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Abstract, Lyapunov exponents are among the principal measures of the
chaotic behavior of a dynamical system. However, they are ditficult to esti-
mate when the only information available is a sample of data from trajectories
of the system. Locel Lyapunov exponents are easier to estimate and, in some
contexts, a more useful measure of the predictability of a system than global
Lyapunov exponents. In this paper we propose a method of estimating the
dynamical system and its local Lyapunov exponents using local linear and
local quadratic regression. Approximations to the bias and variance of such
estimators are quoted, and we illustrate the results with a number of examples.

1 Introduction

In recent years there have been many attempts to apply dynamical systems
theory to understand the long-term chaotic behavior of non-linear time series. The
pioneering book by Tong [1990] was followed by a number of collections of papers,
such as Tong and Smith [1992], Drazin and King [1992] and Grenfell et al. [1994};
see also Isham [1993] and Jensen [1993] for reviews of this very active arca.

One major theme of this research has been the attempt to estimate dynamical
invariants such as the (fractal) dimension of an attractor, and entropy and informa-
tion measures. This ig useful for two reasons: first because they are interesting mea-
sures in their own right of the long-term behavior of a dynamical system, and second
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because they form the basis for tests to distinguish between chaos and randomness.
Of all these measures, perhaps the most widely used is the correlation dimension,
introduced by Grassherger and Procaccia [1983] and, as much as anything, popular
because there is a relatively simple algorithm to estimate it, at least in its simplest
form. L.A. Smith [1988], R.L. Smith [1992] and Wolff [1994] are among the authors
to have studied the statistical properties of the Grassberger-Procaccia procedure
and related estimators and tests. Recent work by Cutler [1993, 1994} has expanded
enormously on the meaning and interpretation of the correlation dimension and
other fractal dimensions, but they still lack any direct interpretation in terms of
the dynamics of the system. On the other hand, Lyapunov erpornents are much
more readily interpretable: the positivity of the largest Lyapunov exponent is often
taken as the definition of chacs and it provides a direct measure of the sensitivity
of the system to perturbation of initial conditions. However, Lyapunov exponents
have traditionally been regarded as much harder {o estimate. Early attempts such
as those of Wolf et. al {1985] and Eckmann et al. [1986] lacked any clear measure
of statistical performance. The approach developed by McCaffrey et al. [1992]
and Nychka et al. [1992] was much more statistical, being based on nonparamet-
ric regression to estimate the dynamic map followed by direct calculations on the
estimated map. Nevertheless it is still hard, in their approach, fo obtain analytic
results for such quantities as the asymptotic bias and variance of estimators. On
the other hand, local Lyapunov exponents — Lyapunov exponents over a finite time
horizon - can be studied much more explicitly. Wolff [1992] presented one approach
to local Lyapunov exponents {(henceforth LLEs) in the one-dimensional cage.

The main aim of the present paper is to develop the theory of LLEs, in the
general multidimensional case, in conjunction with recent results on function esti-
mation by local polynomial regression. This method of nonparametric regression
has been developed a great deal in the past few years, with explicit asymptotic
results being available for the bias and variance of estimators thus allowing the-
oretical treatmzent of such questions as optimal kernel bandwidth, cf. Fan [1993],
Ruppert and Wand [1994].

Lu [1996] extended the work of Ruppert and Wand [1994] to consider the
estimation of derivatives of multivariate functions in the standard nonparametric
regression setting, in which all the observation vectors are independent, and Lu
[1994] extended those results to time series with correlated observations, Developing
those results, Lu [1994] showed how to obtain approximations to the bias and
variance of a local Lyapunov exponent estimator based on local linear or local
quadratic regression. These results are reviewed in Sections 2—4 of the present
paper. In Section 5 we describe an implementation of the methodology, and in
Section 6 we give some numerical and real-data examples.

