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Abstract. Tocal polvnomial modelling is a useful tool for nonlinear time se-
ries analysis. For nonlinear regression models with martingale difference errors,
this paper presents a simple prool of local linear and local quadratic fittings
under apparently minimal short-range dependence condition. Explicit forma-
lac for the asymptotic bias and asymptotic variance are given, which facilitate
numerical evahiations of these important gquantities. The general theory is ap-
plicd to nonparametric partial derivative estimation in nonlinear time series. A
bias-adjusted method for constructing confidence intervals for fiest-order par-
tial derivatives is described. Two examples, including the sunspots data, are
used to demonstrate the use of loeal quadratic fitting for modelling and char-

aclerizing nonlinearity in time series data.

Key words and phrases:  Partial derivative estimation, nonlinearity in time
series, confidence intervaly, nonparametric estimation, sunspots data.

1. Introduction

The local polynomial fitting method can be used for nonparametric estima-
tion of both a nonlinear regression function and its partial derivatives. Tocal
polynomial approach as a recent nonparametric regression method has various ad-
vantages, as demonstrated in Fan and Gijbel (1996). Local polynomial modetling
is also useful in modelling and prediction of nonlinear tine series. This approach
is familiar in the time series literature as it has close connections to many other
modelling techniques such as local smoothing or state-dependent models. In the
time series context, the one-dimensional case is studied by Masry and Fan (10697)
who established asymptotic normality of local polynomial fitting for stationary
processes uneder some mixing conditions. Subsequently, Masry (1996) generalized
to this result to the multivariate ease for loeal polynominl fitling of any ordor.
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Though significant theoretically, there remain many practical issnes in apply-
ing these results in data analysis. For exawmple, the mixing conditions of Masry
and Fan (1997) and Masry (1996) are complicated and not easy to check in prac-
tical situations. In this paper, we study the two important cases of multivariate
local linear fit and local quadratic fit in the natural sctup of nonlinear regression
models with martingale difference errors Our assumplion on mixing is appar-
ently much weaker and appears to be a minimal short-range dependence condition
in this context. Our proof of asymptotic normality using a martingale central
limit theorem is different from the two eited referencos which employ the much
involved Bernstein's big block and small block argnment. Explicit formulace for
the asymptotic bias and asymptetic variances are given based ou earlicr results
in the nonparamelric regression context of Ruppert and Wand {1994} and Lu
{1996). These formulae facilitate caleulations of the asymptotic bias and variance
for partial derivative estimators and are useful in determining a proper bandwidth.

Nonlinearity in tiine series data has received increasing attention, For ex-
ample, a lot of financial and cconomical time series data have been found to
demonstrate some degree of nonlinearity (Mills {1993)). Modelling first-order par-
tial derivatives is a natural approach to characterizing nonlinearity in time series
data. For example, the structure of partial derivatives is used in identifying non-
lincar time serics models by Priestley ((1988), Chapter 5). Derivative estimatbion
also arigses in the study of estimating Lyapunov exponents in time series, see e.g.
Nychka et al. {1992). While state-dependent and threshold models are among
the main parametric models for nonlinear time series, sce ¢.g. Priestley (1988) and
Tong (1990}, nonparametric techniques which do not commit fo any specific model
form have become increasely popular. As a significant application of the gencral
theory of local polynomial fitting to be diseussed in Section 2, the use of local
quadratic fitting for first-order partial derivative estimation is exploited in Sec-
tion 3, where it is demonstrated as a Hexible tool for modelling and characterizing
nonlinearity in time series analysis. A bins-correction method for construeting con-
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The data constdered in this paper
(]-1) ' {(X“ll‘/l)l(xvly"ﬂ)v'--1(X?1—17Yn)}

where ¥; is the scalar response variable and X, consists of the p predictor vari-
ableg at time i are assumed to arise from the mariingale nonlinear vegression

{MNR) model
(1.2) V, = m(X: 1)+ vY3(X, sy

where m ; R? — R is some nonlinear function, ¥ > ¢ is a variance function, The
following assumptions on the model are made.

(A) {&,}is a sequence of martingale differences with respect to a sequence of
increasing o-fields {F,} such that Xg is Fy-measurable, X;, &, are Fi-measurable
foralli > Land E{s;, | Fio1} =0, E{z? | Fioa} = L.
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(B) sup;», B{|e.)?T% | #..1} < oo for some & = 0.

