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Abstract
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Chaos and nonlinear theory has significant impact on the analysis of eco-
nomic and financial time series. Nonlinearity plays an important role in
explaining the empirical features of asymmetric business cycles, clustered
volatility, and regime switching in finance data. In this Chapter, we will
focus the popular local polynomial prediction method and its applications to
chaotic time series prediction and financial volatility estimation. Volatility
and conditional covariance estimation is important in many aspects of mod-
ern finance theory. We introduce a nonparametric volatility model, called
local ARCH, and propose a weighted least square method for goodness of
fit. The statistical theory is based on a martingale regression framework
developed in Lu (1999a,b), which includes a wide variety of nonlinear time
series models, such as nonlinear autoregression, ARCH, and nonlinear vector
autoregressive models. The daily AOL stock data is used as an example
to illustrate the developed techniques. First, we apply the nonlinear re-
gression procedure to model the spread-volume relationship—We find a nice
power-law relationship in all appropriate periods after discovering that the
spurious nonlinearity in the overall data is due to nonstationarity. We also
find a vastly changing structure in GARCH models fitted to different parts
of the return rate series based on closing prices. We apply the developed
local ARCH theory to a stationary subseries of the return series, and find
some encouraging results.

Nonlinear prediction, volatility modeling, interval prediction, local ARCH,
martingale regression, chaotic time series, regime switching, nonparametric
technique.

1. Introduction

Chaos theory has significant impact on the analysis of economic and finan-
cial time series. With the explosion of high-frequency and real-time ticker

115



116 MODELLING AND FORECASTING

data, nonlinearity theory will play an increasingly important role in under-
standing the complex dynamics and stylized facts in microstructure finance
data. Asymmetric business cycles, clustering variability, and regime shift
are just a few glimpses of nonlinearity in action. In this Chapter, we will
focus on an important nonlinear prediction procedure using local polynomial
fits and will discuss applications to chaotic time series prediction and finan-
cial volatility estimation. Local polynomial prediction method is a popular
approach to nonlinear deterministic modeling and chaos prediction (Farmer
and Sidorowich 1988). Recently, Lu (1999a) has developed an interesting
statistical explanation of why local method is effective for low-dimensional
modeling and chaos prediction, even in the presence of small noises and
when the embedding dimension is very high. In the statistics literature,
local polynomial regression is an established approach to nonparametric re-
gression estimation (Fan and Gijbel 1996, Lu 1996a). Lu (1999b) extends the
current statistical theory to stochastic nonlinear models which include most
nonlinear time series models of Tong (1990) and Priestley (1988). In the fol-
lowing Chapter, we first review recent statistical theory on local polynomial
regression, and then local prediction theory for both one-step and multi-
step prediction, as well as non-mean prediction methods such as conditional
distribution function and quantile estimation for prediction intervals.

Nonlinearity occurs in finance data under various guises (Franses and Dijk
2000). Regime switching is an important mechanism of introducing nonlin-
earity and flexibility in traditional models. Many macroeconomic and mi-
croeconomic data contain asymmetric cyclic components and Markov switch-
ing models have been a great success story (Hamilton 1994, Krolzig 1997).
Recently, regime switching models have also been applied to model many
empirical finance phenomena such as clustered volatility (Franses and Dijk
2000). While various ARCH models have been proposed for modeling volatil-
ity in finance time series (Gouriéroux 1997), it is hard to justify any of the
proposed parametric models. Subsequently, there is an ever increasing liter-
ature on nonparametric volatility estimation (e.g. Fan and Yao 1998). We
introduce yet another nonparametric volatility model, called local ARCH
in this Chapter, and propose a weighted least square method as a more
conservative measure of goodness of fit of volatility function.

Stationarity is a basic assumption in time series modeling. However, eco-
nomic or financial time series data typically contain time-varying statistical
properties such as trend and business cycles, and may contain stochastic
nonstationary process such as unit roots and cointegration (e.g. Dhrymes
1997). To deal with nonstationarity, we propose a moving window approach
for local modeling and focus on analysis using local time models. This ap-
proach seems to be effective in dealing with temporal changes and regime
shifts in large data sets. We use the daily AOL stock data as an example
to illustrate this idea. A nice power-law in spread-volume relationship is
found in separate periods of the AOL data after discovering that the spu-
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rious nonlinearity in overall data is due to nonstationarity. We also find a
vastly changing structure in GARCH models fitted to different parts of the
return rate series based on closing prices. We apply the local ARCH model
to a stationary segment of the return series, and obtain some encouraging
results.