2 Local Lyapunov Exponents in Stochastic Systems

The general model we consider is of the form
Ty = m(ﬂ?t,$t,1,...,$gﬁpn;_1) + o€, (21)

where m : RP — R is some nonlinear function, o > 0 and {e,, ~00 < ¢t < o0} is
a sequence of 1.i.d. random: variables with mean 0 and variance 1; moreover, ;1
is assumed independent of {x,, s < t}. In the case ¢ = 0, {2.1) is often taken
as a generic representation of a deterministic dynamical system in either discrete
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or continuous time, as a consequence of Takens’ embedding theorem. See, e.g.,
Section 3.2.6 of Isham [1993] for one of many discussions of this. However, very
few real observed time series are expected to be deterministic dynamical systems,
and adding the random noise term ce; 1 is the most obvious way of introducing a
random component into the model. The determination of the embedding dimension
p is one critical decision which has itself been the focus of defailed discussion in the
literature, such as Cheng and Tong [1992].

The model {2.1) may also be written in state space form: define Xy to be the
vector (Zypp—1,Titp—2» oz and let £ =ol, (I, isthepxp identity matrix),
Ey = (€14p,0,...,0) and

T
M(X:) = (m(mtJHJJ'la$t+p729---7$t)a$t+pfla “-a-"::tJrl) ) (2-2)

then
Xt+1 = M(Xt) + EE{;+1. (23)
We are interested in the question of sensitivity to initial conditions. Consider
two realisations { Xy, t > 0} and {X{, ¢ = 0} of (2.3), starting from neighboring
initial values Xy, X but subject to the same noise sequence {E.}. After £ steps
we will have, by a first-order Taylor expansion together with the chain rule,

Xg — Xé o] VM(Xg_1)VM{Xg_2)...VM(XQ)(XQ - X[’))

2.4
=JU (X — X)) say @4

where VM (X) is the Jacobian matrix of the map M evaluated at X, and J& is
the product of £ such matrices. Under very general conditions, the matrix

1/(26)
] (2.5)

A:lmlﬁﬂﬂpjw
f—oc

exists; moreover, the logarithms of the eigenvalues of A, ordered as Ay 2 Ao ==
Ay, are invariants of the system (not dependent on X or the specific sequence of
{F,}). These are the Lyapunov exponents of the system. In particular, the largest
Lyapunov exponent A; is a direct measure of the exponential rate at which the
trajectories {X;}, {X;} separate, and the property Ay > 0 is often taken as the
definition of a chaotic system. The review papers of Isham [1993] and Jensen (1993
may be consulted for more details about the existence and properties of Lyapunov
exponents,

This definition of the Lyapunov exponents of a stochastic system is the simplest
one operationally, but it seems artificial because it introduces the rather unrealistic
idea that two trajectories starting from different starting positions may nevertheless
be subject to the same random shocks. In particular, this criticism is made by
Tong [1995], pp. 405-6. However, a different viewpoint, also given by Tong, leads
to practically the same thing. If we define Fy{z) =E{X, | Xo = x}, the conditional
mean of the f-step prediction from a starting point z, then we may consider the
effect of a small (vector) perturbation & in x. We have

Fylz + 6) — Fo(x) = Fi(z)8 + o({[81]),

where
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(Tong [1995], p. 408). Thus the matrix I} given by Tong is the same as our J
but with an additional “averaging over trajectories”. The contrast between the two
definitions is discussed by Yao and Tong [1994], who define “Lyapunov-like indices”
which are not exactly the same as Lyapunov exponents but are nevertheless very
similar. Gur own point of view is that there are by now a number of ways of defining
sensitivity to initial conditions, and ultimately one should consider all of them, but
the Lyapunov exponents defined by (2.5) are a natural starting point for discussion
about how one should estimate these quantities.