() The vector sequence {X,} is strictly stationary and satisfies the short-
range dependence condition: let f;(+,) denote the joint density of X, X4 and
J(+) denote the marginal density, then

(1.3) sup ijJ w,w) — f{u) f{v)] < .

u,vehe =

Condition (C} is a rcasonable mixing condition which has been commonly
used in the nonparametric estimation literature (ef. Castellana and Leadbetter
(1986G)). It appears to be considerably weaker than those in Muasry (1996) and
Masry and Fan (1997) and may be aominimal shovt-range dependence condition
in this context.

Though the extra condition (A} is assumed on the model structure, it is quite
natural in the time series context. and is equivalent to the requirement that enough
predictor variables are included in X; 1. As a consequence of (A}, the following
results hold automatically:

m(X, 1) = E{Y;} F, 1}, and (X)) = Var{¥; | Fi_y}.

The latter also defines the variance function in (1.2},

Most, time serics models in common use satisly condition (A). For exam-
ple, (A) is satisfied when g; is independent of X, 1, ... in the past and F
a{Y;, X;;7 < @}. In particalar, our sctup includes the following nonlinear au-
toreqression (NAR) - autoregressive conditionally heteroscedastic (ARCH) model.
Consider

{1.4) @i = Mo, Timay o, Bmp) V(T s,

where m and 1 as before and £; is 1id, and delining F; = o {ag, b < i}, A given
time scries data {z),xa,...,zx} correspond to (1.1) through

Y, =u, X, = (J;.,;,;r;.,;,‘,l,.,.,;z;i,P+|)i, (i —p,p+1,....N)
and n = N - p. The variance function v{-} in this context is known as the velafal-
ity function in the finance and cconometrics literature. Obviously, the method
developed in this paper can be generalized directly to study the volatility fune-
tion, ef. HWardle and Tsybakov {1997), and Hirdle e ol. (1996). The latter also
considers the sctup of a vector autoregression model with o heteroscedastic co-
variance structure. When £ is iid, the state process {X;) defined through (1.4)
is a Markov chain. Under certain assummptions on m, » and the distribution of &,
this process 18 geometmeally ergodic, which enjoys some strong miring property.
Asymptotic normality of some nonparametric estimators can be shown to hold as
a consequence, of. Hirdle ef al. (1996).

Another direction of generalizing results of this paper is to estimation of
functionals of other aspects of the predictive distribution function F(y | Fi_y) =
Py, < _1), such as Lhe regression quantile, of. Welsh (19%6).
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2. Local polynomial fitting

Consider first. the local quadratic fitting. The estimators of m and its par-
tial derivatives ma,...,m, at any given point ® = (r,... 2, )T are derived by
minimizing the weighted sum of squares

(2.1) Z{nfafb"'(xi_l-~m)f(X,,;ﬁ17a;)”"L( ,l—:z)}zlp (#)

i= 1

where a is a real number, b is a p-dimensional vector, and L is a p x p matrix
which is restricted to be a lower triangular matrix for identifiability. The solution
corresponding to minimizing (2.1) consists of &4 — h{x), an estimate of regression

function at z, of & = D,,{z) which corresponds to an estimate of D,,(z) =
(m(z)/0zy, ..., dm(z)/dx,)T at z, and of L which corresponds to estimates of
elements in the Hessian matrix of I, (w) = (Pm{w)/0x;00;) at ©. That is,

L(x) = (1,;) satisties L;; = h;; if i > § and = hy/2 if i = j, where Ho(z) = {(h)
is the Hessian. Let 4 = (a,b7, veehk " {L})7, and we have

(2.2) B=(X"Twx) 'xTwy,

where Y = (¥q,..., ¥,)", W = diag{ K (¥4-2), .. ., I\(X’,il'_l)} and

/1 (Xo - x)7 vech' {(Xo - 2)(Xo — )7} \

Here vech? denotes the row vector consisting of the columns on and below the
diagonal of a symmetrie matrix.

The local linear estitator {3L can be defined similarly as in the case of locat
quadratic estimator with all quadratic terms omitted from (2 1), {2.2), (2.3).

Let U denote an open neighborhood of & = {1, ..., 2,)7 in R, and let cn
Le the class of funciions which have up to order d c(mnum_ms pa.rl,m,l derivatives in
/. Lot I; denote the identity matrix of dimension . For simplicity, the kernel K
is assumed to be spherically symmetrie, i.e. K = k{|jz]]) for some function k. We

|
|

matrices of dimension p and p(p + 1)/2 respectively.