2. Local polynomial method

Local polynomial method has been in use under various disguises in time
series analysis for a long time. For example, local polynomial fitting general-
izes moving average and exponential smoothing. Our focus is different from
standard applications in that we are applying local polynomial fit to the state
space and the goal is state-space based prediction. In the nonparametric re-
gression literature, local polynomial regression generalizes the kernel and
nearest neighbor method, and has some superior theoretical properties over
standard methods in stochastic regression models(Fan and Gijbel 1996). In
the multivariate case, Lu (1996a) develops bias and mean squared error for-
mula for local polynomial regression, including the popular local linear and
local quadratic regression. These results are useful for contructing confidence
and prediction intervals. In the multivariate case, the use of bandwidth ma-
trix (Lu, 1996a), has the similar effect to that of the radial basis function
method in the neural network literature. In the nonlinear time series litera-
ture, Priestley (1988)’s state dependent models and Tong (1990)’s threshold
models are closely related to the nonparametric method discussed here.

We will embed time series data in the state space regression form

{(Xo, Y1), (X1,Y2),...,(Xn-1,Yn)} (5.1)

where X;_1 is the reconstructed state vector at time i — 1 and Y; is the time
series response at time ¢ (or ¢+ 7 — 1 for T'—step prediction). (Some general
technical assumptions on how the data are generated from multivariate time
series observations are given in Section 3). The local polynomial regression,
also called the locally weighted regression, computes an estimate of m(x) =
E(Y;11|X; = x) at every state point x = (z1,...,2,) € RP, by the weighted
least square method based on the local regression model

Y = XB + E, where E ~ N(0,v(x)W 1), (5.2)

where the design matrix X consists of row vectors of polynomial expansion
terms up to certain degree around x evaluated at X;_;, and W is a diagonal
weight matrix determining the influence of each data point on x (controlled
by a kernel function K and bandwidth parameter h), defined by

W = diag{K (X1, ), K(Xa,h), ..., K(Xn, h)}.

Usually a radial basis kernel function is chosen, K (X;, h) = k(|| X; — x]||/h),
where k is some univariate function on [0,00], and || - || is the Euclidean
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norm. More generally, one may employ the smoothing bandwidth matrix for
multivarite data as K(X;, H) = k(||HY/?(X;—x)||), where H is any positive
definite matrix. The kernel k is said to have finite support if k(x) = 0 for
x > 1. Use of finite support kernels has computational advantages over the
Gaussian kernel in that only data points in the local neighborhood are used.

Specifically, the local linear fit at a given point x € RP is defined by
minimizing the weighted sum of squares

i{Yz —a—-b"(Xi-1 — x)PK(X;,h), (5.3)
i=1

over a: a real number, and b: a p—dimensional vector. The parameter
estimates a, b correspond respectively to the regression and partial derivative
estimates of m at the point x. The design matrix X in (5.2) consists of row
vectors (1, (X; — x)),i =0,1,...,n— 1.

The local quadratic fit at any given point x € RP is based on minimizing
the weighted sum of squares

Y {¥i—a-b"(Xi g —x) - (Xi1 —x)TL(Xi 1 —x)PK(Xi,h), (54)
i=1

where a is a real number, b is a p—dimensional vector, and L is a p X p
matrix which is restricted to be a lower triangular matrix for identifiability.
The solution from minimizing (5.4) corresponds to @ = m(x), an estimate of
regression function at x, of b = D, (x) which corresponds to an estimate of
Do (x) = (dm(x)/dz1,---,8m(x)/dz,)T at x, and of L which corresponds
to estimates of elements in the Hessian matrix of Hy,(x) = (8*m(x)/8z;0z;)
at x. That is, L(:L') = (l”) satisfies lij = hz’j if i > 7 and lij = hii/2 ifi=7,
where H,,(x) = (hi;) is the Hessian. Define the local design matrix X
consisting of rows (1, (X; — x), vechT[(X; — x)(X; — x)]) where vech is an
operator of stacking distinct elements in a symmetric matrix into a row
vector (for example, discarding elements above the diagonal).

The vector of local polynomial estimates such as ¢ = (&, BT)T from local
linear fitting in (5.3) can be solved through

(XTWX)e =XTwy (5.5)
and when (XTWX)~! is available,
c=XTwX) ' XTwy. (5.6)

Computational concerns. By smoothness assumption, local polyno-
mial fit may be computed at some uniformly selected points in the state space
and values at other points are then interpolated based on nearby points, an
idea cleverly used in Cleveland et al (1992). To see how this idea reduces
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computation dramatically, consider the situation when the n design points
xg,Z1,...,Tn—1 lie uniformly on [0, 1], and the kernel function is symmetric
and has finite support, and h corresponds to the radius of ¢ nearest neigh-
bor, then the coefficient matrix Px = (XTWX)™1XTW is the same for all
x at interior point, and there are only /¢ different coefficient matrices at the
boundary, Py, Pi,...,P,_1. That is, the following correspondence:

X= o, T1, ...y Tg-1, Ty coey Tn—ty Tp—f+1, ---5 Tn-1
coeff P(], Pl, ey Pg_l, Pg_l, ceey Pg_l, Pg_l, ceey P(].

