4.2 For a given x such thal (4.6) holds with ¢(x) > 0, and suppose
Conjecture 4.1 holds. Assume that m € C°. Then the convergence rale for the
estimator of partial derivative of order | < s(m corresponding to l =0) from the local
polynomial fit of order k (where k = s — 1 if s is an integer, and k = [s] if s is a
noninteger) is given by:

O(h*™") + Op((nh™+*)~5),

where h is the bandwidth. By choosing h = O(n_ﬁ), the pointwise convergence rale

is given by Op(n_ds+—_2l6).

4.6 Deterministic Fit

A related problem is the deterministic fit or interpolation in time series. More discus-
sions are given in Farmer and Sidorowich (1987, 1988), who have used nonparametric
methods for nonlinear prediction in chaotic time series. The interpolation problem
is also much studied in the approximation function literature. For simplicity, we
consider iid observations (Y;, X;)’s which satisfy ¥; = m(X;),s = 1,2,...,n. We are

interested in approximating m or its partial derivatives from data.

The approximation error will depend on the interpolation method used. We want
to point out that the approximation error is the same as the asymptotic bias of the
noisy case. In the interpolation case, the bandwidth A in the kernel method should
be chosen as small as possible to minimize approximation error or bias. However,
the bandwidth A should be chosen large enough to have sufficient points for the
interpolation problem. If the probability measure X has pointwise dimension d,

it is expected that h scales as n='/?

, and so an approximation error can be given
accordingly. Another way to see this is to notice that the asymptotic variance of the

interpolated value is given by the higher-order terms in that of the noisy case. E.g.
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in the case of using local linear fit to interpolate m at a point x, the asymptotic MSE
is given by
O(h*) + O(h")O((nh*)™"),

So choosing h = O(n~"/%) will give the minimum convergence rate n~%/4,

4.7 Proofs

Proof of Theorem 4.1 is considered to be easier and follows along the lines of Theorem

4.2. So we only prove the latter here.

Some preliminaries. Note that

B—p=X"WX)"'X"W(Y - X8)

(nz XTWX)™{ 2XTW(M X3)}
+(#XTWX) 1 2pXTWV%E}, (4.18)

where

M= (m(Xl)v T 7m(Xn))T7V = diag{V(Xl)v e '7V(Xn)}7

FE = (61,"',€n)T.

We use the same notations S, R, as defined in in (3.13) and (3.14) of Section 3.5.1,

respectively. We also write

LXTWV E =

1 ,
hp —nhpdlag{l,hll,h ]Q}Zn,

where we denote

Zn WZZ n,1)
where
[X( ) I/Z(Xi)a?i
Z00,0) = | (S KX, )e,
vech{(F52) (F) YK (F72 ) 2 (X)e;
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Using these notations we write

B =3 =diag{l,h " I, A" 2L }{ S 'R, + (nk?)"257'Z,}. (4.19)

Note that the argument of n in S(n,t), R(n,?),Z(n,1) denotes the dependence on
sample size n through h, which tends to zero proportionally to n. We need next

several lemmas in the proof of Theorem 4.2.

Several lemmas. The idea of establishing joint normality of B is based on (4.19),

consisting of three lemmas, which assume model (4.1) and (A)-(D).

Lemma 4.2 As nh? — oo,
S = A(h) + Oy ((nh?)3), (4.20)

where A(h) is defined in Lemma 3.1.

Lemma 4.3 Assume m € CYU), f € CY(U), as h — 0,nh? — oo,
Ry = B{R(h, %) + o(h) + O, ((nh?)"7)}, (4.21)

where R(h,x) is defined in Lemma 3.5 in Chapter 3.

Lemma 4.4

Z, — N(0,%), (4.22)
where
1
¥, = v(x)f(x)/ u (1,u”, vech {uu}) K (u)?du + O(h).
vech{uuT}

Assuming Lemmas 4.2 to 4.4, and Lemma 4.7 (to be given later), we prove Theo-

rem 4.2.
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Proof of Theorem 4.2.
From (4.19), we have

(nh?)zdiag{1, hly, P IL{B(x) — B(x) — B,} = 87" Z,, (4.23)

where

Bn = dlag{l, h_ljl, h_ZIQ}S,;an.

By Lemma 4.2, Lemma 4.4, and Lemma 3.4, we have that the right-hand side of
(4.23) tends in distribution to N(0,X), where

Y =AT(R)XAT(R),
which has the expansion as given in the Theorem by using also the calculations of
Lemma 3.6 of Chapter 3.

Note that B, in (4.23) is random. Next we need to show how B,, can be replaced by

a constant vector. By Lemma 4.2 and Lemma 4.3, and Lemma 3.4,
B, = h*diag{1, A I;, 2L} { A () R(h,x) + o(h) + O,({nh?}~1/?)},
where A~'(h) is given in Lemma 3.3. Defining
B(x,h) = h3diag{1, h ' I, h 2 I,}{ A" (h)R(h,x) + o(h)}, (4.24)
it is seen that
B, = B(x,h) 4+ k0, ({nk?} /).

That is, as h — 0,nh? — oo, replacement of B,, by B(x,h) in (4.23) will not affect

the asymptotic normality.

Going through the same calculations as in the proof of bias in Theorem 3.2 of Chapter

3, we have the asymptotic expansions for B,, as given in the Theorem.

The asymptotic independence of the estimator at different points is easily seen from

Lemma 4.7 to be stated below. Theorem 4.2 is proved. O
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Before we can prove Lemmas 4.2-4.4, we need some results on the consequences of

the short-range dependence condition (C).

Short-range dependence. Short-range dependence condition (C) has some impor-
tant consequences. The first lemma shows the connection of condition (C) to the

usual short-range dependence in time series.