Nevertheless, one clear disadvantage of this definition is that, from the point
of view of practical evaluation, {2.5) is difficult to handle because there is no good
way to decide how large £ must be taken to guarantee a good approximation to A.
in the definition of local Lyapunov exponents, we do not take the limit and work
directly with

A = [{J(F)}Tj(ﬁ)] L/(20) (2.6)
for finite #; if we then denote the logarithms of the eigenvalues of A as
I3 ¢
A =AY > e, (2.7)

these are called the local Lyapunov exponents of order #. In contrast to the
glohal Lyapunov exponents, they do depend on Xy and indeed the entire trajectory
{Xy, Xy, ..., Xe—1 }. However for some purposes this can be a positive feature, for
example in helping to determine to what extent the short-term predictability of the
system depends on the current state.

A second positive feature of local as opposed to global Lyapunov exponents is
that there is a clear-cut procedure for estimating them from sample data. Indeed, if
we can obtain an estimate of VM, then we can carry through the steps (2.4}, (2.6)
and (2.7} directly and so obtain estimates of the LLEs for any finite order ¢, for
any given starting point on the trajectory. The properties of the LLE estimators

I

are then governed hy those of the estimator VM.

2.1  Application to the Lorenz Attractor
Figure 1 shows some plots generaled from the Lorenz [1963] system. This is
defined by the differential equations

%9 = —a{z(t) —y()},
dyd—(tt) = —x(t)y(t) + re(t) — y(t),
d%? = z(t)y{t) — bz(t},

with o =10, b= %, r = 28. A trajectory was calculated using a one-step forward
Euler method with step size 0.001. The resulting system was recorded at time
intervals of 0.05, and we consider LLLEs corresponding to a time step of 0.1, so that
# == 2 for this example. Figure 1{a) shows the time series of LLE spectra. The means
of the three LLEs are 3.98, —2.11 and —15.58, which are a long way from the global
Lyapunov exponents of 0.90, 0 and ~14.57. There is also substantial variability in
the plot, ilfustrating the sensitivity of the LLE to the starting position.

Figure 1(b-d)} show the distribution of the largest LLE in the projected phase
space (x,y), (v, z) and (y,z). We use this to classily the phase space into three
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Figure 1 Local Lyapunov exponents for the Lorenz system. Plot (a)
shows the two-step LLESs, )\5_2) (top), /\(22) {middle) and )\ég) {bottom) each
plotted against time ¢ {horizontal axis), The remaining plots show three dif-
ferent projections of the attractor with regions of small )\gg) {circles), medium
)\(1:2] {crosses) and high ,\(12) {black dots) marked.

areas which are “predictable” (,\gz) < 0, denoted by circles), “fairly unpredictable”
{0< Aﬁ"” < 5, denoted by crosses) and “very unpredictabie” ()\52) > 5, denoted by
black dots). The three regions are well separated in phase space. The predictability
increases in the z direction as z increases. The most unpredictable region is in
the region of low z and in the interchange of the two wings (most noticeable in
the (z,y) plot). The practical implication of this result is that, for short-term
forecasting, one may do better in certain regions than others. This example is, of
course, deterministic, but essentially the same interpretation is made for stochastic
systems.

3 Estimation by Local Polynomial Regression

Nychka et al. [1992] review a number of strategies for estimating m, concentrat-
ing on thin-plate splines and neural nets. Here we shall work with the alternative
method of local polynomial regression which has beer popularized in particular by
the work of Fan [1993]. We shall concentrate on the case of local quadratic regres-
sion: to estimate m{X) and Vm(X) at a location X € R?, based on data Xy, ..., Xy,
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choose a scalar a, a p-vector b and a p % p symmetric matrix L to minimize

n—1
g{:c,.+z —a—bT(X, — X)— (X, - X)TL(X, - X)) K (X'f ; X) . 31

where K is a p-dimensional kernel function and k is a scalar bandwidth parameter.
We then take a as our point estimate of m{X) and b as our estimate of the gradient
Vm(X). If we restrict L = 0 then {3.1) becomes local Jinear regression, and of
course we may include higher-order powers of X, — X to get local polynomial
regression of any order. However, following results in Fan [1993], Ruppert and
Wand [1994] and Lu [1996], it appears to be especially appropriate to use local
linear regression when estimating the function itself, and local quadratic regression
for estimating first-order derivatives. Since the Lyapunov exponents depend on
accurate estimation of the first-order derivatives, we concentrate on local guadratic
regression as our estimation technique.