Furthermore, the uniform design and symmetric kernel give rise to an
orthogonal matrix (XTWX) at interior points; That is, it is diagonal, and
so the solution is given as

iiWY _ ij:iijyj i
(xI'Wx;) ij:%gj ’

bZ: :1,...,(1-

where %; is the ith column of X and k; = K (X, h). Orthogonality is an
important virtue in function approximation, and one may seek orthogonality
by using the orthogonal polynomial basis which has been constructed for a
given kernel function. The lowess or loess function (up to p = 2), which is
available in SPLUS, is an implementation of some of these fast computational
ideas for robust locally weighted polynomial fits (Cleveland et al 1992).

Prior information and qualitative knowledge may also be incorporated
in locally weighted fit, in the same way that linear constraints are used in
linear regression. In particular, one may impose restriction such as a >
0 for obtaining nonnegative regression estimates, or b > 0 for monotone
function fit, or setting higher-order coefficients such as higher-order mixed
derivatives to zero in additive and low-order models. If the least square
estimate is in the feasible region, then the restricted estimate is the same as
the unrestricted estimate; Otherwise, when one or more restrictions are in
effect, the affected components assume the equality constraint values, and
the rest of components are then modified accordingly.

For example, consider the linear constraints A8 = ¢ for some known
matrix A and vector c¢. Then, the constrained weighted least square estimate
is given by

be = b+ (XTWX)TAT[AXTWX) AT (c — Ab) (5.7)

(cf. Seber 1977). Note that Ab. = c so the linear constraint is satisfied,
while other components of b is modified by adding the second term to reflect
(update) this prior information.

3. Technical setup for statistical theory

The martingale nonlinear regression model, first discussed in Lu (1999b),
is a natural and general setup for discussion of statistical theory for local
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polynomial prediction in time series data. We consider the regression-type
model:
Y = m(Xy) + v (Xp)ey (5.8)

where m : RP — R is some nonlinear function, v > 0 is a variance function.
We further assume that

(A) {e;} is a sequence of martingale differences with respect to a sequence
of increasing o—fields {F;} such that Xy € Fo, X;,¢; € F; for all i > 1 and
E{5i|‘¢i—1} = O,E{Sﬂfi_l} =1.

It should be pointed out that assumption (A) is very natural in the context
of financial and economic time series (e.g. Bollerslev et al 1994). Indeed,
broadly the martingale assumption follows from the finite-dimensionality or
Markovian assumption of the underlying process. (A) is more general in the
sense that only the first and second-order moments of the predictive distri-
bution are assumed to be functions of a finite-number of past observations
(as represented in vector X ), whereas the usual Markovian property imposes
this finite-dimensionality property for the whole predictive distribution.

Several familiar models are just special cases of this general setup, as
explained below.

Model I. Nonlinear autoregression (NAR): Consider a scalar time se-
ries {y:}, for integer p, we can always write

Yt = m(Y¢—1,-- -, Yt—p) + M2 (yiq, ... s Yt—p)Et (5.9)

where m(yt—1,...,9t—p) = Elyelye—1,...,yt—p| and v(ys—1,...,y1—p) =
Var(ye|ys—1,...,yt—p| and e; has zero mean, unit variance.

In the time series literature, the residual {¢;} is usually assumed in-
dependent for some big enough embedding dimension p. Under this
assumption, (5.9) satisfies condition (A) with

th = Yt, Xt - (thflayvt72) s 7}/:‘,*1))' (510)

It is noted that, the embedded state vectors {X;} in the autoregression
case is actually a Markov chain in RP, or equivalently {Y;} is an Markov
chain of order p. When m is linear and v is constant, this is the familiar
AR(p) model. When m is nonlinear and v is constant, it is the classic
nonlinear autoregression (NAR) model. Tong (1990) gave an extensive
discussion of NAR models in nonlinear time series analysis. When
both m is nonlinear and v is time-varying (so called heteroscedastic
variance), it is a hybrid of NAR and ARCH model, and is termed
NAR-ARCH model.

Model II. Nonlinear multivariate models: Vector time series models
are important in modeling the interdependence among two or more
time series processes. There is very little written on nonlinear mul-
tivariate time series models. We argue that why a model like (5.8)
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is relevant to nonlinear vector time series modeling. For simplicity we
consider a bivariate time series given by {(v1¢, y2¢)* }, which is assumed
to follow a Markov model or vector autoregression model given by

Yie | _ mi(y1+-1,92 ¢-1) + €1t (5.11)

Y2t ma2(y1 ¢-1,Y2 t1) €2t
where {(eys, e2¢)” } is sequence of independent random vectors with zero
o1 012

. Suppose our

021 022 > P
interest is in prediction, and ¥ is usually unknown, for all practical
purpose we can usually ignore the inter-dependence expressed in 3,
and then joint estimation of m; or ms is equivalent to the marginal
estimation approach, in that m; and mo are estimated separately. The
component model such as

mean and covariance structure, say X = (

1/2
yit =mi(y1 t—1,Y2 t—1) + 01{ E1¢

satisfies the stochastic regression model (5.8) with Y; = y14, Xy =
(y1 ¢-1,92 t-1)".