Lemma 4.5 Given any measurable function g : RP — R such that
Eg(X:)? < o0, [ lg(w)ldu < o,

we have
o0

> 1Cov(g(X1), 9(Xis1))] < 0,

=1

and consequently,

Proof: Note that
Cov(g(Xo),g(X) = [ g(wg(v)filu,v)dudv — [ glu)g(v)f(u)f(v)dudv

= [9g()(fi(w, v) = f(w)f(v))dudv.
So

= [ o(w)g(v) 2w v) — F(0)F(v)dud,

which is bounded by |3,|(/ |g(u)|du)?. By condition (C), 3, < M < oo for all n, and

SO

me X0), g(Xer))| < M( [ lg(w)|du)? < o,

The rest of the lemma follows from the fact that

1 n n

© 3" 0(X0) = Eg(Xo) + Oy = {Var(Yg(X,)

by proposition 3.2 of Chapter 3. O

[N

)7
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Lemma 4.5 shows that condition (C) implies that the covariance function is summable
for any properly-defined instantaneous transformation. Thus, such transformed time
series is short-range dependent in the usual sense used in time series analysis. The

following lemma is needed.

Lemma 4.6 Under condition (C), for any measurable function g defined on R? such

that [ |g(u)|du < oo, we have as h — 0,nh? — oo,

Var(ég(Xih— %)) = nk () [ glw)du + O@h*), (4.25)
and _

nip gﬂX’{ =)= f(X)/g(u)du + O, ((nh?)"%).
Proof

nz_:(n—z')(]ov(g(Xth_x)ag( e

=1

2:(72 - i)/g(ugx)g( b )(fi(u,v) — f(u)f(v))dudv

which is bounded by

w [ ("5 "Si 1:(0,v) = F(w)/(v)|dudv

< nM(flg(*

— MR /|g (u)|du)?,

using condition (C).

So as h — 0,n — oo,

Var(zn:g(Xih_ X)) = nh? f(x) /g(u)Zdu + O(nh*") = O(nh?).

i=1
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Note that

S () = g O (Var(X (T NH), (426

=1

ST = nhe ) [ glw)du+ 0,(nh)?),

1.e.

S5 20 = 109 [atwytn + 0,07y,

The lemma is proved. O

Lemma 4.6 implies that 7, g(X"h_x) behaves asymptotically in the same way as if
{X;} are independent. The next lemma is used to establish asymptotic independence

of the estimators at different points in proof of Theorem 4.2.

Let G,(x) = (nh?) /250 g(Xix),

Lemma 4.7 Under condition (C), for any x £y, f(x), f(y) > 0, and any bounded
continuous function g defined on R? with [ |g(u)|du < oo, we have as h — 0,nh? —

o,

Cov{Gr(x), Galy)} = o(1).

Proof: Note that

Cov{G(x), Galy)} = hCovfg( ™), (X))
)7 30— ol =H)()
Note that
s . Xip1 —x X1—y
;(R_Z)COV{g( +h )y g( - )}
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which is bounded by

/Ig g~ : y|7§)(fj(u,v) — f(u)f(v))|dudv

=1

=) |du)?

— th2p/|g u)|du)?.

Furthermore,

BNy [ Y () sy

= w7 g w)g(u) S+ hu)du,

As h — 0, it is expected that

Jg(u)du

wg(w)f(x + bu)du ~ (x) [ (%
which is bounded by
x){ [ g5 + u)dup 2 [ g(u)*duy

by the Cauchy-Schwarz inequality. Since g(*3* +u) — 0 as o — 0, and g is bounded,

by Lebesgue’s dominated convergence theorem,

/g(xzy—l—u)Qdu—M), as h — 0.

Thus,

X:—x Xi—y ’
) (P = o),

Cov{g(
Combining these results, we obtain that
Cov{Ga(x), Guly)} = o(1) + o(1?).

The lemma is thus proved. O

Recall from (4.25),
Var{Go(x)} = (x) [ g(u)*du+O(h?).
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As a consequence of Lemma 4.7, we have
Corr{G(x), Gu(y)} = o(1),

as h — 0,nh? — oo. That is, G,(x),G,.(y) are asymptotically uncorrelated as
h — 0,nh? — co. We need a central limit theorem for martingale arrays for proof of

Lemma 4.4.

CLT for martingale arrays. Now we state a martingale central limit theorem for

martingale arrays which is used our proof of Lemma 4.4.

We state a CLT for square-integrable martingale differences (see Theorem 4, Chapter
VII of Shiryayev (1984) ). Given a double sequence on a probability space (2, F, P):

with &0 = 0, Ff = {6, Q}, F) € Flyy € F, we require that &, is F'-measurable for

eachn > 1,1 <4 < mn,ie. (&, F") is a stochastic sequence.

Proposition 4.1 For each n > 1 let the stochastic sequence

(i, F),0< 0 <n, n>1,

k3

be a square-integrable martingale difference:
BE&; < 00, B(&uil FILy) = 0.
Suppose that the Lindeberg condition is satisfied: there exists an € > 0 so that,

(L) EE{£2A<|£M| > €)|Fr, ) 5 0.

Then
S B{E|FL Y D ot = Y 6w S N(0,07). (4.27)
=1

i=1
Now we prove the lemmas.

Proof of Lemmas 4.2, 4.3, 4.4.
PROOF OF LEMMA 4.2 AND LEMMA 4.3. Apply Lemma 4.6 to each element of
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Spy Ry, and going through same calculations as in the proof of Lemma 3.1 and Lemma

3.5, respectively. O

PROOF OF LEMMA 4.4.To establish asymptotic normality of vectors Z, we need
only to establish asymptotic normality for any linear combination of it by the Cramer-

Wold device. Consider

(=) 2
ok 72 4 Mveehf (RS (XX T R (Y

where a is any constant, b is any p—dimensional constant vector, ¢ is any constant

VU (X)), (4.28)

vector of dimension p(p + 1)/2. Set

€ni = ). (4.29)

It is easy to check that {&,;, F/XV'} is a square-integrable martingale difference.