2.1  Local linear fitting
The following thearem is (leV(-]opvd for the local linear estimator, for which
the kernel K s assnmed to satisfy [ W R (g, g )duy - day, < oc

THROREM 1. Under model (1.2) and Assumptions (A)-(C), consider any ¢
distinct points @y, . .., @ satisfying fla;) > 0, v{x,) > 0, if there exist open neigh-
borhoods U, of & such that m € CHU;), f e CHU,), v e CHUY, j = 1,2,... ¢,
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the local linear estimators Gr(x ), ..., Bri{xe) are asymplotically independent and

I g
jointly normal as h — 0, nh? — oo In particular, at each poinl = (z,,...,2,)",
we have that

(nh?)'? diag{1, h 1 M {Br{z) — Blz) — Brlz, h))

is asymprotically normal N(0,Z(x)). Here By (e, h) is the asymplolic bias given
by

%h pa Ve (@) + o(h?)

B

(24) BL(:I:, h) = h'z h? o
mb(m) + Srnf (s )bl( x) + olh”)
where V2 (x) = S20_, 8?mlax) /02,

- — n,

()I'l ()Ilc)f oy

(27’)’) 3 mi{E)«
(110 3 Pt

]

Remark 1. It should be pointed ont that in Theorem 1 for the results cor-
responding to the regression estimator to hold, weaker smoothness assumptions
m € A7), f e CYU) will snflice. The local linear regression estimator has been
a popular method for nonlinear prediction of time series.

Theorem 1 generalizes Theorem 3 in Lu (1996). The proof of Theorem 1 is
similar to and contained in the proof of Theorem 2 to be given in Subsection 2.3
and is thus omitted herc.
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2.2 Local quadratic fitting
We have the following theorem for the local quadratic estimator, for which
the kernel K is assumed to satisfy [ wi2K (ur, .. wpdduy - - duy < 00

THeorEM 2. Under model (1.2) and Assumptions (A)-(C), for | distinet
points x,..., & such that f(z;)) > 0, v{w;) > 0 for oll j, if there exist open
neighborhoods Uy of ® such that m € CYU;), f € CU;), v ¢ C°U), j =
1,2,...,¢, then for h — 0, nh? — 00 as n — oo, the local quadrotic estimators
[}(m.) ,,,,, B(ﬂ’:y) are asymptotically independent and fointly normal. In particular,
al each point @ = (2, ... ,:t:,,)T, we have that

(P2 diag{1, b0y, 2L B(x) - B(z) — Bz, h)}
is asymptotically normal N(0, Z(2)), where

! n A

41()( T) + e 591(.7:) +o(h™)
B(x,h) = b(a") + o(hq) )

';2

%!7( ) + ‘%'f( a1y 1 @)+ olk?)

where B{x) is defined in (2.5) in Theorem 1 of Section 2, and

2 P 0 |
1 — o d*m(x) 'mix)
f(z) == 2 § : e ST E , 22!

Ha — 12 i’ Arcidrs
—_
(2.7) XZ(=z)=
pr((;E)) 0 Q::)((‘:')) V(‘.(T}lT{[ 1}
Jo{x)

pu )O s () (J2 = 0 |

e . vx _ Halda — u]lz ) o

i) vech{ I} 0 @) (A TERIE vech{1 } veeh' {1, })
where

p= (g — 1) Jolua + (0 = Dpi3)® = 2pTagia(pa + (p— i)
+ pps(Ja + (p - LI,
¢ = (g — p3) " Fopa + 2p — D op3 — (p— )i
— Japa — Joprapea — (p— Do},

. Y
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where Ay = (Jy — J3) (g — p13)72, Ay = Jipy !

Remark 2. It is neted that in Theorem 2 for the results corresponding to the
first-order partial derivative estimators to hold, weaker smoothness assnmplions
m € CHU), f e C™U) will suflice. An application of local quadratic fit for first-
order partial derivative estimation will be discussed in more detail in Section 3.

Remark 3. Theorem 2 generalizes Theorem 4 in Lu (1996). The explicit
exprossions for the asymptotic hins and asymptotic covariance matrix are first

derived in T (1996), which involves complicated matrix calculations.