Written in vector notation, let Y; be a vector in R?, and M = (m1,...,mp)
be a map R? — RP, and E; = (eqy, ..., ep) is iid random vector with
zero mean and covariance matrix ¥ (where p = 2 in (5.11)). Then, a
general vector NAR or noisy dynamical system model can be written
as

Y, = M(Y; 1) + B, (5.12)

Thus, model like (5.8) is relevant to time series prediction involving
covariates.

Model III. Volatility models: Traditional time series usually assume a
homoscedastic model such as in (5.11). However, in economic or fi-
nancial time series, it is more realistic to assume that the conditional
variance or volatility function is time-varying. In particular, we as-
sume an autoregressive model for volatility, in which we assume that

o = Var(ye|ys—1,...,y+—p) (in the multivariate case, the conditional
covariance matrix 3; = Cov(Y:|Y;_1)) is a function of past variables
only.

For general discussion, let F; denote all relevant information at time
t. For example, in the case of an pth-order Markov chain such as
(5.9), F; consists of y,...,ys—pr1. We write the residual process e; =
Yt — E(ye| Fi-1) as

et = oM, (5.13)

where oy is a time-varying and measurable function of information F; ;
at time t — 1, and »; is iid and E(n) = 0, Var(n;) = 1.
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Assuming that o; has finite dimensionality, we can write
o =v(e?,... ,e%_p) for some positive function v and integer p. Then,
define y; = €2, and rewrite (5.13) as

yr=07+oi(m; = 1) =v(ye 1, Yep) +v U1,y p) (07 — 1),
(5.14)
which is seen to have the form of NAR model (5.9). A special model
is the popular ARCH model which refers to the parametric case when
m is constant, and v is a linear function

v(yt, .., Yp) = a+biyr + ... + bpyp. (5.15)
(e.g. Bollerslev et al 1994, Gourieroux 1997).

In summary, the martingale regression model (5.8) is a very general model.
We should mention that modeling of noisy chaos can be studied in the frame-
work (5.8) (Lu 1999a).

Two technical assumptions. For the asymptotic statistical results to
be stated later, the following assumptions are used as in Lu (1999b). Notice-
able is the strict stationarity assumption of {X;} in that any finite distribu-
tion of (X¢44,,...,X¢44,) is independent of time ¢ for any integers i1,. ..,
and k£ = 1,2,.... In particular, we assume the following strong mizing con-
dition for a stationary sequence:

(B) The vector sequence {X;} is strictly stationary and satisfies the short-
range dependence condition: let f;(-,-) denote the joint density of X1, X1
and f(-) denote the marginal density, then

sup Zm (u,v) — f(u)f(v)] < 0. (5.16)

u VERP

Note that (5.16) can be extended to situations of chaotic time series when the
design density does not exist (Lu 1999a). In addition, a minor technicality
condition on ¢; is also used:

(C) sup;~; E{|i|>*®|Fi—1} < oo for some § > 0.

Asymptotic bias and variance. Assumptions (A), (B), (C) together
with some condition on m (such as twice or third-degree differentiable) and
the bandwidth h = h, (such as h, — 0 and nhl, — oo) guarantee con-
sistency, and optimal convergence rate of local polynomial estimators (Lu
1996a, 1999b). Furthermore, asymptotic normality can also be proved, and
the following proxy for asymptotic bias and variance can be used for most
purposes:

Bias: (XTWX)"'XTW (M — XB),
Variance: v(x)(XTWX) 1 XTW2X(XTwX)-!
where M = (m(X1),...,m(X,))?. By using Taylor expansion on m near x,

the bias expression can be shown to depend on the higher-order derivatives
of m at x only.
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By plug-in any consistent estimate of v and higher-order derivatives of m,
one can obtain estimates for the asymptotic bias and asymptotic variance.
This in turn gives rise to an approach for computing pointwise confidence
interval and prediction intervals for the conditional mean predictor. For
chaotic and nonlinear deterministic modelings, Lu (1999a) has established
a convergence rate in terms of the fractal dimension for the well-known
Nadaraya-Watson kernel estimator (which corresponds to local constant fit),
thus confirming a conjecture of Farmer and Sidorowich (1988). I also show
that the choice of embedding dimension is not very crucial as long as it is
large enough. It is demonstrated there that the local polynomial method
is in general a very effective prediction procedure for systems whose true
fractal dimension is not too high.

