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1 Introduction

Multidimensional scaling seeks a proper geometric
representation in Euclidean space of one or more ma-
trices of dissimilarity or similarity (proximity) data.
Each dissimilarity matrix represents the scores or
ratings given by a subject for comparing pairs of
stimuli.

In real situations the dissimilarity matrix is sel-
dom exactly Euclidean, in the sense that it can be
exactly represented as distances in Euclidean space
of a given dimension, usually called the object or
configuration space. Furthermore, in order to be vi-
sually explored, the object space usually has lower
dimensionality, say less than 5, and so it is unlikely
that high-dimensional data will be exactly repre-
sented. On the other hand, there are many situ-
ations when multivariate data expressed in higher
dimensional coordinates have lower dimension rep-
resentations such as points on a cycle, sphere, or
some manifold. Chaotic time series data often have
an intrinsic low-dimensionality. See Lu (1999) for
some examples and an interesting study in the case
of kernel regression. In high dimensional data anal-
ysis, an interesting question is how to approximate
the data structure using some low-dimensional rep-
resentations. Multidimensional scaling is one of the
many useful techniques that can be used to recover
hidden simplicity or order in complex situations. It
is a data analytic and exploratory technique, and
has been highly useful in graphical data display and
visualization (Buja, Swayne, Littman, Dean 1998).

The question arises as to how to fit a distance
model to dissimilarity data when the data are not
exactly Euclidean. There are two main approaches
in multidimensional scaling, namely “metric” and
“nonmetric” scalings. In the metric approach, a
parametric model is used to transform the data or
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distance. The actual data values are relevant and
used in this approach, and the data type can be con-
tinuous (absolute), ratio, or interval (Arabie, Car-
roll, DeSarbo 1987). In the nonmetric approach, a
nonparametric model is used to transform the data,
in which only the order or rank of dissimilarity data
is used (Kruskal and Wish 1978). In some situations
the nonmetric approach makes more sense and it is
an overall more robust procedure. The data types in-
clude ranking data, ordinal data as well as the data
types handled by the metric approach.

The S-PLUS function, MDSCALE, is currently
being developed for fitting different MDS models.
It has functionalities comparable to the MDS proce-
dure in SAS, or its precedent, the ALSCAL proce-
dure. The well-known cola data (e.g. Clarkson et al
1999) are used to illustrate the developed procedure
and its graphical display capabilities. We will focus
on the implementation of monotone spline approach
to nonmetric multidimensional scaling as developed
in Ramsay (1988).

2 Monotone spline regression for
transformation of data

In this section we discuss a nonparametric regres-
sion model for transformation of dissimilarity data.
The most popular function is a polynomial function
given as f(z) = S.F_ a;a"~! at any given point .
There are at least two ways of adapting polynomi-
als in nonparametric models. One way is via lo-
cal models, see e.g. Fan and Gijbels (1996) and Lu
(1996). Another approach uses splines. We will fo-
cus on polynomial splines, and especially monotone
splines, which consist of monotone piecewise poly-
nomial functions (Ramsay 1988).

Polynomial splines provide flexible transformation
models using polynomials joined end-to-end in a
smooth and constrained way. That is, an interval
[L,U] is subdivided by a mesh A consisting of points
L=¢& < <& = U. Within any subinterval
[€,&j+1) the function is a polynomial P; of speci-
fied degree k — 1 or order k.

To provide a convenient way of defining a spline



function, it is useful to incorporate the interior knot
specification or mesh A and the continuity condi-
tions v; into a knot sequence t = {t1, -, tntr}
where n is the number of free parameters that spec-
ify the spline function having the specified continuity
characteristics. The knot sequence has the proper-
ties:

Loty <+ <tpjk-
2. For all ¢ there is some j such that ¢; = §;.

3. The continuity characteristics are determined
by:
(@) t1 = =ty =Land U = typy; = -~
tn+k;
(b) t; <tz for all 7;
(c) if t; = & and t;1 < &, then

ti =" =tlitk—v;—1-

In the most common situation where maximal con-
tinuity £ — 1 holds at each boundary point in the
interior of [L,U], there is one knot at each interior
boundary, the related sequence is referred to as a
simple knot sequence. The number of free param-
eters n is equal to the number of knots interior to
[L,U] plus the order k.

It is convenient in the application of splines to
have a suitable set of basis splines, M;(-|k,t),i =
1,---,n, such that any piecewise polynomial or
spline f of order k associated with knot sequence
t can be represented as the linear combination f =
i1 aiM;.

