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� Introduction

Multidimensional scaling seeks a proper geometric
representation in Euclidean space of one or more ma�
trices of dissimilarity or similarity �proximity� data�
Each dissimilarity matrix represents the scores or
ratings given by a subject for comparing pairs of
stimuli�
In real situations the dissimilarity matrix is sel�

dom exactly Euclidean� in the sense that it can be
exactly represented as distances in Euclidean space
of a given dimension� usually called the object or
con�guration space� Furthermore� in order to be vi�
sually explored� the object space usually has lower
dimensionality� say less than �� and so it is unlikely
that high�dimensional data will be exactly repre�
sented� On the other hand� there are many situ�
ations when multivariate data expressed in higher
dimensional coordinates have lower dimension rep�

resentations such as points on a cycle� sphere� or
some manifold� Chaotic time series data often have
an intrinsic low�dimensionality� See Lu ��			� for
some examples and an interesting study in the case
of kernel regression� In high dimensional data anal�
ysis� an interesting question is how to approximate
the data structure using some low�dimensional rep�
resentations� Multidimensional scaling is one of the
many useful techniques that can be used to recover
hidden simplicity or order in complex situations� It
is a data analytic and exploratory technique� and
has been highly useful in graphical data display and
visualization �Buja� Swayne� Littman� Dean �		
��
The question arises as to how to �t a distance

model to dissimilarity data when the data are not
exactly Euclidean� There are two main approaches
in multidimensional scaling� namely �metric
 and
�nonmetric
 scalings� In the metric approach� a
parametric model is used to transform the data or
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distance� The actual data values are relevant and
used in this approach� and the data type can be con�
tinuous �absolute�� ratio� or interval �Arabie� Car�
roll� DeSarbo �	
��� In the nonmetric approach� a
nonparametric model is used to transform the data�
in which only the order or rank of dissimilarity data
is used �Kruskal and Wish �	�
�� In some situations
the nonmetric approach makes more sense and it is
an overall more robust procedure� The data types in�
clude ranking data� ordinal data as well as the data
types handled by the metric approach�

The S�PLUS function� MDSCALE� is currently
being developed for �tting di�erent MDS models�
It has functionalities comparable to the MDS proce�
dure in SAS� or its precedent� the ALSCAL proce�
dure� The well�known cola data �e�g� Clarkson et al
�			� are used to illustrate the developed procedure
and its graphical display capabilities� We will focus
on the implementation of monotone spline approach
to nonmetric multidimensional scaling as developed
in Ramsay ��	

��

� Monotone spline regression for

transformation of data

In this section we discuss a nonparametric regres�
sion model for transformation of dissimilarity data�
The most popular function is a polynomial function
given as f�x� �

Pk

i�� aix
i�� at any given point x�

There are at least two ways of adapting polynomi�
als in nonparametric models� One way is via lo�
cal models� see e�g� Fan and Gijbels ��		�� and Lu
��		��� Another approach uses splines� We will fo�
cus on polynomial splines� and especially monotone
splines� which consist of monotone piecewise poly�
nomial functions �Ramsay �	

��

Polynomial splines provide �exible transformation
models using polynomials joined end�to�end in a
smooth and constrained way� That is� an interval
�L�U � is subdivided by a mesh � consisting of points
L � �� � � � � � �q � U � Within any subinterval
��j � �j��� the function is a polynomial Pj of speci�
�ed degree k � � or order k�

To provide a convenient way of de�ning a spline



function� it is useful to incorporate the interior knot
speci�cation or mesh � and the continuity condi�
tions �j into a knot sequence t � ft�� � � � � tn�kg
where n is the number of free parameters that spec�
ify the spline function having the speci�ed continuity
characteristics� The knot sequence has the proper�
ties�

�� t� � � � � � tn�k�

�� For all i there is some j such that ti � �j �

�� The continuity characteristics are determined
by�

�a� t� � � � � � tk � L and U � tn�� � � � � �
tn�k�

�b� ti � ti�k for all i�

�c� if ti � �j and ti�� � �j � then

ti � � � � � ti�k��j���

In the most common situation where maximal con�
tinuity k � � holds at each boundary point in the
interior of �L�U �� there is one knot at each interior
boundary� the related sequence is referred to as a
simple knot sequence� The number of free param�
eters n is equal to the number of knots interior to
�L�U � plus the order k�
It is convenient in the application of splines to

have a suitable set of basis splines� Mi��jk� t�� i �
�� � � � � n� such that any piecewise polynomial or
spline f of order k associated with knot sequence
t can be represented as the linear combination f �Pn