4. Prediction methods

In this section, we concentrate on nonlinear prediction theory of time
series, with emphasis on nonparametric techniques. The nonlinear regres-
sion technique in Section 2 can be applied directly to provide one-step and
multi-step point predictors, namely for developing a point predictor through
estimating the conditional mean, which is the best mean square predictor.
The one-step predictor 7 of y;r1 based on y,...,y; is the same as the
regression estimator based on the embedded data

{[yla (yifla e ,yifp)],p +1 < t < t}a

such as the case in Model I (5.9).

Let Xy, W}, Y: denote the corresponding design matrix, weight matrix, and
data vector at time ¢, and e; = (1,0,...,0), and let b; denote the estimation
vector using data up to time ¢ only. Then

b, = (X{ WiX) ' X WY, = BY;. (5.17)

where P; = (X7 W;X;) !X W; is the coefficient matrix at time ¢.

On-line prediction algorithm. There is a nice recursive formula for
updating b; when a new data point, say y;11 is available. Let rtTJrl denote
the extra row vector of design matrix at time ¢ + 1, and k1 denote the
weight corresponding to the time t + 1 vector (that is, ki11 = K(X¢y1, h)).
Then,

b1 = by — k1900 (X{WXy) gy by
—ker1ger1cer1ye (X7 WeXe) e, (5.18)

where Cty1 = kt+1rt+1(X;tht)_1I‘t+1, and gt+1 = (1+Ct+1)_1. Obviously,
if there are multiple data points available, (5.18) can be applied multiple
times to obtain the desired estimates. To start our sequential algorithm,
one can either apply the batch algorithm for some historical data, or some
prior guess of b and its covariance matrix. Note that there is close connection
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between (5.18) and the extended Kalman filtering algorithm. The on-line
algorithm should be useful for predicting nonstationary systems and for data
filtering.

Mean squared prediction error: Note that the important difference
from the regression problem is that the mean squared prediction error is the
sum of mean squared estimation error plus the intrinsic noise variance, of
which the latter cannot be removed. Asymptotic mean squared prediction
error

E(riy — y+1)* = E(ry — me)? + v,

which consists of the decomposition of
asymptotic bias? + asymptotic variance + conditional variance,

where the asymptotic bias and asymptotic variance refer to those of mm; and
ve = v(Y¢,...,Yt—pt1). Any consistent estimates can used to substitute any
unknown quantities such as v in above formula. This approach applies to
estimation of prediction error for any nonparametric prediction procedure.
Multi-step prediction: We discuss some procedures for constructing
multi-step predictor. Suppose we want to predict y;,, based on data up to
time ¢, and denote an 7-step predictor by 7, ;. Since m,; = E[ytyr|ys, - - -, Ytp-1],
one obvious predictor is the direct predictor, which is the regression estimate
based on data

Witrs Xi = Yis- -, Yipr)sp < i <t — 7} (5.19)

Note the data vector Y;; = (yp+7,...,yt)T, then we can compute local
regression coefficient vector b, ; by

b7'|t - PtYT‘t‘ (520)

Except for sharing the same coefficient matrix P; (more or less, by ignor-
ing a few earliest data points), the direct predictor does not use the one-step
predictor explicitly. Now we discuss some multi-step procedures which ex-
ploit the dynamical structure of the underlying process. Consider the NAR
process (5.9) y¢r1 = m(Yt, - - ., Yt—p+1) +Vey16441 and 7 = 2 for easy account.
Note the following recursive relation:

Mo = E[m(yer1, Yt Yt—pr2)|Yes - - - Y2, 1]
= E[m(m(X:) + v(Xe)etr1, vt - - Ye—pt2)]; (5.21)
where the last expectation operator is over 41 while y,...,y;_p41 are kept

fixed. Thus, if the distribution of €411 is known, one can compute my|; based
on estimates of m and v, using Monte Carlo method such as

1 R

M|y = R Z m({m(Xe) + Der1 - e 1(D) Yty - - Yt—pt1),
=1
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where e;1(1),. .., et41(R) are random samples from the distribution of &4 1,
and M, Py are estimates of m, v at Y;.

When ;11 is small, or more precisely the probability of ¢;;1 is concen-
trated on a small neighborhood near the origin, (5.21) is approximated by

m2|t ~ m(m(Yt)a Yty - ayt—p-l-l)a

or My = M? in vector notation, where Y; = (yz,...,¥t p+1)’ and My,
is the two-step conditional mean in the dynamical model and M(Y;) =
(m(Y2), Yty - - -, Yt—p+2)T . The resulting two-step predictor

7’?12|t = m(m(yt)a Yty - ayt—p+2)a

or M2|t = M2 Longer period multi-step prediction can be derived in similar
fashion. Lu (1996b) discusses the advantages of iterative predictor, and
demonstrates that the invariant measure on a chaotic attractor is better
estimated using this approach.