Now we check the Lindeberg condition:

ZE{fml (€nsl > €) | FXY

=1
<ZE{|€7M|2 o |FXY
— — 66 i—1

| 1 XZ'—X
=Y S ==

Jed 0 | FIY

n XZ — X
= |Z<T>|2+5E{|a|2+5 | 7YY

— E &1 246 l 2—}—5
el >
where the definition of XY and the assumptions that ¢;’s are iid and are independent

of Xi, k <1 are used.

Applying Lemma 4.6 to |l(%)|2+5, the above is equal to

WE|51|2+5{f(x) [ liw)du+ 0,(h)} 5 o,

if h — 0,nh? — oo, as n — oo. Here the finiteness of []l(u)|**®du follows the fact
that
I(u) = (a4 b"u + " vech{uu’}) K (u)
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and thus [ |l(u)|*du < oo under the assumed moment condition on K. So the Linde-

berg condition in Proposition 4.1 is satisfied if h — 0, nh? — co.

Furthermore,
- 1 & X —x
B | FAV Y = ==Y I(——)".
; {fnz | 2—1} nhp Pt ( h )
Applying Lemma 4.6 to |l(%)|2""S again, the above is equal to
7@ [ i)+ 0,(7),

where

/ I(u)?du = / {a+ bu+ Tvech{uuT 112K (u)?0(x + hu)du

1
= (a, b, cT)v(X)/ u (1,u”, vech” {uu” ) K (u)*du(a, b, ")* + O(h).

vech{uu’}

So by Proposition 4.1, we have
> ki 4, N(0, (a,b,e)2 1 (a, b, )T,
i=1

where

1
¥, = v(x)f(x)/ u (1,u”, vech” {uu}) K (u)?du + O(h).

vech{uu’}
By the Cramer-Wold device for proving joint asymptotic normality, this implies that
Z, 5 N(0,%).

So Lemma 4.4 is proved. O
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Chapter 5

ESTIMATION OF LYAPUNOV
EXPONENTS

5.1 Introduction

In this chapter, we consider estimations of global Lyapunov exponents (LE) and
local Lyapunov exponents (LLE). The estimation of Lyapunov exponents and some
challenging problems are discussed by McCaffrey et al (1992), Ellner et al (1991),
Nychka et al (1992). The importance of LLE in identifying predictable regions in the
phase space is discussed in Wolff (1992), and Bailey (1993). The partial derivative
estimators are given by the locally weighted polynomial fit studied in Chapter 3 and
Chapter 4. This chapter provides a systematic study of the estimators of LLE in a
noisy system. The explicit results on the asymptotic bias and asymptotic covariance

matrix of the LLE estimators may shed light on the estimation of LE.

We consider the following noisy model for a time series (without loss of generality we
take 7 = 1):

Ti41 = m(xta e 7$t—p+1) + O&¢41, (51)

where (A) e1,¢€3, ... are iid random noises with zero mean and unit variance, and ;41
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is independent of x;, x4_1,....

Define the state space vector by the time delay method
Xi = (24,0421, ,a:t_p_|_1)T,
then we can write (5.1) in its state space form.
Xep1 = M(Xy) + GE;, (5.2)

where M(x) = (m(x),z,, -+,72)T at a phase point x = (z,,7, 1, -+, 71)T, and

G = dia’g{aaov"'ao}aEt = (Etvoa"'ao)T‘

Some notations are needed later on. If A = (a;;) is a p X p square matrix, dg{A}
is the diagonal matrix from A by setting all supra- and infradiagonal elements in A

equal to zero, that is

dg{A} =
Upp
We also use dgv{A} to denote the vector consisting of the diagonal elements of A,
1.e.
dgv{A} = (a11- - ap)".

We denote a p x ¢ zero matrix by 0, ,.

This chapter is organized as follows. The partial derivative estimation is applied to
estimate the finite-step Jacobian product in Section 5.2. Then in Section 5.3, we will
study the asymptotic theory of the eigenvalues from a random matrix, which is used
to derive the corresponding theory of singular values in Section 5.4. The asymptotic
results for the singular values of the estimated multistep Jacobian matrix is given in
Section 5.5. In Section 5.6, the asymptotic theory of the local Lyapunov spectrum is

given, and a method of constructing pointwise confidence intervals is prescribed.
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5.2 Estimation of Jacobian Matrix

1. Nonparametric partial derivative estimation.

For the estimation of partial derivatives of m, besides assumption (A), we further

make the following assumptions.

(B) Ergodicity. There is an invariant measure p for the Markov chains {X;}. Fur-

thermore, p is assumed ergodic and Xj is sampled from p.

(C) Short-range dependence. Under (B), and we further assume that p is abso-
lutely continuous and ¢; has a density. As a result, the joint density of X, X, ;
exists for any j > 1, which is denoted by f;(+,-), and the marginal density is
denoted by f(-). Note that the ‘3, index is given by

Bu = sup SIf(wv) = F(w) (V)]
uveRr i

We assume 3, = O(1).
(D) Moment Condition. There exists a § > 0 so that F|c|?*® is finite.

(E) Smoothness. For an open neighborhood of x, assume m € C*(U), f € C°(U).

The local quadratic fit is used for estimating the partial derivatives. By Theorem 4.2
in Chapter 4, the local quadratic estimator has the following asymptotic normality

property under conditions (A)-(E).