The solution of (3.1) may be expressed in matrix form as follows: let g =
(p+V(p+2)/2, Y= {x1,..,2,)7, W =diag{ K{(Xo — X)/h), .. K((Xn_1—X)/h}
and X the T" x ¢ matrix

l (X() e X)T VGChT{(XU — X)(XQ — X)T}
X = . . !
1 (Xﬂ.—l - X)T VeChT{(Xn,] - X)(XnAl — X)T}

where vech? denotes the row vector consisting of the columns on and below the
diagonal of a symmetric matrix. Let 8 = {(a,b?, vech™ L)". Then the problem
becomes choosing 3 to minimize (Y — X3! W (Y — X8} for which it is well known
that the least-squares solution is

B=(X"WX)'X"TW Y. (3.2)

provided ( XTW X)~! exists. From (3.2), we estimate m(X) = @ and WR(X) =b
for any specified value of X. As is usual in kernel density estimation, we fix K to be
some spherically symmetric kernel and concentrate our attention on the “optimal”
choice of bandwidth h. Previous results by Lu [1994, 1996] have shown how to
obtain bias and variance approximations for the estimates of m, Vm and ultimately
the local Lyapunov exponents derived via (2.7), as functions of the bandwidth h.
In theory at least, therefore, we may specify h 1n such a way as to minimize the
asymptotic mean squared error. We shall next summarize these results.

4 Bias and Variance Approximations

We shall consider the estimation of the f-step LLE starting from a fixed value
of X € R?, say X = X(;. We assume that the first-order derivatives of m at
X0y and also the next £ — 1 data points, Xy,..., X(g—1), are estimated by local
quadratic regression as described in Section 3. We then form an estimated matrix
J® asin {2.4), and estimated LLEs N > .= Al from (2.6) and (2.7), in each case
substituting the estimates VM for VM. The final estimates are sensitive to the
bandwidth A used in defining VM. To gain some indication of suitable h values
to use, we proceed by calculating approximations to the bias and variance of these
estimators.
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The development of bias and variance approximations proceeds in three steps.
First, we consider the estimation of VA{ or equivalently Vim (recall {2.2)}. Second,
we develop such results for the matrix J (¥) given by (2.4). These results will in turn
be applied to the estimation of the LLEs )\gf), ceny )\g). We shall only outline the
results here, concentrating on those that are directly relevant to our end objectives,
and omitting all proofs. For full details the reader is referred to Lu {1994].

First, then, suppose Vm({X) is estimated for some fixed X € R” by the proce-
dure described in Section 3. The main assumptions we require are:

{i) m is four times continuously differentiable in a neighborhood of X,

{ii) the stationary density of X, denoted f, exists and is continuous, and F(X) >0,
(i) the {e:} are tid. and Ele;[** < oo for some & > 0,
(iv) the kernel K is spherically symmetric and fu}*K{u1, .., up)du..du, < 00.

Define

pkm/ JLfx(uj,...,uj_,)d'u,-i...dup, z/k.:fu;ng(ul,...,up)dul...dup

and let 5(X) denote the p-vector whose ith entry is
&Fm
+ 34 .
a3 ar? Z Gm,&v

Also let A be the p x p matrix
02 1)

T EfX)

Under these conditions, if n — oo, h — 0 in such a way that nhPt? — co, we
have that

nl/2plre/? {%,(X) — Vm(X) ~ (;ib(X)} < N0, A) (4.1)

where M{p, 5) denotes a multivariate normal distribution with mean p and co-
variance matrix ¥. In terms of bias and variance considerations, (4.1} is saying
that ,
Bias of Vm(X —b
(X) % o b(X),
Varjance of Vm(X) = n th P %A