Conditional distribution function: non-mean prediction. Eco-
nomic and financial data often exhibit nonnormal, asymmetric, and heavy
tail behaviors. Thus, it is likely that the conditional mean is not adequate as
a lone predictor. Other likely choices such as conditional median, regression
quantile may be more informative (e.g. Chaudhuri 1991). In particular, the
extremes such as low and high predictive values, or the spread (high-low)
will be very interesting. More formally we consider estimation of conditional
distribution function (cdf) Fr;(y) = P(Yir < y| data at time t). A simple
estimator is the Nadaraya-Watson estimator

t—1 t—r
N T kilg,.
Fr\t(y) = Zz—P‘L‘Z L lvisy) = wil{y-<y}7 (522)
Sk s

where (X;,y;) as defined in (5.19), k; = K(X;_r, h) is the weight associated
with the ith data point and w; = k;/ Y k; is the probability mass assigned
to y;. Recall that K is the kernel function and may be chosen to have fi-
nite support, then w; is just the local probability weight for prediction at
time t. Predictive characteristics such as mean, spread, variance, and quan-
tile can be computed based on the weighted empirical distribution function.
Ensemble forecasting is another option, presenting simulated samples from
the predictive distribution (5.22) as future scenarios. An important applica-
tion is to interval prediction for a future value y;i,. For any two numbers
a < b, we have that the predictive probability that y;;, falls within [a,d]
conditional on information JF; available up to time ¢ is estimated by

Pr(a < ygr < b|F;) = Fr(b) — Frgla). (5.23)

So the 100 x (1 — )% prediction interval estimated by [a, b] where a,b are
chosen to be the 100 x (a/2)%th and 100 x (1 — «/2)%th quantiles of ﬁ'T|t.
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Implementation details. Implementation of local polynomial predic-
tion for a given time series {y;} consists of the following steps.

1 Define the embedding vector

Xi = (yza Yi—ds--- ayif(pfl)d)T’i = (p - l)d + 1) oot
the choice of embedding dimension p and time delay d.

2 Decide the norm to use in computing the interpoint distances d;; in
the embedded state space. Examples include

Euclidean di]' = ||Xz — Xj||2 = \/Zzl):l(Xil — ng)z,
Ll norm: di]' = ||Xz — Xj”l = ‘?:1 |Xig — ng|,
maxmimum absolute distance: d;; = || X; — Xj|lo = max,_, | X; — Xjol.

3 Given a choice of bandwidth h or nearest neighbor £ at a given state
vector of interest, say last X, if the kernel function is chosen to be
radial function of finite support, local computation can be excised in
the following way: one decides the index of embedded state vectors
such that d;; is less than or equal to h or the order of d;; is less than
or equal to /.

4 For 7—step ahead prediction based on data up to time ¢, find the
response vector Y = (Y(p—1)dtr»- - -» Yt)-

Apply standard (weighted) least square procedure to local data con-
sisting of submatrix of X,Y and weights k(d;;/h) and obtain the local
least square estimate. The fitted regression hyperplane evaluated at
X is the predicted value of y; .

5 Repeat Step 3-4 if prediction at other time points is needed, or repeat
Step 4 only if prediction at other lead times are needed.

Choice of embedding parameters p and d is certainly important. More cru-
cially, however, is the choice of bandwidth h or number of nearest neighbors
0. See Lu (1999a) for some interesting examples in the context of chaotic
time series prediction.

5. Volatility estimation

Time-varying volatility function is a popular way of incorporating nonlin-
earity in financial time series models. The volatility is obviously predictable,
considering that there may be more volatility in an equity price around the
time of earning announcements, or releases of macroeconomics news. There
are also (surprisingly) a lot of co-movement and common factors among
different equity prices in the same sector.

Many models have been proposed to model volatility, e.g. Gouriermoux
(1997). Since there is no basis for committing to a specific parametric form,
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there is a lot of interest recently in the nonparametric approach. The goal of
this section is to present a nonparametric approach to estimating volatility
or conditional variance function using the local polynomial method.

We start with Model III (5.14). Note that this is a regression model with
special structure, namely the regression (mean) and standard deviation are
proportional, resembling the Gamma distribution. Alternatively, we may say
that the normalized quantity

Ye — Ut e%

& = o 1 (5.24)
is a random variable with mean zero and constant variance (note y; = €2, the
squared residuals). Thus, we may derive our estimators using an estimation
equation type approach. The heuristic rational is that e? is a sufficient
statistic for o2, and the relative scale e?/0? matters most. In practice, e;
can be effectively replaced by some estimated residual process as long as the
unknown mean function is a consistently estimated (Fan and Yao 1998).