A set of basis splines particularly appealing to
statisticians is the M-spline family in which M;,i =
1,---,n, is defined such that it is positive in
(ti,tivr), zero elsewhere, and has the normaliza-
tion fLU M;(z)dx = 1 (Curry and Schoenberg 1966).
A computationally convenient specification for ¢; <
x < tj+1 is the recursion

| /=, ifti <@ <ty and,

Mi(a1,1) = { O,Jr1 otherwise,

(1)
[(k = 1) (tirs — )]
{k[(az — ti)Mi_1(£E|k — l,t)
+(tive — 2)Mi(zlk = 1,8)]},  (2)
ift; <z< titk and ,
0, otherwise

for k > 1, where My(-|k — 1,¢t), My (-|k — 1,t) are
defined as zeros. (Note slight modifications from
Ramsay (1988).)

M;(z|k, t) =

Each M; has the properties of a probability den-
sity function and is nonzero only over the interval
[ti,ti+r]- This localization property of the M-spline
basis shares some features with wavelets basis func-
tions (Bruce and Gao 1996). This property has ad-
vantages in computational efficiency and numerical
stability. For example, a change in coefficient a; will
only affect f within the interval [¢;,¢;1r], achiev-
ing a desirable local sensitivity to coefficient values.
Moreover, in order for f = Y7 | a;M; to be a den-
sity function, we only need to require the coefficients
to satisfy a; > 0 foralli >0and > a; = 1.

The B-spline basis B;,i = 1,---,n is closely re-
lated to the M-spline basis, in that

Bi = (tigr — ti) M;/k. (3)

Note that the B-splines are also nonnegative and
B;(xz) > 0 only for ¢t; < x < t;yx. The B-splines
have the normalization property > | B;(z) = 1 for
all z, which is quite useful in some applications.

Monotone splines Our focus is on monotone
splines, and first we define a set of basis consist-
ing of monotone splines. We derive the integrated
splines I;, or I-splines, from the M-spline basis, as
follows

L (alk, 1) :/ Mi(ulk, £)du,
L

for ¢ = 1,---,n. Since M; is nonnegative, I; is a
nondecreasing function, and so any function of the
form f = E?:l a;I; where a; > 0 is always nonde-
creasing. Any monotone function f or —f may be
approximated this way if the I-spline basis is flexi-
ble enough. Note that I; is a piecewise polynomial
of degree k since M; is a piecewise polynomial of de-
gree k — 1. Further, I;(z) = 0 for < ¢; and 1 if
T > tigg.

We will reserve the term order k to an M-spline
of degree k — 1 or an I-spline of degree k. For sim-
ple knot sequences, which have only one knot at each
interior boundary, n is equal to order k plus the num-
ber of interior knots. For such simple knot sequence,
the I-spline I; can be expressed in the convenient
form as a simple function of an M-spline basis of or-
der k+1,ie M;(-|k+1,t),i=1,...,n+ 1. Let t
be the simple knot sequence of order k + 1, then for
all x such that t; <z <tj4q,

0, i >j;
S ei(tmgks2 = timg1)

Li(zlk,t) = ¢ My (zlk+Lt)/(k+1), (4
J—k+1<i<y;
1,i<j—k+1,

where ¢ = 1,---,n. Note that t,41 < tp42, since t is

a sequence of order k+1. Also, notice that the terms



inside the summation are exactly B-splines of order
k + 1 from (3). (Again note the subtle differences
from Ramsay (1988)’s formulas.)

Figure 1 shows the six I-splines and M-splines of
order 3, and the associated B-splines of order 4 on
the interval [0, 1], where the interior knots are chosen
at 0.3,0.5,0.6. Note that the M-splines are piece-
wise quadratic and are the first derivatives of the
corresponding I-splines. The B-splines are piecewise
cubic and have the characteristic of summing to one
at each location.

A monotone spline transformation is a linear com-
bination of I-splines with nonnegative coefficients.
Since the I-splines are nondecreasing piecewise poly-
nomials, the spline transformation is also a nonde-
creasing piecewise polynomial. The idea is that with
enough knots, this type of transformation can ap-
proximate any monotone function at desired accu-
racy. For a given bivariate data set, the monotone
spline regression is the nonnegative least squares fit
of such a linear model. This approach to data mod-
eling is certainly feasible in practice as demonstrated
from the extensive study of local polynomial regres-
sion (cf. Fan and Gijbel 1996, Lu 1999).

While local polynomial regression requires a deci-
sion on a bandwidth or a size of the neighborhood
to be used at each fitting, the polynomial spline re-
gression requires the choice of knots. It turns out
that the location of knots does not have significant
impact on the fit, and it is the number of knots that
is much more crucial. In practice, however, there is
often enough flexibility in a curve defined by a single
interior knot, and it is not usually necessary to use
a large numbers of knots. As a rule of thumb, we
suggest using two interior knots placed at roughly
equally spaced locations.