Corollary 5.1 For [ distinct interior points Xi,...,X; inside the support of den-
sity f and f(x;) > 0 for all j, if there exist open neighborhoods U; of x; such
that m € C*(U;), f € CO°U;). Then the local quadratic partial derivative estima-
ltors Dnj(\xl), ey Dn:(\xl) at each point Xq1,...,X; are asymptotically independent and

normally distributed. Specifically, at each point, say x = (Xp,--+,%1)T, we have for

h — 0,nh?*? — 00 as n — oo,
Zy = (nh"*?)3{ Dy (x) = Dyu(x) = b(x, h)} 5 N(0, %), (5.3)
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where
b(x,h) = —[b(x) + o(1)], (5.4)

and

,LL4 81'( + 3” Ef 11 gz28(1‘)

83m
_ (142 T m(x ) + 305 Y igpn 39_@3% (5.5)

Pm(x
N4 - g x) -|-3N2 fﬂFS(r-l)

where

Y=

02J2
p2? f(x) " (56)

where py = [utK(u)du,J, = [utK?(u)du for nonnegative integers (.

2. Jacobian matrix. Some notations will be introduced and the partial derivative

estimator is used to estimate the Jacobian matrix. Note that the Jacobian matrix of

M(x) is given by
T(x) = ( D) ) : (5.7)

Ipr Opoin
where D,,(x) is the partial derivative vector. An estimator of the Jacobian matrix is

given by substituting D, (x) by D, (x).

Noticing,
P(x) ~ T(x) = ( Dz(g Dl )),
let o
B(x, h) = ( bi)x’ f) ) (5.8)

Wix) = — TV ( OZ ) : (5.9)



where Z ~ N(0,1). Then, by (5.3), we have as h — 0,nh? — oo,

(nhP*)2{ P (x) — T(x) — B(x,h)} 5 W(x). (5.10)

Given [ fixed and distinct points X1,Xs,...,%X; in embedded state space RP, an esti-
mator of the [—step Jacobian matrix product by T' = T(x;)- - T(x2)T(x1) is given
by substituting D,,(x;)’s by D, (x;)’s. Our purpose in this section is to express the
asymptotic properties of T for fixed L.

3.(I = 2). Note that we have decomposition for 72

(A7) (T (32) T (x1) = {T'(x2) + B(xa, W) HT (x1) + B(xa, h)}]
= (k") {1 (x:) = T(x2) = B3, h)}T'(x1)
+ (%) (nh?**) T (x1) = T(x1) = B(xa, h)}
T'(x2) — B(xa, h)} B(x1, h)
(x1) = T'(Xy) = B(x1,h)}

+ (k") V2T (x,) —
+ B(xg, h)(nh?*?) V2T

+ (") T (%) — T(x2) = Bxa, h)HT (31) = T'(31) = B(xa, h)},

Define the matrices W(x1), W(x3) by

7T
AL oL i=1,2, (5.11)
2 f(XZ) Op—l,p

where Zy, Z, are iid N(0, I).
As in (5.10), since
(AP T (%) = T(x:) — B(xi, h)} = Wi = 1,2,
it follows from the preceding decomposition for 72 that as h — 0, nkP+? — oo,
(kPP 1% = T% — {T(x2) B(x1, h) + B(x2, h)T'(x1)} + O(h*)]
L WoT (x1) + T(xq) Wi (5.12)

4. Any fixed [. Denote T(x;) = T(x;) + B(xi,h), 1 < i <1, where b(x;, h)(i =

1,2,...,1) is defined as in (5.4), and Tt = T(X[) - T(xq).
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Use the decomposition for matrix product

A

T =T = Tea) - T(xe)T(xa) = T(xr) - T(x2) T (x1)
= Yo T(x) - T )(T(x5) = T(x))T(x51) - T(x4)
+ ik 1) - T (T(x;) = T(x;))
T(xj1) - T(xpsn)(T(xi) = T(xp)) T (3xp1) - T'(x2)
1.
(1) = T(x0) -+ (T(x2) = Tx)(T(x1) = T(x4)),
where T}, | = T(x;) - T(Xps1), k < 5, 7% = T(x4_1)--- T(x), with the conven-
tions that 70 = T}, = T'(x0) = T'(x141) = I.

As in (5.10), since

[

?

(nhpﬂ)l/z(f(xi) _ T(Xz) LN Wie=1,2,...

where W;, 7 =1,2,...,[ are independent, and defined similarly as in (5.11), we obtain

as h — 0,nh?*? — oo,
(RhP*2) 2T — ZTZ (nhP)VA(T(x;) — T(x;)) T~
+0<h2> + O, ({nh?t?}711%),

where 7™ has the approximation

=T+ E ! B(xj, B)T7 7 4+ O(RY).
In all, we have the following corollary.

Corollary 5.2 Under conditions of Corollary 5.1, for fixred |, we have as h —

0,nh?*? — oo,

l
(nhp+2)1/2{Tl Z ]+1 XJ7 Tj_l }iz +1WT] 1 (5'13)

In order to derive corresponding results for the estimators of local Lyapunov exponents
from those of the Jacobian products given above, we use the asymptotic theory of the
eigenvalues and the singular values from a random matrix, which is studied in next

two sections.
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5.3 Asymptotic Distribution of Eigenvalues

The delta method. In various contexts in multivariate analysis, the asymptotic
distribution of the eigenvalues of a random matrix is needed. The problem is simple
under the assumption that the eigenvalues of the limiting matrix have multiplicity
one, since a Taylor expansion of the characteristic equation at the eigenvalues can be
given. The method using the Taylor expansion is usually called the delta method in
the literature. In this section, we will give an exposition of the delta method in full
generality, expanding on a derivation given by Richard Smith, who assumes that all

the eigenvalues of the limiting matrix have multiplicity one.

Expansion for the eigenvalues having multiplicity more than one is more complicated.
In the case of symmetric matrices, an alternative approach introduced by Eaton and
Tyler (1991) using the Wielandt’s eigenvalue inequality can be used to circumvent

the complications in the case of multiple roots.