Lu {1994} also shows that if the conditions are satisfled at k distinct points
X, say X0y, .-, X(k—1), then the estimates Vm{ X)), .-, Vm{Xr_13) are asymp-
totically independent. In the followmg discussion, we are particularly interested
in the case where Xy, k = 0,1,...,£ — 1, form a time series, as outlined in the
introduction to this aectlon

It imnediately follows from (4.1) and the definition of M (X) that we can write

R 2RI O (X ) — VM (X (i) — h2Bi} S Wi (4.2)

1 b(Xuc))T) V2 (ZE)
Bi= . — L W 2 .
¥ b ( 0 po/F(Xgy) \ O

where
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Here Zy, is a p-vector of i.i.d. standard normal random variables and O isa (p—1) xp
matrix of zeros. Moreover, {W;} corresponding to distinct fixed values of { X}
are independent.

Now we consider the second step, in which these results are extended to the
estimation of J(® = Gi_y...Gy say, where Gy = VJ\/I(X(;C)}.

Taking a first-order expansion using the chain rule, we have

=1
j\(f) - J(g) = Z Ggfl...Gk+1(Gk - Gk)Gk_l...GU
k=0
Detine
2
BY =N G Gep 1 BuGr1..Cy,
k=0
ot (4.3)
W(E) = Gf (J;L+1WLGA 1-- G[).
k=0
Then it can be shown that
RV2RI21FO gD p2R _o(pty) & wid, (4.4)

Noting that only the first rows of the matrices By and W; are non-zero, the
expressions for B and W in (4.3) can be simplified, as follows. Let g,(C 7 denote

the first column of the matrix Gy...Gry1 and let Hy, = Gy_;...Gy. Then

i—1 (£} 7T
G /1 Z; o
B = Z 0B X )y, WO = T2 Z i k (4.5)

k== V F(Xwy)

The third step is to extend this to estimating the eigenvalues of {J¢}7 J¢}
In fact it is easier to work with the singular values 655) > 6&6) > 5§f') of JU: the
singular values of J are the square roots of the eigenvalues of {JO}7 J so the
LLEs will be given by

)\(E glogﬁm i=1..p

i

Our estimation procedure will be to let {:‘33&), j =1,...,p} denote the singular values
of J(© and then to define

i

~ 1
29 = —10g80, j=1,..p. (4.6)

¢

We now need to consider the asymptotic distribution of {g;”, j=1,.,p}

Lu {1994} gives the following result. Suppose X,, B, and W are random p x p

matrices, A a fixed p x p matrix and ¢, a scalar for each n. Suppose as n — oo,

we have that ¢, — o0, B, Z 9 and en(Xn — A — By) 2 W. For any matrix

M let (M) = (5:1{M),...,5,(M))" denote the singular values of M arranged in

decreasing order. Suppose the singular values of 4 are all distinct and positive. We

can write A = UAVT where I/ and V are orthogonal matrices and A is a diagonal

matrix with diagonal entries 6,{A4), ..., §,(A). For any square matrix M let dgv(M)
denote the column vector consisting of the diagonal entries of M. Then

on {6(X0) — 8(A) — dev(UTB.V) —0,(B)} & dgv(UTWV).  (47)
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A recent paper by Eaton and Tyler [1994] has reviewed results of this nature includ-
ing the case in which the singular values of A are not all distinct; this is however
much harder to deal with, and we do not consider it here.