Subsequently, we work with quantity

L 1= (5.25)

where y; = |et|, et = |p] — 1, and propose to minimize

n N2
3y ktM, (5.26)
t=1 Tt

under the constraint that o; > 0, where 14 is substituted by its modeling
form and k; is the weighting function.
For example, for ARCH models of order p,

vy =a+ blyt—l + ...+ bpyt—p
and the constraints are:
0<a,by,...,bp;01 +...+b, <1

Note that this weighted least square (wls) method emphasizes the ratio
y¢/ot, a more natural quantity for modeling scales, rather than the abso-
lute differences in standard least square methods such as in >_3 | (vt — 0¢)?
or X (47 — o7

Now we define a local ARCH methodology as follows. At each point of
interest, say u = (u1,...,up) > 0, we estimate v(u1,...,up) by minimizing
(5.26) with

or=a+bi(ye1 —u)+...+bp(ys—p — up),

and k; = K(Y:, h) = k(||Y: — ul|/h) is the kernel weighting function. over

0 < a,b = (by,...,b,)T. Note that we do not require the boundedness
condition of b;’s with the local fitting approach.
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Compared to standard least square or likelihood method as used e.g. in
Martin et al (1996), the weighted least square method as given in (5.26)
emphasizes and favors large volatility, while at the expense of yielding up-
ward biased estimate. In general, the weighted least square (WLS) method
gives more realistic variance estimate, in terms of comparable scale of fluc-
tuation and variability. The WLS approach is similar to the QGLS method
of Gouriermoux (1997).

Besides using ratio-type criterion (5.26) for model comparison, we can
also use the ratio statistics

q=2, (5.27)

which should center around 1 in ideal situations, as a model diagnostic tool.
Implementation details. The implementation of predicting and esti-
mating the volatility function of a time series consist of the following steps.

1 Compute the residual of time series. This step could be as simple as
differencing, and as complicated as fitting a nonparametric regression
to the conditional mean.

2 Deciding on the state space and embedding dimension of the squared
residuals.

3 Given bandwidth h and kernel K, compute the volatility estimate a
using the nonnegative local linear fit.

4 Repeat step 3 at other data points until estimates at all desirable time
points are computed.

5 Plot volatility estimates along with data, judging goodness of fit, and
possibly modify the choice of embedding and bandwidth, and repeat
Step 4.

6. Risk analysis of AOL stock

In this section we apply some of our methods developed earlier to the study
of daily AOL stock price. We use only the data from Jan. 3, 1995 to Sept.
3, 1999 on stock prices (open, high, low, close) and total daily volumes. We
focus on two applications, first the use of stochastic regression in modeling
the relationship of spread and volume, and as a byproduct we also explore
issues of stationarity by subsampling technique. Second application is for
modeling volatility of the return rate based on closing prices. We apply the
local ARCH method and the weighted least squares criterion developed in
this chapter, and we also compare them with standard results using ARCH
and GARCH models.
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Spread-volume relationship

Spread in the daily price is an important volatility factor, and poses both
arbitrage opportunity and potential risk for shareholders. It is well-known
that volume is directly related to price fluctuation. Higher trading volume
is clear reflection of increased public interest and attention in a given stock.
In particular, the price swing and spread will be greater with higher trading
volume. We empirically explore the relationship of spread and volume in
the AOL stock based on the given data.

Figure 5.1 shows the scatter plot of daily spread versus trading volume on
the log scale, where different symbols represent data from different periods.
The (nonlinear) smoothing line (solid) is the lowess fit based on the overall
data. Apparently, one might conclude that there is a nonlinear relationship
based on the overall line fit. Fortunately, after talking with an economist,
I tried separate fits with data from different periods, chosen in rather ad
hoc way: Period 1 (day 1 to 200): points (), smoothing line (short dash);
Period 2 (day 201 to 600): points (4), smoothing line (mediate dash); Period
3(day 601 to 800): points( —), smoothing line (dots); Period 4 (day 801
to 1195): points (¢), smoothing line (long dash). One can see that there
is a clear linear relationship when looked properly within each subperiod.
i From this analysis, we may infer that there is probably nonstationarity or
regime switching in this data set, and within each regime, there is a power-
law relationship between spread and volume. A lesson for data analysis:
checking for stationarity is a very important step, and always be aware of
regime switching and time varying events with large data sets.

Volatility in return rate

In this subsection, we consider nonlinear modeling of the conditional vari-
ance function in the return rate series based on closing price, defined as
yt = (pt — pt—1)/pt—1- Figure 5.2 shows basic plots of this series, which
include time plot (5.2 a), marginal histogram plot (the overlaid line is a
smooth density estimate) (5.2 b), scatter plot of squared series (5.2 d).

First consider the traditional GARCH(1,1) model as defined in

Yyt = W+ oges, where
at2 = a+ a1€%,1 + blatzfl,
where u,a are constant, a; is the ARCH coefficient, and b; is the GARCH
coefficient, and 0 < a,a1,b1,a1 + b1 < 1. SPLUS GARCH module in Martin
et al (1996) is used here for fitting such models.