For an arbitrary matrix X, its eigenvalues A as an implicit function of X are defined

as solutions to the characteristic equation
fX, ) =X =X =0. (5.14)

The multiplicity of a root of the characteristic equation is called the multiplicity of
the eigenvalue. Denote the eigenvalues of X by ¢(X) = (¢1(X),...,»,(X))T ( some

are possibly complex numbers).

One application is the following: suppose that X, is a p x p random matrix satisfying

A(X, — A) LW, (5.15)

T

where A is nonrandom, W is a random matrix, for an increasing sequence ¢, — 0.
We are interested in finding the asymptotic distribution of
Yor = C}L/?{gok(Xn) —di}, where d = or(A),1 < k < p, (5.16)
or their joint asymptotic distribution
Vo = (Voo Yo )T = 2((X,) — ol A).

T
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The simple root case. The idea is simple. If px(X) is a differentiable function of
X, it then follows from the multivariate Taylor expansion that A = ¢;(X) can be
expanded near dp = ¢i(A), for X being close to A. So the main step in using the
delta method is to justify the differentiability property of ¢x(X)’s in a neighborhood
of matrix A. The implicit function theorem in multivariate calculus will be used and

a version is stated here.

Theorem 5.1 (Implicit Function Theorem) Given a (¢ + 1)—wvariate function
F(x,y) = F(x1,29,...,24,y), where x = (x1,...,2,), let Xo = (x01,...,%0,4), and
U be a rectangle in Rt centered at a point (Xo,y0) = (To1,- -+, T4 Yo). Let C¥(U)
denote the class of functions defined on U which are k—times continuously differen-

tiable. Assume that F(x,y) satisfies the following

1. F(x,y) € CHU),
2. F(xo,y0) =0,
5. SEboan) 4 g,
Then, there exist n > 0, and 6 = (61,...,6,), each 6; > 0, so that for any x €

(xo — 6,%0 + &) C R?, there is a uniquely defined function y = p(x) = @(x1,...,2,)
which satisfies

(A) F(x,0(x))=0, for all x € (x¢g — 6,%0 + 0),
(B) lp(x) = yol <,

(C) ¢(x0) = vo,

(D) ¢(x) € C¥(xo — 8,%0 + &), and furthermore

dp(x) aF(X,y)/ F(x,y)

Oxr; ox; dy

,1=1,2,....,q.

y=¢(x)

The following general lemma is obtained as an immediate application of the implicit

function theorem (Theorem 5.1).
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Lemma 5.1 Let o(X) denote the kth eigenvalue of a p x p matriz X. For any given
matriz A with the kth eigenvalue d, = pr(A) having multiplicity one, then @i(X) is
a uniquely well-defined function in a neighborhood of A, and is differentiable up to

any order. Moreover,
Ioe(X) | _ _fu(A,dy)
0Tij |x_4 /
where

af(X,A)
[ii(A dy) = == |x= 4224,
]( k) amij |X Ar=d

['(Aydy) = = [](d: — dy)".
ik
Proof: Apply the implicit function theorem (Theorem 5.1) to f(X,\) given in (5.14),
with initial values given by x¢ = elements of A,y = dj. Since f(X, ) is a smooth
function of X and A, the differentiability of the eigenvalue, say ¢i(X), in a neigh-
borhood of A depends on the fulfillment of condition (3) in the implicit function

theorem
If(X,A)
—_ # 0. (5.17)
a)\ X=A\=dy
Denote
) Odf(XN _Of(X,)N)
fZJ(Xv)‘)_ axij 7f(X7)‘>_ a)\ :

Recall that, any matrix A can be reduced to its Jordan form A in C by a similar

transformation, that is, there exists a nonsingular matrix V' such that

V_IAV == A,
where
A = diag{A,..., A}, (5.18)
where A, has the form
ds 1 0 0
0 ds 1 --- 0
AS - . . . . . , (519)
0o 0 0 - ds



where d; is an eigenvalue of A. Denote the [(I < r) distinct eigenvalues of A by

dq,...,d;, with each dy of multiplicity ps, 1 < s <l p1+...+p=p

The characteristic equation of A is given by

{

JOAN) = F(AN) = TT(ds = M.

s=1
Since each ds is independent of A,

{

AN = =3 palde — Ay TT(d: — A

=1 i#s
Thus,

—[Ligs(di — di)P' if pp =1

0 ifpr>1

f(Ady) = {

(5.20)

(5.21)

So f'(A,dr) # 0 if and only if dj has multiplicity one, that is, p, = 1. Since the

conditions of the implicit function theorem are satisfied, it follows that the eigenvalue

(X)) is differentiable up to any order , that is, it is analytic, in a neighborhood of

the matrix A if dp has multiplicity one. The lemma is proved. O

We need the following lemma.

Lemma 5.2 Given that X has entries (z;;),1 < 1,7 < p, let X/ denote the cofactor

of zij. Then,
91X

= XY,
aflli]'

PROOF. The expansion of | X| by elements of the ith row is
p .
|X| = Z {L’Z'hXZh.
h=1
Since X, does not contain z;;, the lemma follows. O

In summary, we have the following corollary.