We can now see that, provided the singular values of J () are distinct, a com-
bination of {4.4), (4.5) and (4.7), together with a simple delta function argument
to handle the transformation (4.6), gives the result we are looking for. The final
result is in the foliowing:

Theorem 4.1 Suppose J (& has p distinct non-zero singular velues and write

its singuler value decornposition in the form JO = gOALVENT where
Ul(f),..., ;(,g) are the columns of U and Vl(g),...,pr) are the columns of V0.
Then
(e :
R A
IMVEIRES Y . _ :
~fe (£
) A
Oy —1 x~E— SYCURC: 7 ¢
b (60 S W X )
- m — O(hg)
N — £ ! 3
(65 T U T o b X )T H "
< N (0, 59).
(4.8)
Here the covariance matriz $'9 has entries O'gf) where
© oty | ENT (O [ 7T O (7 ®
T T ¥ ENT oy T £
gyl = U, : 8 (VL H, H V.5,
i7 Ezu%(sl(g)ggg);]f(_x(k)) {( t ) gk }{( i ) gk }( i ) k k i
(4.9)

The practical interpretation of this result is that the bias of f}\*ge) is approxi-
mately
__}_LE__ 6(’5))—11‘3_21 U(E))T (E)b(X TH V(g) 4.10
A ;;—o( S gy (X )t Hy Y (4.10)
while its variance is approximately n‘lh*:a*pcrﬁ).

This leads to an expression for the mean squared error (MSE=Dbias®+variance)
and we can choose h to minimize this, at least from a theoretical point of view, and
we can also calculate the resuiting MSE. o

Lu [1994, 1996] also gave expressions for the bias and variance of VM, and
consequently the LLEs, in the case where estimation is via local linear regression
instead of local quadratic regression. For estimation of M itself, rather than VM,
we use local linear regression. In this case explicit expressions for the bias and
variance of local linear regression have been given by Ruppert and Wand [1994].

5 Implementation

The kernel estimator was computed by solving the weighted least squares equa-
tion (3.2) using standard software for the sotution of least squares problems. As
part of the solution, this gave us the minimized weighted sum of squares

S=(Y- XBTW(Y - Xp). (5.1)
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For local linear regression, the method is the same, but the “vech” columps in
the definition of X and the corresponding components of 8 are omitted. The kernel
used here was K(xz) = Cp(1 — [2]*) where | - | denotes Ly norm (|{z1,..., z,}? =
> mf) and C}, is chosen so that the kernel integrates to 1 (this criterion leads to
Cp=m"5T(2+ 2)).

The bias term, which depends on higher-order derivatives of m, is not directly
computable except as a theoretical calculation in cases where m Is known {as in
the cosine map example, Section 6 below). Omne possible strategy is to extend
the method of local polyromial regression to estimate higher-order derivatives and
to use them to derive sample-based estimators of the bias. This is known to be
somewhat problematic but we shall use this method in two examples in Section 6.

The variance term, however, is more directly computable from (4.9}, The main
difficulty with this formula is the need for a separate estimate of f, the density of
data points in the assumed stationary distribution. It is possible to avoid estimating
this by an alternative strategy, which we now outline.

Consider B defined by (3.2). The data vector Y has covariance mafrix o217, so
the covariance matrix of ﬁ ig

AXITW X XTw? X(XTw X)L (5.2)

We need to estimate o?. However after defining S by (5.1), we can easily see
that E{S} = Ko?, where

K=to{W-WX(X"WX)"' XTw}. (5.3)

Consequently S/K is an unbiased estimator of ¢?, and by combining this with
(5.2) we obtain an unbiased sample estitnate of the covariance matrix of E, for any
particular evaluation of (3.2).

Finally, by extracting the components of 8 which correspond to elements of
VM, and passing these through the same operations as led to (4.9), we obtain
satnple-based estimators of the variances of the estimated LLEs, which avoids the
direct evaluation of f.

6 Numerical Examples

Our first example is totally artificial, but is intended to illustrate one method
for selecting the bandwidth h in a situation where we can calculate the “correct”
answer. Then we briefly discuss two well-known data sets.

The artificial example is the cosine map, which is closely related to the better-
known Hénon map. In its deterministic form, it consists of iterating the second-
order nonlinear difference equation ;.1 = cos{2.8z;) + 0.3z;., (Nychka et al.
[1992]), and discarding initial transients. Figure 2(a) shows a plot of z,4; against
x¢, while Figure 2(b) shows the same plot with additive noise (as in (2.1)) with
o = 0.2. Our analysis is based on the data in Figure 2(b}.