Garch (1,1) fit to whole series gives

1 = 0.0049863,a = 0.0001255, a; = 0.0907047,b; = 0.8397169.

The fitted conditional standard deviation oy is plotted in Figure 5.2 c¢. Next,
we check for regime switching and nonstationarity. In order to fit a time-
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Figure 5.1. Power-law relation in spread-volume of AOL stock.

Scatter plot of daily price spread and trading volume of AOL data plotted on
the log scale. The (nonlinear) smoothing line (solid) is the lowess fit based on
the overall data. Probably due to nonstationarity or regime switching, one
should put more emphasis on the information contained in subsample data
sets in shorter time period: Period 1 (day 1 to 200): points (), smoothing line
(short dash); Period 2 (day 201 to 600): points (+), smoothing line (mediate
dash); Period 3(day 601 to 800): points( —), smoothing line (dots); Period 4
(day 801 to 1195): points (¢), smoothing line (long dash). One can see that
there is a clear linear relationship or power-law behavior on original scale.

varying GARCH model, we choose bandwidth=200 days, and consider mov-
ing average fit at a given time point to subsamples of within 200 days. That
is, starting from the 201th day, at every 5th day i, we fit GARCH to data
points in day [—200 + ¢,7 + 200]. The time series plots of fitted coefficients
are shown in Figure 5.3. It is seen that there is significant variation in
the coefficients, indicating regime switching or time varying behavior in this
process.

In light of previous analysis, we consider a subsample only, say data from
day 801 to 1195, the end of data series, and so confounding effect of non-
stationarity is avoided. Figure 5.4 shows the results of different fittings
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Figure 5.2. AOL closing price return rate series.
a. time plot; b. marginal histogram; c. fitted conditional standard deviation
using standard GARCH(1,1) model; d. scatter plot of squared series.

Table 5.1. Comparison of GARCH and local ARCH models.

Models Comparison criterion (5.26) |
GARCH(1,1) 167.75
Local ARCH(1): weighted fit 149.99

unweighted loess fit 306.66

using GARCH(1,1) (Figure 5.4c,5.4d), and weighted or unweighted (loess)
fits of local ARCH(1) (Figure 5.4a,5.4b), along with residual plots using ra-
tio statistics (5.27). For the GARCH(1,1) fit, the value of criterion (5.26) is:
167.75. The local ARCH fit gives final value of (5.26) as 149.99. As a com-
parison, the loess fit using standard method gives 306.66. See also Table 5.1.
Two points can be made from this analysis: the first is that the simple one-
step local ARCH can do as well as or better than the GARCH model, which
is known to depend heavily on the AR part; secondly, there is a great need
in the use of weighted criterion such as (5.26) in order for the local ARCH
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Figure 5.3. Moving GARCH fits of AOL return series.
Moving window GARCH (1,1) fit at every 5th day starting from day 201 to
day 995, using data within 200 days. The four fitted coefficient series for
1, a,a1,b; are plotted from top to bottom, respectively.

methodology to outperform a standard method. In summary, we think that
the local ARCH model using the weighted criterion gives more comparable
scale in large volatility values than the GARCH fit, and the ratio plot re-
flects both this fact as well as the weighted least square method’s upward
biasedness tendency. The conservative nature of our weighted least square
approach will be welcomed in applying to prediction error bar estimation as
well as in risk analysis and optimal portfolio design.

7. Concluding remarks

In this Chapter, we have surveyed recent developments in multivariate lo-
cal polynomial fitting for time series, with emphasis on useful methods, pre-
diction, and computational issues. We discuss predictors for multi-step pre-
diction (which include short-range and mediate-range time horizon), quantile
and non-mean predictors, and ensemble prediction. Variance estimation is
important in economic and financial planning as well as in prediction (such
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Figure 5.4. Comparison of local ARCH, GARCH, and loess fits.
a. local ARCH fit; b. ratio plot: residual/o; fitted with local ARCH; c. time
series plot of GARCH(1,1) fit; d. ratio plot for GARCH fit.

as uncertainty estimate). We introduce a nonlinear volatility function, lo-
cal ARCH, which compares favorably with standard approaches. The AOL
stock data are used as a testbed for some of our methods, and we emphasize
checking for stationarity, regime switching, and subsampling technique in
the analysis of large time series data sets.

To end with a lighter note, we note the recent appearance of the book
The Predictors, by Thomas Bass (1999), detailing chaotists Doyne Farmer
and colleagues, in their new adventures in stock prediction and the study of
financial markets. Now chaos, complexity, and predictors have come to the
main street, the Wall Street. With easy access to ultra and high-frequency
financial data or real-time ticker data, nonlinear techniques will find ample
opportunities and exciting new challenges.
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