Corollary 5.3 Assume (5.15) and that the kth eigenvalue @ip(A) has multiplicity

one, then
671%/2(9019(‘)(”) - dk) i) Z@k(ivj)wijv
.3
where (%, 7) is given in (5.23).
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Proof: Applying Lemma 5.2 to evaluate f;;( A, di), denoting the cofactor of the (¢, 7)th

element in matrix A — dip [ as (A — d.1)", we have
Fii(Aydy) = (A= di 1)V (5.22)

Lemma 5.1 implies that, if dj has multiplicity one, by using (5.21),

Jor(X) (A—d D)7 A .
= = 3 7)- 5.23

Note that if dy = ¢r(A) has multiplicity one, denoting X = (z;;), A = (a;;), and || - ||

be a matrix norm, the Taylor expansion for ¢;(X) at x being near A is given by

oe(X) = di = 3 ili, ) (i — aij) + o(||X — AJ),

where @i(2,7) is given in (5.23). From (5.15), denoting X,, = (2,;), W = (w;;), it
follows that

e (pr(X, Z@k (1, 5)e (@nij — aij) + o0p(1),

and

e (or( X, thk (i, 7 )wij.
End of proof. O

Now let’s see how to simplify calculations in (5.23) or (5.22). Since any similarity
transformation to assumption (5.15) will not change (5.16), without loss of generality
we can assume that A is of the Jordan form A, which will simplify (5.23) considerably.
For simplicity, in the rest of this section we will consider the case that A is a diagonal

maftrix, that is,

A = diag{dy,. .., d,}. (5.24)

where d, = @r(A). Note that A is diagonalizable under a similarity transformation,
if all the eigenvalues of A have multiplicity one, or when A is a symmetric matrix.

We have the following theorem.
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Theorem 5.2 Given p x p matrices X,,, A which satisfy (5.15), and assume that A

is diagonalizable, that is there exists a nonsingular matriz V such that
VAV = diag{d,,---,d,}.

Denote
uf
U=v'=|  [,V=(W, V),
Uy
let vr(X,) denote the kth eigenvalue of matriz X,, then if di has mulliplicity one,

the asymptotic distribution of oi(X,) is given by
Yo = {on(X,) — di} 5 UTW V. (5.25)

If all the dy’s have multiplicity one, the joint asymptotic distribution of the vector
o(X,) = (01(X0)s - 0 (X )T is given by

V= (X0 — g(A)} 5 (UT WV, ... UTWY,)T.

Proof: Evaluating (5.22) in the case A = diag{dy,...,d,}, we have

fi; (AN = { ii(dr—X) ifi=y

0 ife#£y
Thus,
[(d —dp) ife=7
fi(A,dy) = 7 S
0 ife %y
. Hl;ék(dl_dk) ifi=j=k
0 otherwise
From (5.21),
F'(A,dy) = = [(di — di).
I#k
By Lemma 5.1,
Jor(X) N if i=j=k
dzij |x_a 0 otherwise
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that is,
dpr(X)

X = Ew, (5.26)

X=A
where Eyp is the matrix whose kth diagonal element is one and all other elements are

Zeros.

Using Taylor expansion for ¢i(X) at X near A and (5.26), we have obtained the

theorem. O

A more general setting. Assume that an asymmetric matrix X, satisfies
(X, — A,) 2, W, where W is a random matrix, (5.27)

where ¢, is an increasing sequence and ¢, — o0, A, is a convergent sequence of

matrices such that

A, = A+ B,, Aisnonrandom , B, 2% 0. (5.28)
We have obtained the following corollary.

Corollary 5.4 Assume the general setup (5.27), under the assumptions on A and

notations of Theorem 5.2,
Vi = e {on(Xa) = di = Ul B,V — o B,)} = U/ Wi
If all the dy’s have multiplicity one, the joint asymptotic distribution is given by
Vo = &2 {p(X,) — @A) — (UTBVes - UTB, V)T - o( B,)}

L Utww,.. UTw,)T

Proof: Under the assumption on A in Theorem 5.2, and using the same notations,

we have that using the Taylor expansion,

A {on(X) - on(A)} = 32 2Py x4 W o (11, — A (5.29)

i O
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where C, is a matrix between U7 X,V and UT A,V , that is,

IC = UT ALV < UT(Xn = AV

From (5.27) and (5.28), it follows that

Co B UTAV = diag{dy, - ,d,} £ D.
So by the continuity of akng(X) in the neighborhood of D,

Deor(Cr) » Opr(D)

= Fy.
6:% 6%4 k

Thus, it follows from (5.29) that,
e er(Xa) = (A0} 5 UTWV,

where,

from (5.28). The rest of the lemma follows similarly. O

The case of multiple roots. The delta or perturbation method works well for the
simple root case since the eigenvalues are analytic about a simple root. However, there
seems to be a limitation for the delta method to be applied to multiple root case. The
eigenvalues, although continuous, are not differentiable at points of multiple roots.

Let’s see an example.

Example. Consider the 2 x 2 matrix
X =

It is easy to see that,
@I(X) =T+ |6|7992(X) =T — |6|7

which are continuous but not differentiable at ¢ = 0. The reason lies in the fact that

X is a perturbation of a diagonal matrix A = z/ which has a multiple root z.
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As a result, the delta method can not be used directly, and the expansions of the
eigenvalues at multiple roots are more complicated. In the case of symmetric matri-
ces, Eaton and Tyler (1991) have employed the Wielandt’s inequality to circumvent
the complications caused by the multiplicity of roots by considering the submatrix
corresponding to the multiplicity of the roots. We refer to Eaton and Tyler (1991)

for more details for the multiple root case.

5.4 Asymptotic Theory of Singular Values

In this section, we consider the asymptotic theory of the singular values from a random
matrix, as a direct application of the eigenvalue theory discussed in last section. We

will use the general setup (5.27) and (5.28).

Denote the singular values of a matrix X by 6:(X) > ... > 6,(X), which are defined

by @({XTX}'/?). Our purpose is to study the asymptotic behavior of
Vo= (61(Xa), -, 6(X0))" = (81(A), -+, 6,(A))". (5.30)
From (5.27) and (5.28), we have
APXTX, — ATA) L WTA+ ATW 2 W, (5.31)
where AT A, has the approximation
ATA, = ATA+ BTA+ ATB, + o(B,).

We have the following theorem.