We first consider estimation of the function m{.), and then go on to consider
the LLEs. Moreover, we do separate analyses of the full data set which consists of
10,000 data peints, and a much shorter data set consisting only of the first 400 data
peints. This is intended to bring out the difference between large and relatively
small sample sizes. Thus there are four analyses in all, and one of the features
which emerges is the need for quite different handwidths in the different cases.
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(a) Cosine Map
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Figure 2 Data plots with and without noise
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Figure 3 Estimated function values and 95% Cls

The methods are “local” in the sense that they are designed to fit the function
and its LLEs in the neighborhood of a specific point, and for the present analyses
we work from a single starting point, arbitrarily selected to be zg = 0.74327, x; =
—0.57342. Figure 3(a) shows a series of estimates of m{xy, o), computed by local
linear regression, for several different values of the bandwidth h, for the data set
with sample size n = 400. Also shown are the upper and lower boundaries of the
approximately 95% confidence intervals, using standard errors computed by the
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method described in Section 5. Figure 3(b)} shows the same thing, for a different
set of values of h, computed for n = 10,000. The larger sample size in this case
allows us to use smaller values of h while still reducing the standard errors.

In each case, the standard errors increase sharply at the left hand end of the
displayed range of h values, suggesting that variance is dominating bias. For h
too large, however, bias dominates variance. Although it is a highly subjective
judgement to pick out an “optimal” value of A from such plots, they can nevertheless
be helpful in indicating a suitable range of values and the sensitivity of the estimate
to the exact choice of h.

For the present example, being based on a known m, we can compute the bias
term exactly, using formulae in Ruppert and Wand [1994], and so work out the exact
h to minimize the MSE. For n = 250, the best h is 0.364, for which the root mean
squared error {(RMSE) is 0.038 = 0.28 x n~¢. For n = 10,000 the best h is 0.221,
and RMSE== 0.014 = 0.30 x n~3. Note that although we use an analytic formula
for the bias here, the corresponding formula for the variance still depends on the
unknown stationary density f, and since this is not computable analytically, we
continue to use the method described in Section 5 for the variances. Nevertheless
the results between the two sample sizes are very consistent as reflected by the
estimated constant of proportionality in the theoretical n~3% relationship for the
RMSE.

Now let us consider estimation of LLEs, for which we take # = 5. We now use
local quadratic regression, and plot both the LLEs and their confidence intervals
for a range of k, in Figure 4 for n = 400 and Figure 5 for n = 10,000. In Figure 4
it is rather hard to pick out an optimal value of h, since all the confidence intervals
are rather wide relative to the range of estimates of the LLEs, but we might guess
that the LLEs are about (.2 and —1.3 with standard errors of about 0.08 and 0.25
respectively. In fact, the true values for )\gﬁ) and )\frf) are 0.356 and —1.56, and the

best bandwidth for A% is 0.53 with RMSE .105= 0.47 x n~%.

Figure 5 shows a very consistent sequence of estimates of the LLEs with sample
size n = 10,000, though even here it is hard to pick out an optimal value of h.
Arbitrarily we select & = 0.4 for which the estimate of )\gg) is 0.31 and standard
error 0.025. The best h in this case is 0.35 with RMSE=0.046= 0.46 x n~%. As
might be expected, quoting the standard error without taking bias into account
does somewhat underestimate the true RMSE,

We do not consider estitmation of the second LLE in the same detail since
this is less important for any “chaos” interpretation and in any case the errors of
estimation are much larger.

The gualitative messages from this example are, first, that the optimal band-
width depends on the problem being considered, being larger for smaller sample
sizes, and larger for LLE estimation than for estimation of the m function itself.
Second, visual inspection of the plots gives reasonable guidance to the choice of
bandwidth and the error of the resulting estimates, though the error estimate is
always something of an underestimate because it is based only on variance and not
at all on bias.