2.3 Proof of Theorem 2
Write

(2.8) S, {D{A(x) — B(x))} = Ry + (nh?)"122,,
where

= (@) DT XWX DT
Ry = (nh") ' D' XTW(M - X3);
D = diag{1,hI\, h*L,);

whore M — {(m(Xy), ..., m(X, 7

mn
Zo = (") "VEDTIXTWVIRR = (nh?y V2N " 7
=1
where E = (g1,....6437,
V = diag{v{Xo),..., v(Xn-1)}
2 C
(2")) and
(5
Azl T v .. K
Zni = h i K (—13) v e
X, | —=x Xl_l—I)I h
vech
h h

U m = mlr,... 2z, € CHL), for a positive number A& (less than d), we
» ey b ?
denate the k-th-order differential DX (&, u) at any given point w = {uy, ..., Uy} €
RP by
e
. Imlx 5 -
[):‘”(Cl:"lt): E C,k — ( ) - u;l---u"’,
1 iy .)‘ 3 A) Jta x) e I
ITIR ‘ j’l { .I’,2 LA #27 H
where the summations are over all dis‘tim't' n('mnog'ative integers 4y,...,4, such
that 4, + -+ + i, = k, and CA‘ iy = =R/
The following lemmas on b,,, R, mld 7,! are d.leIrl})l(‘ The proofs of Lem-
mas 1 and 2 follow from condition (C) and the Chebyshev’s inequality. Proof of
Lemma 3 s given at the end of this subsection.
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LEMMA 1. Under condition () and f(x) > O, we have as nh? — oo,

(2.10) STl =AW 4 O ((nh?) 713,

where A(h) = [(1, a7, veeh" {uuT )T K (u) f(z + hu)(L, w7 vechT {uu” ) du.

LEMMA 2. Assume m € CYU), f € CY(U), and condition {C), as h — 0,
nh? — 00,

(2.11) R, = W{R(h,z) + o(h) + Op({nh?)~V/3)},
where
[ Do, ) K DY (2l
R{h,z) :% f(m)/uD;‘,,(m,u)K(u)du
i [ veet® |}, (e ) () [DF ()t
[ Piste.wK (u)du

0
/ vech{uu YD (2, w) K (u)du

flx)h
HT

LiMMa 3. Under conditions (A), (B), and (C), for any | points m,. .., @
such that flx) > 0, f € CUU), v e C,), where Uy is an open neighborhood
of z for 1 <i < ash — 0, nh? — o0, Z,(x1),..., Z,(m) defined in {2.9) are
asymptotically independent and jointly normal. In particular, at a particular point
x, we have

(2.12) Z, — N0, %],
where
1 1
¥ =u(x) f(x) [ U (1, 2" vech™ {uuT Pk(u) du + O(h).

vech{uu}

Now we can give a proof of Theorem 2 based on these lemmas.

Proor oF TurorEM 2. Trom (2.8), we have

o 1

‘

!
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By Lemmas 1 and 3, the right-hand side of {2.13) tends in distribution to
N(0, 2}, where
n(h) = AT WE AT,

On the other hand, it can be shown that
2{h) = S(x) + o(h),

by same calculations as in Lu {1996).
Next we show that 13, has the right expansion. Combining Lemmas 1 and 2,

we write

By = 02 diag{1L,A7 0721 {AT Y (YRR, @) + ofh) + OQu({nhP} /%))
= Bz, k) + B3O, ({nh?}~"/3),
Meanwhile B(z, k) so defined can be checked to have the given form.

The asymptotic independence of the estimators at different points follows
gimilarly using the first part of Lemma 3 We have thns praoved Theorem 2. 01

The ProorF oF LEMMA 3. By the Cramer-Wold device, to prove asymp-
totic multivariate normuality of Z, () at a particular point @, we only need to

prove for any linear combination of components, say

1 ,Y,J 1 — &I 1/2 _
?thl( W )1/ (Xi-1)z4,

X, -

{a + b7 (;]—E)
h
. T
+¢7 vech { (Aé_l — w) (XL_I — a’:) }}
h h

K (—LH — m) .

h

Here a, b, ¢ are constant, vectors of dimenston p and p(p - 1)/2. Tt is easy to check
that {£,., 7} is a sequence of square-integrable martingale differences.

Note that Z, defined in (2.9) is in the form of an array sum of square
integrable martingale differences. By a martingale central limit theorem, see e.g.
Shiryayev ((1984), p. 511), we only need to check the Lindeberg eondition:

[t

(2.14) Eni

X,1,| g
(577

where

=

S B (&) > ) | Fiad

<ZE{15", |j:-11}

=1
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v Xia—x®\ 1p )
--Z—«s e (2572 s

2r6
|-Ftl}
246
;(_)_(%__E) PEX )
!