At one extreme, when the data are ordered in non-
decreasing order, one may place knots at each dis-
tinct data point, and this type of spline models is
also very useful. In particular, when the linear spline
(k = 1) is used, this model corresponds exactly to
the isotonic regression as discussed by Barlow et al
(1972) and Kruskal (1964). In another important
situation when the basis functions consist of some
particular class of expansion series, not necessarily
restricted to the B-spline basis, the resulting spline
model is called a smoothing spline, though this name
is often reserved for situations when a penalty term
is used to make the estimator smoother(cf. Ramsay
and Silverman 1997).

When the data consist of multi-way observations
or measurements by multiple subjects, there is a
class of curves that need to be fitted, each of which
corresponds to a specific subject. Such curves, called

functional data, occur in many areas, including me-
teorology, psychology, and biomedicine. We refer to
Ramsay and Silverman (1997) for detailed discus-
sions on this promising area. Next, we present a
nontrivial application to individual difference mod-
els in multidimensional scaling.

3 Nonmetric multidimensional scal-
ing

To fix ideas, consider a data example analyzed in
Clarkson, Gonzalez, and Lu (1999) among others.
The data set consists of pairwise comparison of 10
cola brands by 10 subjects. (Thus, there is a to-
tal of 45 x 10 = 450 data points.) In this example,
the main interest is to discern the relative difference
among the different cola brands as perceived by the
testers, and it is thus natural to assume a nonmetric
multidimensional scaling model. To fix notation, we
assume there are multiple subjects or populations,
each one producing a set of dissimilarity data, and
a separate transformation is likely required for each
subject. Thus, there can be as many spline trans-
formations as the number of subjects.

We also assume the individual difference model
for subject differences. Thus, the overall model is
defined as follows: There is a monotone function fy
such that

fe(Yrij) = drij + enij (5)
where ¢,j = 1,---,n for each subject k = 1,---,m.
Since separate transformations may be employed for
each different subject, fr may be different across k.
Usually dy;; is assumed to be the weighted distance

drij = Zwkz(ﬂ?iz —xj0)2. (6)
=1

The goal is to estimate the configuration matrix
X = (z4;) in the object space and the weight matrix
W = (wg¢) in the subject space. The transformed
data fr(y) can be interpreted as the “unobserved”
perceptive distance by the kth subject. The trans-
formed data are also called the disparities. Define
Urij = fr(Urij)-

If there is no smoothness assumption on monotone
fx, the resulting model fitting is based on isotonic
regression (Kruskal 1964, Barlow et al 1972). The
isotonic regression is usually too rough and it is de-
sirable to impose certain smoothness, leading to the
use of monotone spline transformation as discussed
in Section 2. In particular, the linear spline trans-
formation with knots at every distinct data points
corresponds to the isotonic transformation.
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Figure 1: Illustration of definitions of different splines
The six I-splines and M-splines of order 3, and the associated B-splines of order 4. The interior knots are at

0.3,0.5,0.6.

Following Kruskal’s formulation, our objective is
to minimize the fit measure, or “stress” function,
defined as

S = Z O Z(Z]kij — dyij)?, (7)
k=1

1,3

where J; is a weighting function often given by
o = I/Z?z” (8)
7]

(or sometimes given by 1/, (9xij — 7x)* where
T = n(+71) Zij Yrij.) The parameters to be fit-
ted include elements in X and W as well as coeffi-
cients in the spline transformation. We use a sequen-
tial optimization procedure in which iteratively S is
minimized over X and W, given the disparities §;;;
while given X and W, we fit §;;; by using a nonneg-
ative least square procedure, and then reweighting.
Within the spline fitting step, since S is a sum of

m terms, each of which involves coefficients for a
separate spline, the spline fit can be implemented
separately for each subject.

In the case of isotonic transformation, there is
more direct algorithms such as Kruskal (1964)’s up
and down algorithm or equivalently the “pooled ad-
jacent violators (PAV)” algorithm of Barlow et al
(1972) for finding the optimal monotone transfor-
mation.

Cola example. We fit the nometric individual
difference diagonal model to this data set using di-
mension p = 3, spline transformation of degree 2 and
2 interior knots. The transformed data, or dispari-
ties versus the original data are plotted in Figure 2,
where different symbols represent different subjects
(“1”, subject one; “2”, subject two, and so on, with
“0” representing subject ten). To evaluate the fit-
ness of the selected model, we also plot the residuals
(disparities-distance) for each subject, and this is
given in Figure 3. It is seen that the spline transfor-
mation model is fairly adequate in this data set.
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Figure 2: Monotone spline transformations of the cola data
Separate transformations applied to each subject. The I-spline basis of degree 2 is used, placed at two equally
spaced interior knots. (“1” for subject one; “2” for subject two, and so on, with “0” for subject ten.)
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