Now we turn to two well-known real data examples, both given by Tong [1990].
Figure 6 is based on log;g counts of Canadian lynxes, 1821-1934; previous analyses
are due to Tong [1990}, Cheng and Tong {1992}, amongst others, The figure shows a
time series plot, phase plot, two-year LLE spectram plot and associated confidence
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intervals. The LLE computations were based on embedding dimension p = 2. Also
superimposed on the time series and phase plots are an indicator of the value of the
largest LLIE (large values denoted by a +, small values by o). This shows a clear
subdivision of the pbase space into less predictable and more predictable regions,
much as we saw earlier for the theoretical Lorenz attractor. Figure 6(c) gives an
indication of how both LLEs vary along the length of the series. Here the “bias-
corrected point estimate” is computed by using & local cubic regression to estimate
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Figure 6 Annual lynx numbers. o denotes a point for which the 2-year
largest LLE for logia{lynx) is < 0.25; + denotes a point for which it is > 0.35.
The estimation parameters are p =2, h = 1.4, hy = 2.

third-order derivatives of m, and plugging into the theoretical bias formula, which is
then subtracted from the prediction interval. The upper and lower boundaries of the
confidence intervals are then two standard errors either side of this. A bandwidth
h = 1.4 was used for the LLE estimation and h; = 2 as an input to local cubic
regression in computing the bias correction. The large bias and standard error are
not surprising considering the short length of the series. The bias-adjusted LLE
estimates are generally close to 0 which suggests that there is some predictability
in the series. It appears that the rising part of each cycle is more predictable than
the falling part. The asymmetry of the cycles is evidence of irreversibility, itself a
well-known feature of nonlinear time series.

Figure 7 is based on similar calculations for the annual sunspot numbers, 1700
1990. Iz this case the bias correction has again been computed, but is much less
important. The estimates of )\gg) are mostly positive, suggesting unpredictability,
with greater level of unpredictability on the rising part than on the falling part
of each roughly 11-year cycle. Note that this is the opposite pattern from the
lynx example. The period around 19551961 is unusual and this has been partly
compensated for by using a larger bandwidth (A = 110) for this portion than for
the rest of the series {h = 60). The bandwidth for the bias correction estimate
was hq = 120. The period around 1957 is much more unstabie than the rest of the
series and is omitted from plots ¢ and d in view of the very large standard errors,
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Figure 7 Annnal sunspot numbers. o denotes a point for which the
2-year largest LLE is < 0.2; + denotes a point for which it is > 0.4. The
estimation parameters are p = 2, h = 80, by = 120.

Once again there is strong evidence of irreversibility of the time series and this is
reinforced by the LLE estimates,

7 Summary and Conclusions

Local Lyapunov exponents are an important indicator of the dynamical be-
havior of a nonlinear system. For large ¢ they approximate the global Lyapunov
exponents, and in particular the sign of the largest LLE is an indicator of chaos.
For small £, however, they can also be valuable, indicating more or less predictable
regions of the phase space.

In this paper, we have presented one method for their estimation, via local poly-
nomial regression, and given theoretical formulae for the bias and variance of the
resulting estimators. These formulae help to determine theoretically optinal val-
ues for the bandwidth parameter b, and also the overall accuracy of the estimation
procedure.

Practical experience with these methods is still very limited, but we have dis-
cussed one approach towards bandwidth selection, Of course there are a number of
others which could be investigated. Preliminary analyses of two well-known time
series, the lynx and sunspots data, have shown the ability of the LLE spectrum
to distinguish different portions of the phase space which appear to correspond to
different levels of predictability.
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However there remain many issues where further work is needed. Two which
may be of particular importance are the selection of the order of the modei, p, and
the behavior of the estimation procedure in higher dimensions, say for p > 5.
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