E{igipHS | Fi-1}
2448
i3 — T ‘
()] e
where assumptions (A) and (B) are used.

Applying the Chebyshev’s inequality, the right-hand side of the above equa-

1
) (TTf—IE{\ 2 | i

1=

tion ix equal to

1 - . . 218 Y

WMQFH{f(fﬂ)’/(zﬁ)/z(ﬂ"’)‘[l(“ﬂ'“”"*“ﬂ)+Op((”hp) 1/3)}
i'!

— 0,

if h — 0, nh? — 00, as n. — 00. So the Lindeberg condilion is satisfied.

Furthermore,

S B Fo) = S EE LA
i=1 mi T e i:l' h i-1)

Applying the Chebyshev’s mequality again, the right-hand side of above equation
is equal to

fl\lx) fz(m%u +o(1) + O ((nh?) 12,

veeh{uu™}

- R’(u)Qdu((l. b, (?T)T

= (a, b, c'il)j k u } (l,u’,vech® {un'})

+ o(1).

So by Theorem 4 of Shiryayev ((1984), p. 511}, we have

Yot b N (ah NI (b, T,

where

= v(:c)f(:c)/ u (1, veeh " {uuT VK (u)?du + o(1).

vech{uu™}
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By the Cramer-Wold device, this implies that
d
7, L N, ),

The joint asymptotic normality of Z, (@), ..., Z,(#) can be proved similarly.
Su Lenuna 3 is proved. O

3. Partial derivative estimation

Iu this section, we consider only the scalar time series model (1.4). For the

state vector by X = (25,81, . Tipi V7' we denote the p first-order partial
N . . . Bm{XN) Xy T
derivative functions (pdfs) by m (X} = T,...,TTL[,(X.L') = B The

dependence of m;(X,;)’s on the state vector X is of particular interest for char-
acterizing nonlincarity of ne. We consider application of local quadratic fitting to
estimation of my, ..., my, based on time series data.

In order to assess nonlinearity of a time series, the issue of guantifying the
variability associated with the pdf estimators beeomes erucial.  In principle, in
order to test whether the estimated pdfs are coustant over different parts of the
phase space, a simultancous confidence band for the derivative function is desirable.
Unfortunately, this theory is not available at the moment. So, we will be content
with developing peintwise confidence intervals for my, ..., m, at any given point
z with the understanding that these intervals are expected to be considerably
narrower than simultancons confidence band.

21 Confidenee intervals

One issue in confidence iuterval construction is to deal with the bias in the
nonparametric estimators. Some type of bias-correetion is desirable since the bias
torm is often not negligible. The bias for D,, {x) invnlves third-order partial deriva-
tives, so the local cubic fit with a larger bandwidth Ay is adopted for estimating the
third-order derivatives. Thus, plugging in the estimated third-order derivadives
into formula (2.5), one obtains the estimatod leading bias term (h2}{6ye2)) INED
Similar to the local linear and local quadratic fits, under conditions (A), (B) and
(C!), some genceral restriction on fiy and appropriate smoothness conditions, it can
be shown that the the third-order derivative estimators are consistent so that b(.’r)
is a consistent estimator for the bias termn b{x).

On the other hand, the variance estimation for ﬁ,,,(m) is relatively straight-
torward. (ne option 18 to use the pre-asymptotic conditional variance walrix for
. given by

(3.1) (XTWX) T XTWVIWX(XTWX)™

assuming that estimates of the variance function v(-) at cach data points are
available. (The calculation also involves the inversion of the matrix (X' X)
of dimension {p + 1){p + 2)/2 at cach 2.} Tn this paper we use the asymptotic
variance formula in (2.7) directly, and the caleulation involves only estimation of
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and

- " - X-g._ - n . XL, — &
i) = K (F5E) 3w (FE).

1=

Under general conditions, it can be shown that f{x) and 2(z) are consistent.
For example, if f is differentiable in an open neighborhood of x, then the mixing

-

ST ST -
Theorem 2 implies that, assuming & — 0, nh? — oo, nhPt% = (1) and
relevant consistency conditions on plug-in estimators, an asymptotically 100(1 —

)% confidence interval for the partial derivative vector D, () is given by

I, = [D(z) — h2b{2) [ {6113)
= Zoapa(nh? Y2y 2L e [ £ 2 ()) (1, 1)
Dm{m) - ]’25(3‘-)/(6“2)
+ Zop2(nhP 2y LI @) [ @)L, )T

12 Eeamples

Two examples arc considered in this subsection. Tricube kernel (¢f. Appendix)
is used in these examples, though other kernels in the Appendix can be used. Also
different kernels other than the one nsed for local polynomial fit may be used for
density and vartance estimations.