Theorem 5.3 Assume that all the singular values of A have multiplicity one (other-

wise consider only those singular values which have multiplicity one), then

cl/? : - : - : —o(B,) } % : (5.32)
6p(Xn) 6p(A) Ul BV, U W,
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Proof: There exists a singular value decomposition (SVD) of A, i.e. there exist

orthogonal matrices U, V' such that
A=UAVT where A = diag{é,(A),...,8,(A)}. (5.33)

Consequently, AV = UA, and VT ATAV = diag{6%(A), ..., 62(A)}.

For simplicity, we will assume that all the singular values of A have multiplicity
one (or consider only the singular values which have multiplicity one), then apply

Corollary 5.4 to (5.31), we obtain

o/ {o(XTX,) — p(ALA,)}
& VIWW, - VIWY,)T = dgv [VIW V) (5.34)

where dgv denotes the vector consisting of the diagonal elements (see Section 5.1),

V=W, ,V,), and p(AL A,) has the approximation

0(ATA) = (AT A) + dgv{VT(BTA + ATB,)V}. (5.35)

Furthermore, using AV = UA and noting that A is a diagonal matrix,

dgv{VIWV} = dgv{VIWTAV 4+ vTATWV}
= dgv{VITWTUA + AUTWV}
= 2Adgv(UTWV).
Similarly,
dgv{VT(BIA+ ATB,)V} = 2Adgv(UT B, V).

Denote U = (Uy,---,U,). By using transformation y = y/z, the theorem is then
proved from (5.34) and (5.35). O
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5.5 Application to Estimation of Singular Values

of Jacobian Product.

Note that 7", T! are defined and studied in Section 5.2. Denote
8il) = 6:(T"),6:(1) = 6i(T"), 1 <i < p,
and denote the orthogonal matrices U({), V(I) in the SVD

T = U(l)diag{6:(1),---,6(D)}VT(1).

For simplicity we assume that the singular values of 7" have multiplicity one. Other-
wise we will consider only those singular values which have multiplicity one. We have

the following theorem.

Theorem 5.4 Assume that all the singular values of T' have multiplicity one, then

under conditions Corollary 5.1, we have

61(1) 61(1)
(nhp+2)1/2 : — :
8,(1) 6,(1)
2 {UT ()T} (1) (x) T VA (D)}
D : —o(h?) } % N(0,%*),

{U; (DT ()BT (x) TV, (1)}

s _ 1 Tyl 201, T (1N phk—INT k=17,
= ];f(xk){% (DT (DYHV (O T Vi),

O'2J2 !

7= T8 X ey (T O DT T DT @),

for1 <i<p1<j<p.
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Proof: From Corollary 5.1 and Theorem 5.3, we have
61(1) 61(1)
(nhP+2)!/? AN
(1) &p(1)
i UF (DT B(x;, h) T WA(T)
- s o)
YL UN(DT! B(x;, h)TI7V, (1)

Zé’:l UE(Z)T;+1WjTj_1%(Z)

S UL ()T, WIT V()

where

Furthermore, denote
T}-H = (le+1(1)v T 7T]‘l+1(P))- (5-36)
From the definition of B(x,h) in (5.8), (5.4), it is seen that

B2
TjB(xj, h) = i (1) (x5, h) = %Tﬁl(l)b(xj) +o(h?),

and

UrnT!

7 741

B(x;, h)T7"'Vi(l) =

%“{UZT(UT;H(UHbT(Xj)Tj_lVi(l)}, for 1 <i < p.

Similarly, from the definition of W; in (5.11),

or/J
T Wi = — =T}, (2],
Mo f(Xj)
and
UT(OTL, W T Vi) = T oyt ()W 2T T,

fiz\/ f(x;) Z

forl1 <:<p,1 <3<
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So we have proved

o1(1) 61(1)
(nh?*2)2 -
5,(1) 5,(1)
v o | AT OTOH )T (0)
b : — o(h?)
{UF DT (D HET () TV (1))
z (Ui (073,01 >}{ZTTJ Wi}
N U\/J_QZ 1 : (5.37)

2 =500/ f(x5)
{U; (DT (HZTTV(D)

which gives a characterization of the asymptotic distribution., from which the theorem

follows easily. O

5.6 Estimation of Local Lyapunov Exponents

1. Asymptotic distribution of the LLE estimators. In this section, the results
of Section 5.5 will be applied to estimation of the local Lyapunov spectrum. Note

that the vector of the [—step local Lyapunov spectrum at a point x is defined by

||D
—~ =

Aa(D), -+, 2(1))" = —(log{bi(D)},- ., log{8,()})",

and an estimator is given by

a (D), A (D)7 2 —(log{b1(D)}, -, log{b,(D ).

—] =

Apply Theorem 5.4 and the “delta method” for log x, we have the following theorem.

Theorem 5.5 Under conditions of Theorem 5.4, and if 6,(1) # 0,

M (1) M)
(nhp+2)1/2 : — :
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87 (D) Shat {UT (DT (IO () T VA (D)}

_6h21 — o)
M2

8 (1) X AU (DT (DO (x) TV, (1)}
< N(0,%7),

where Y = (Ufj),

o], ! 1 , 2 -1 2
U{? = 122631 Z f(Xk){UZT(Z)T,iH(l)} HTk Vi(OlI%,

k=1
O'L . 0'2J2
Yo usbi(1)6i(D)
{
1

2 f(xk){UZT(Z)T£+1(1)}{UjT(1)T£+1(1)}{‘6T(1)(T’“‘1)TT’“‘1V]'(1)},

for1<i<p1<j<p.