i�� aiMi�
A set of basis splines particularly appealing to

statisticians is the M�spline family in which Mi� i �
�� � � � � n� is de�ned such that it is positive in
�ti� ti�k�� zero elsewhere� and has the normaliza�

tion
R U
L
Mi�x�dx � � �Curry and Schoenberg �	����

A computationally convenient speci�cation for ti �
x � ti�� is the recursion

Mi�xj�� t� �

� �
ti���ti

� if ti � x � ti�� and�

�� otherwise�
���

Mi�xjk� t� �

������
�����

��k � ���ti�k � ti��
��

fk��x� ti�Mi���xjk � �� t�
��ti�k � x�Mi�xjk � �� t��g�
if ti � x � ti�k and �
�� otherwise

���

for k � �� where M���jk � �� t��Mn��jk � �� t� are
de�ned as zeros� �Note slight modi�cations from
Ramsay ��	

���

Each Mi has the properties of a probability den�
sity function and is nonzero only over the interval
�ti� ti�k�� This localization property of the M�spline
basis shares some features with wavelets basis func�
tions �Bruce and Gao �		��� This property has ad�
vantages in computational e�ciency and numerical
stability� For example� a change in coe�cient ai will
only a�ect f within the interval �ti� ti�k�� achiev�
ing a desirable local sensitivity to coe�cient values�
Moreover� in order for f �

Pn

i�� aiMi to be a den�
sity function� we only need to require the coe�cients
to satisfy ai � � for all i � � and

Pn
i�� ai � ��

The B�spline basis Bi� i � �� � � � � n is closely re�
lated to the M�spline basis� in that

Bi � �ti�k � ti�Mi�k� ���

Note that the B�splines are also nonnegative and
Bi�x� � � only for ti � x � ti�k� The B�splines
have the normalization property

Pn

i��Bi�x� � � for
all x� which is quite useful in some applications�
Monotone splines Our focus is on monotone

splines� and �rst we de�ne a set of basis consist�
ing of monotone splines� We derive the integrated
splines Ii� or I�splines� from the M�spline basis� as
follows

Ii�xjk� t� �

Z x

L

Mi�ujk� t�du�

for i � �� � � � � n� Since Mi is nonnegative� Ii is a
nondecreasing function� and so any function of the
form f �

Pn

i�� aiIi where ai � � is always nonde�
creasing� Any monotone function f or �f may be
approximated this way if the I�spline basis is �exi�
ble enough� Note that Ii is a piecewise polynomial
of degree k since Mi is a piecewise polynomial of de�
gree k � �� Further� Ii�x� � � for x � ti and � if
x � ti�k�
We will reserve the term order k to an M�spline

of degree k � � or an I�spline of degree k� For sim�

ple knot sequences� which have only one knot at each
interior boundary� n is equal to order k plus the num�
ber of interior knots� For such simple knot sequence�
the I�spline Ii can be expressed in the convenient
form as a simple function of an M�spline basis of or�
der k � �� i�e� Mi��jk � �� t�� i � �� � � � � n � �� Let t
be the simple knot sequence of order k��� then for
all x such that tj � x � tj���

Ii�xjk� t� �

������
�����

�� i � j�Pj

m�i�tm�k�� � tm���
Mm���xjk � �� t���k � ���
j � k � � � i � j�
�� i � j � k � ��

���

where i � �� � � � � n� Note that tn�� � tn��� since t is
a sequence of order k��� Also� notice that the terms



inside the summation are exactly B�splines of order
k � � from ���� �Again note the subtle di�erences
from Ramsay ��	

��s formulas��

Figure � shows the six I�splines and M�splines of
order �� and the associated B�splines of order � on
the interval ��� ��� where the interior knots are chosen
at ���� ���� ���� Note that the M�splines are piece�
wise quadratic and are the �rst derivatives of the
corresponding I�splines� The B�splines are piecewise
cubic and have the characteristic of summing to one
at each location�

A monotone spline transformation is a linear com�
bination of I�splines with nonnegative coe�cients�
Since the I�splines are nondecreasing piecewise poly�
nomials� the spline transformation is also a nonde�
creasing piecewise polynomial� The idea is that with
enough knots� this type of transformation can ap�
proximate any monotone function at desired accu�
racy� For a given bivariate data set� the monotone

spline regression is the nonnegative least squares �t
of such a linear model� This approach to data mod�
eling is certainly feasible in practice as demonstrated
from the extensive study of local polynomial regres�
sion �cf� Fan and Gijbel �		�� Lu �			��

While local polynomial regression requires a deci�
sion on a bandwidth or a size of the neighborhood
to be used at each �tting� the polynomial spline re�
gression requires the choice of knots� It turns out
that the location of knots does not have signi�cant
impact on the �t� and it is the number of knots that
is much more crucial� In practice� however� there is
often enough �exibility in a curve de�ned by a single
interior knot� and it is not usually necessary to use
a large numbers of knots� As a rule of thumb� we
suggest using two interior knots placed at roughly
equally spaced locations�

At one extreme� when the data are ordered in non�
decreasing order� one may place knots at each dis�
tinct data point� and this type of spline models is
also very useful� In particular� when the linear spline
�k � �� is used� this model corresponds exactly to
the isotonic regression as discussed by Barlow et al
��	��� and Kruskal ��	���� In another important
situation when the basis functions consist of some
particular class of expansion series� not necessarily
restricted to the B�spline basis� the resulting spline
model is called a smoothing spline� though this name
is often reserved for situations when a penalty term
is used to make the estimator smoother�cf� Ramsay
and Silverman �		���

When the data consist of multi�way observations
or measurements by multiple subjects� there is a
class of curves that need to be �tted� each of which
corresponds to a speci�c subject� Such curves� called

functional data� occur in many areas� including me�
teorology� psychology� and biomedicine� We refer to
Ramsay and Silverman ��		�� for detailed discus�
sions on this promising area� Next� we present a
nontrivial application to individual di�erence mod�
els in multidimensional scaling�

� Nonmetric multidimensional scal�

ing

To �x ideas� consider a data example analyzed in
Clarkson� Gonzalez� and Lu ��			� among others�
The data set consists of pairwise comparison of ��
cola brands by �� subjects� �Thus� there is a to�
tal of �� � �� � ��� data points�� In this example�
the main interest is to discern the relative di�erence
among the di�erent cola brands as perceived by the
testers� and it is thus natural to assume a nonmetric

multidimensional scaling model� To �x notation� we
assume there are multiple subjects or populations�
each one producing a set of dissimilarity data� and
a separate transformation is likely required for each
subject� Thus� there can be as many spline trans�
formations as the number of subjects�
We also assume the individual di�erence model

for subject di�erences� Thus� the overall model is
de�ned as follows� There is a monotone function fk
such that

fk�ykij� � dkij � 	kij ���

where i� j � �� � � � � n for each subject k � �� � � � �m�
Since separate transformations may be employed for
each di�erent subject� fk may be di�erent across k�
Usually dkij is assumed to be the weighted distance

dkij �

vuut �X
���

wk��xi� � xj���� ���

The goal is to estimate the con�guration matrix
X � �xij� in the object space and the weight matrix
W � �wk�� in the subject space� The transformed
data fk�y� can be interpreted as the �unobserved

perceptive distance by the kth subject� The trans�
formed data are also called the disparities� De�ne
�ykij � �fk�ykij��
If there is no smoothness assumption on monotone

fk� the resulting model �tting is based on isotonic
regression �Kruskal �	��� Barlow et al �	���� The
isotonic regression is usually too rough and it is de�
sirable to impose certain smoothness� leading to the
use of monotone spline transformation as discussed
in Section �� In particular� the linear spline trans�
formation with knots at every distinct data points
corresponds to the isotonic transformation�
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Figure �� Illustration of de�nitions of di�erent splines
The six I�splines and M�splines of order �� and the associated B�splines of order �� The interior knots are at
���� ���� ����

Following Kruskal�s formulation� our objective is
to minimize the �t measure� or �stress
 function�
de�ned as

S �

mX
k��


k
X
i�j

��ykij � dkij�
�� ���

where 
k is a weighting function often given by


k � ��
X
ij

�y�kij � �
�

�or sometimes given by ��
P

ij��ykij � �yk�
� where

�yk � �
n�n���

P
ij ykij �� The parameters to be �t�

ted include elements in X and W as well as coe��
cients in the spline transformation� We use a sequen�
tial optimization procedure in which iteratively S is
minimized over X and W � given the disparities �ykij �
while given X andW � we �t �ykij by using a nonneg�
ative least square procedure� and then reweighting�
Within the spline �tting step� since S is a sum of

m terms� each of which involves coe�cients for a
separate spline� the spline �t can be implemented
separately for each subject�
In the case of isotonic transformation� there is

more direct algorithms such as Kruskal ��	����s up
and down algorithm or equivalently the �pooled ad�
jacent violators �PAV�
 algorithm of Barlow et al
��	��� for �nding the optimal monotone transfor�
mation�
Cola example� We �t the nometric individual

di�erence diagonal model to this data set using di�
mension p � �� spline transformation of degree � and
� interior knots� The transformed data� or dispari�
ties versus the original data are plotted in Figure ��
where di�erent symbols represent di�erent subjects
���
� subject one� ��
� subject two� and so on� with
��
 representing subject ten�� To evaluate the �t�
ness of the selected model� we also plot the residuals
�disparities�distance� for each subject� and this is
given in Figure �� It is seen that the spline transfor�
mation model is fairly adequate in this data set�
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Figure �� Monotone spline transformations of the cola data
Separate transformations applied to each subject� The I�spline basis of degree � is used� placed at two equally
spaced interior knots� ���
 for subject one� ��
 for subject two� and so on� with ��
 for subject ten��

References

Arabie� P�� J�D� Carroll� W�S� DeSarbo ��	
���
Three�Way Scaling and Clustering� Sage Publica�
tions� Newbury Park�

Barlow� R�E�� D�J� Bartholomew� J�M� Bremner�
H�D� Brunk ��	���� Statistical Inference under Or�

der Restrictions� The Theory and Applications of

Isotonic Regression� John Wiley� New York�

Bruce� A� and H�Y� Gao ��		��� Applied Wavelet

Analysis with S�PLUS� Springer and MathSoft Inc�

Buja� A�� D�F� Swaye� M� Littman� N� Dean ��		
��
XGvis� Interactive Data Visualization with Multidi�
mensional Scaling� J� of Computational and Graph�

ical Statistics� to appear�



•
••

•
•

•

•

•
• •

••
•

•

•
•

•
••

••• •

•

•
•

•

•
••

•
•

•
•

•
•

• •
•

••
•

•

•
•

disparities

re
si

d

6.0 6.5 7.0 7.5 8.0 8.5 9.0

-2
0

2
subject  1

•

••

••

•
•

• •
•

•

••

•

• •

•

•
•

•

•

•

•

•

•
•

•
•

•
•

•
•

•

•

•

•

•

•
• •

•

•
•

•
•

disparities

re
si

d

6.5 7.0 7.5 8.0 8.5

-3
-1

1
2

3

subject  2

•

•
•

•
••

•
•

•
•

••

•

•

• •

•

•
•

•

•

• •

•

•
•

•
•

•

•

••

••

••

•
•

• •
•

•
•

•

•

disparities

re
si

d

6.0 6.5 7.0 7.5 8.0 8.5 9.0

-2
0

1
2

3

subject  3

•
•

•

•
•

•

•
• • •

•
•

•

•
•
• •

•
•

•
••

•
•

•
•

•
•

•

•

•

•

•
•

•
•

•
•

• ••

•
•

•
•

disparities

re
si

d

5 6 7 8 9

-2
0

1
2

3

subject  4

•

•
•

•• •

•

• •
•

•
•

•
••

• •
•

•

•

•
•

•

•

• •
••

•
•

• •

• •

•

•
•

• • ••

•
•

•
•

disparities

re
si

d

5 6 7 8 9

-3
-1

1
2

subject  5
•

•

•

•• •

•

• •
•

•
•

• ••
• •

•

•

•
•

•

•

•

• •

•
•

•
•

•
•

••

•

•
•

••
•

•

•
•

•
•

disparities

re
si

d

5 6 7 8

-2
0

1
2

subject  6

•

•

•
•
••

•
•

• •

•
•

•

•

•
•
•
•

• •
•

•
•

•

•
••
•

••
••

•
•

•
•

•

•
• •

•• •

•

•

disparities

re
si

d

6 7 8 9

-2
0

2
4

subject  7

•

•
•

•
•

•

•

•
•

•

•
•

•

•

•
•

•
••

• •
•

•

•

•
•

•
•

•

•

• •

•
•

•

•

•
•

•

••

•
••

•

disparities

re
si

d

6.0 6.5 7.0 7.5 8.0
-3

-1
1

2
3

subject  8

•
•

•
•

•
•

•
•

•

•

•

•

•
•

•

•
•

•
•

•

•
•

•

•
••

•

•

•
• •

•

•• ••

•

•
•

•
•

••
• •

disparities

re
si

d

5 6 7 8 9 10

-2
0

1
2

3

subject  9

•

•
•

•
•

•

•

•
•

•

•
•

•

•

•
•

•

•

• • •• •

•

••

• •
•

•

•
•

•
•

•
•

•

•

•

•
•

•
•

•

•

disparities

re
si

d

5 6 7 8 9 10

-2
0

1
2

3

subject  10

Figure �� Residual plot after �tting the nonmetric diagonal MDS model to the cola data�
It is emphasized that a proper way to see the goodness of �t is to plot separately for each subject� as shown
here�
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