Ezamplc 1. (Simulations from an cxponential autoregression model) Fime
series of length 500 is generated rom the model (1.4) where g, ~ N(0,1), v =~ 0.52,

and

/ _ R o RN ,,——\m:_rz\ R . —rZ

e —
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by
° M‘ Il E Xo
ik |

A o w——v
4 2 [+] 2 4 -4 -2 ) 2 4
x_i x_i
{ed h

-1 0‘?'213-

Fig. 1. Simutations from an exponential AR maodoels (a) time plat, () phase plot (0)
estimated curve of mg; (d) true curve of 1ma; (e) estimated surlace of my; (1) true surface

of m.

The pdfs m, ., ms have the property that ouly m, (X)) (where X, = (x5, 2i20)7)
depends on both x;, o, and m,( X)) depends only on ;.

Estimations of my, meg at each data point are given using p = 2 and handwidth
h = 1.5, Figure 1{c) shows both the original 7, and a smoothed version {the solid
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g0 b i oo b8l I |

(e)

(f)

Fig. 2. Annual sunspots numbers from 1700 -1896: (a} kernel density estimation of f;
(b) N-W cstimation ol eonditional vartance v; (¢} surlace plot of estimate of pdl my;
{d) surface plot of estimate of pdf my; () tune plots estimates (raw estimate: solid tine,
Bias-adjusted: dashed line) and 95% Cle (dottad lines) for mny; (f) same as e excopl, for

ma.



LOCAL POLYNOMIAL FITTING 705

smooth line) with respeet to variable o, onty. Note that though the raw estimated
function 7w is not sinooth as a function of x;  this is probably due to the artifact
that it is estimated as a function of both &y, x;_ 1, the smoothed version resembles
the true my in Fig. 1{d) quite well.

Figure 1(e) shows the surface plot {after some interpolation) of estimates ;.
Figure 1(d) shows the true my (under the same interpolation). It appears that the
shape of pdf estimates is fairly close to the trnth.

Ezample 2. (The annual sunspots munbers 1700-1996) In this exauple, we
apply the bias-correction method described in Subsection 3.1 to the sunspots data.
We use p = 2 and bandwidth 7 = 40 except in the unusual years 1955 1960 when
h = 70 is uscd. We choose secondary bandwidilis by the role /iy = 1.24, ho = 0.84,
hy = 1.2h. The time plot of estimates of density f is given in Fig. 2(a). Esti-
mates of conditional variance ¢ are shown in Fig. 2(h), which indicates that the

sunspots numbers m has largest magnitude while ma has largest negative mag-
nitude. This observation is consistent with the nonlinear and asymmetric nature
of this scries. The variabilities of these estimates are given in Figs. 2{¢} and 2(f)
which show estimates (including both raw estimates and bias-adjusted ones) and
95% pointwise confidence intervals.

Appendix.  Some useful kernels and their moments

Some usetul multivariate kernel functions and their higher-order moments are
3 - — p ; 2 4
given. For normal kernel K, (z) = (27) 7"/ 2 exp(~ | z|%/2),

tom =1~ 3 (QWJ - ]')l Jom = “2:?7./(27”7"4)/2)-

For uniform kerncl K, {z) = Ob_]l[Hﬂ?HSI} where £, = TP/Q/F(EZ_B)y g =
.l*'*‘.lm/c"b ane

-1 1 p—11
fom = (p/(p+2m)) B (p 5 m | 5) / B (P 5 ,2) .

A large family of kernels is given by the power family

I (o v s B P LA T P

for 8 > —1, a > 0, where C,g is given by: Cag = 20703 + 1, L)/{al {5},

LAY

where B is the beta function, 1M is the gamma function. Some important. cases:
Ko {oe = 2,8 = 1) Epancchnikov; Ryp{er = 2,4 = 2): hiweight; Koyl =28 =
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3): triweight; Kga(e = 3,3 = 3): tricube. Higher-order moments are given by (for

integer m > 0}
‘ 2 -1 1
Ham = B pteom moav1) B
x 2 2

-{B(%,ﬁ+ I)B(%I%)}

7. n/})+2m ')IJ_IJ\D/I)_l 11\ /

— | S—— L
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