2. Constructing Pointwise Confidence Intervals. Theorem 5.5 characterizes
theoretically the variability associated with the local Lyapunov exponent estimators.
In practice, Theorem 5.5 may be used to construct confidence intervals for the local
Lyapunov exponents. One immediate difficulty in applying this theorem is that the
estimators have asymptotic bias which may not be negligible. One way out of this
is to choose the bandwidth 2 small enough to make the bias negligible, that is,
to make O(h?) of smaller order than (nh?*?)='/2, This is the idea often used to
construct confidence intervals and confidence region for a nonparametric regression
in the literature. However, if the optimal bandwidth A is chosen so that it achieves the
tradeoff between the asymptotic bias and the asymptotic variance, that is, when O(h?)
and (nhp+2)_1/2 are of the same order, there will always be asymptotic bias associated
with the estimators. In order to give honest confidence intervals, we propose to use
the “bias adjustment” method. Some pilot estimators for the third-order partial
derivatives are required to give consistent estimates of the asymptotic bias, which are

then used to adjust the bias of the local Lyapunov exponent estimators.

Specifically, for the estimation of the asymptotic bias, estimators for b(xy),k =

1,2,...,1 are needed, note that b(xy)’s are defined in (5.5) as functions of the third-
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order partial derivatives of the autoregression at xi,Xs,...,x;. One simple method
of deriving consistent estimators for the third-order partial derivatives of a regression

function is the local cubic polynomial fit.

In addition, under the assumption that all singular values have multiplicity one, it is
easy to see that U(l) and V(l), given by the singular value decomposition of 7!, are
consistent estimators of U([), V(I). A consistent estimator for the asymptotic bias of

A

. . 2 A
A; is given by &ﬁi, where

IID

Z{Uk (NTfa (DT ) TV (D)} (5.38)

For the estimation of the asymptotic variance, consistent estimators for o? and
f(x5),7 =1,2,...,1 are needed. Natural consistent estimators for f(x;)’s are given
by the kernel estimators, given by
j hpZ[ ]:1,2,...,l
2 g hy

where K is a kernel function.

Any consistent estimator & will serve our purpose. There are several proposed esti-

mators in the literature, of which the simplest one may be the differenced estimator.

Let S, = {(i,7) : | Xi — X;|| < h1,i # 1,

It is easy to show that, if the regression function is Lipschitz continuous, as h; —
0,nh] — oo,

o2 — o = O(h2) + O,({nh3}~11?),
which implies that it is consistent.

A consistent estimator for the asymptotic variance for i is thus given by

A2
L 6%

Oy =
Z2M%52

2; {Uq' VT (WP ITH V(D)2 (5.39)

The following corollary follows from Theorem 5.5.
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Corollary 5.5 Under conditions of Theorem 5.5, and given consistent estimators BZ

L

and &1, we have as h — 0,nh?*?* — oo,

—232» — o(h?)) % N(0,1).

hp+2 1/2¢ ~LN\-1 5\2 _ )\i _
e R S

Based on Corollary 5.5, a pointwise confidence interval can be constructed for A;(m)

at point x;. Let

- . h?r . . . h
]n = ()‘2 — (nhp"'Z)—l/?UﬁZa/? + @/327 )‘2 + (nhp—l—z)_l/zo-iLiZoz/Q +

6/@[@), (5.40)

where Z,/; is the (1 — a/2)th percentile of the standard normal. By Corollary 5.5,

if the remainder term in the asymptotic bias o(h?) is negligible, in the sense that

(nh?+%)1/2p2 is bounded, i.e.
h < Cn~ Y46 (s a constant,

I,, is a confidence interval for X;(I) with confidence level tending to 1 — «, as h —
0,nh?*? — oo, i.e.

P(l,) —1—a. (5.41)
Simultaneous confidence intervals for several A;({)’s can be constructed similarly.

In practice, the confidence interval (5.40) may still be too complicated to be computed.
The main difficulty is the estimation of bias term BZ which requires the estimation
of third-order partial derivatives. In nonparametric smoothing literature, similar
problem occurs in constructing confidence interval for the regression function (Hardle
1990), and a simple way to avoid the problem is by choosing a smaller bandwidth, so
that the bias term is negligible as compared with the variance, i.e. O(h?) is of smaller
order than O((nh?*2)'/2?), then the bias adjustment is not needed. But this is done at
the expense of increasing the variance, hence increasing the length of the confidence
interval. That is, the confidence interval so constructed will be less precise than that

using the bias adjustment.
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Chapter 6

OUTLOOK

Current nonparametric functional estimation theory presumes the existence of a den-
sity function. The density function, when it exists, is certainly the most informative
and convenient way to deal with. However, as shown in Section 4.5, if the probabil-
ity measure is singular with the Lebesgue measure, the statistics can be drastically

different from that assuming the existence of a density.

The immediate extension of the present work is to the case of a chaotic time series
which does not possess a joint density function. The nonparametric estimation in
fractal time series discussed in Section 4.5 can certainly be followed further. For
example, the local linear fit and the local quadratic fit may be extended to fractal
time series. A general local polynomial fit in fractal time series is given in Conjecture
4.2. Another issue is the phenomenon of lacunarity in chaotic time series (Smith
1991, 1992a). As pointed out by Richard Smith, the assumption in (4.9) is not
general enough and does not cover the lacunar case, which turns out to be quite

common. This issue is certainly worth looking into in the future.

The methods developed here will enable us to estimate the local Lyapunov exponents
along with the estimates of variabilities of the estimators or confidence intervals. The
logical next step is to test the methods with some known chaotic systems, and to

apply them in analyzing some real data.
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Moreover, the results on the local Lyapunov exponents may give some insights on the
closely related problem of estimating the (global) Lyapunov exponents. An unsettled
issue 1s the convergence rate of the Lyapunov exponent estimators, and the choice of

block size [. See McCaffrey et al (1992), Ellner et al (1991) for more discussions on

this open issue.

An important problem is nonlinear prediction. The nonparametric regression methods
discussed in the present work are certainly very relevant. One issue is how to form

multistep forecasts. See Farmer and Sidorowich (1988) for more discussions.
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