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ABSTRACT

Suppose that one has the freedom to adapt the observational network by choosing the times and locations of
observations. Which choices would yield the best analysis of the atmospheric state or the best subsequent
forecast? Here, this problem of ‘‘adaptive observations’’ is formulated as a problem in statistical design. The
statistical framework provides a rigorous mathematical statement of the adaptive observations problem and
indicates where the uncertainty of the current analysis, the dynamics of error evolution, the form and errors of
observations, and data assimilation each enter the calculation. The statistical formulation of the problem also
makes clear the importance of the optimality criteria (for instance, one might choose to minimize the total error
variance in a given forecast) and identifies approximations that make calculation of optimal solutions feasible
in principle. Optimal solutions are discussed and interpreted for a variety of cases. Selected approaches to the
adaptive observations problem found in the literature are reviewed and interpreted from the optimal statistical
design viewpoint. In addition, a numerical example, using the 40-variable model of Lorenz and Emanuel, suggests
that some other proposed approaches may often be close to the optimal solution, at least in this highly idealized
model.

1. Introduction

Data used in meteorological forecasting currently
consist mainly of routine observations from dedicated
platforms, such as radiosonde stations and satellites, and
observations of opportunity, such as those from com-
mercial aircraft. There is increasing interest, however,
in adaptively modifying and supplementing the existing
observational network according to the key forecast
problems of a given day. This interest is motivated both
by the scarcity of resources available for meteorological
observations and by the now routine availability of in-
formation concerning the growth and propagation of
errors within forecasts. We will refer to the notion of
changing and supplementing the observational network
in order to optimize the quality of a specific forecast,
as adaptive observations.

Since forecast errors have a random component (be-
cause analysis errors arise in part from random errors
in observations), it is natural to cast the problem in a
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statistical framework. Thus, our topic is the statistical
design of data collection processes in order to optimize
statistical measures of the quality of prediction. Though
our statistical formulation is appropriate in general de-
sign problems, the focus here is to take advantage of
opportunities for choosing specific geographical areas
in which specialized observational data will be obtained.
We also present an example of optimal design for an
idealized low-order model of the atmosphere (following
Lorenz and Emanuel 1998) and compare that design
against other proposed adaptive observation strategies.

This work was motivated in part by the opportunity
to test adaptive strategies during the Fronts and Atlantic
Storm Tracks Experiment (FASTEX; see Joly et al.
1997). FASTEX included two long-range jet aircraft
capable of providing between 10 and 50 additional drop
soundings over the North Atlantic, upstream of the main
observational area centered on Shannon, Ireland. The
design problem was to regularly and optimally devise
flight paths for the aircraft. Future experiments will fur-
ther test the notion of adaptive data collection.

To best communicate the ideas the following idealized
problem is the focus of this article: let X0, X1, and X2

be n-dimensional vectors representing the state of the
atmosphere at times t0, t1, and t2, respectively, based
on some finite-dimensional representation, such as mod-
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TABLE 1. Guide to key definitions.

Expected value
(analysis or forecast) Covariance

At time t0

To estimate X0

To forecast X1

To forecast X2

n0 (input)
m1 (2.8)
m (3.15)o

2

A0 (input)
B1 (2.9)
B (3.16)o

2

At time t1, after observation
To estimate X1

To forecast X2

n1 (2.15)
m2 (2.19)

A1 (2.13)
B2 (2.20)

el gridpoint values or spectral coefficients. Given all
available information at t 5 t0 (the decision or design
time), we wish to decide how to collect additional ob-
servations at t 5 t1 (the targeted or observation time)
in order to optimize statistical properties of a forecast
from t 5 t1 valid at t 5 t2 (the forecast or validation
time). The exposition here will primarily assume that
all observations at t 5 t1 are our adaptive observations;
more general situations are discussed in section 2c.
Also, note that, in general, the quantities represented in
X may include a variety of different physical variables,
or in idealized settings (e.g., section 4), the values of a
single variable at different physical locations or sites.
The structure of our formulation is not dependent on
these differences; hence, we generically use ‘‘site’’ to
indicate an element of X.

The choice of data collection design is to be guided
by trying to obtain the most efficient forecast of X2.
(The accuracy of a prediction of course depends on how
the prediction is made. The forecast model considered
here is described in section 2.) The task involves a trade-
off between regions in which one expects to be very
uncertain about X1 versus regions of X1 that are ex-
tremely important in terms of their role in the evolution
of the dynamics. We used the word ‘‘expects’’ because
the entire issue is statistical. That is, our forecast of X2

will be based on our best assessment of X1, but this
assessment depends on the (unknown) future data whose
collection is being designed.

To frame the problem statistically, we first note that,
quite generally, forecasts (estimators of random vari-
ables) are chosen to be the conditional expected values
of those random variables. The conditioning is based
on all information available at the time of prediction.
The corresponding measure of predictive accuracy is
then the conditional covariance matrix of the variables.
These notions have been the basis for data assimilation.
In particular, ‘‘objective analysis’’ procedures typically
produce conditional expectations. See Lorenc (1986) for
clarifications.

We use the variable n, subscripted by time, to rep-
resent an analysis; A, again subscripted by time, rep-
resents the corresponding analysis errors covariance ma-
trix. We use the variable m, subscripted by time, to
represent a forecast, and B, appropriately subscripted,
represents the corresponding forecast errors covariance
matrix. The procedure described here focuses on the
quantities described in Table 1. The indicated formulas
for these quantities are developed in section 2. With this
notation, the adaptive observation problem is essen-
tially, at time t0, to decide where to observe the system
at time t1, with the intent of making B2 ‘‘small.’’

In section 2 selected principles of statistical design
of experiments are introduced. A more general overview
of the subject is given in appendix A. Applications of
statistical design in the context of prediction of linear-
izable dynamical systems are described. Section 3 de-
velops the essence of some other approaches to the adap-

tive observation problem leading to comparisons and
new interpretations vis-à-vis our approach. In particular,
we explicitly compute examples of our optimal statis-
tical designs in the case of negligible observational
noise. This permits new insights, interpretations, and
comparisons with other approaches.

Section 4 is devoted to example derivations of our
results and some comparisons to other approaches. Fol-
lowing Lorenz and Emanuel (1998), we use a toy adap-
tive observation problem based on a 40-variable model.
Section 5 is devoted to comments and a summary.

2. Statistical formulation of design problems

The statistical design of experiments is a fundamental
subdiscipline of statistics. The approach taken in this
article is known as optimal experimental design. Though
the literature is rich and complex, the guiding principle
can be stated succinctly:

For a given formulation of a problem, choose a procedure
for collecting future data with the intent of optimizing
mathematical criteria that reflect statistical accuracy of
the conclusion to be made.

If our problem is to predict (forecast) a random vector,
say X, we wish to obtain data that is informative re-
garding the probability distribution of that vector. A
very common assumption that well motivates our ap-
proach is to control predictive mean-squared error
(MSE). Namely, we wish to minimize the expected
squared difference between our predictor and X; for-
mally, let p(Y) denote a prediction procedure based on
data Y whose collection we are designing. We are to
minimize the expectation of the Euclidean norm squared
prediction errors:

MSE 5 E(|X 2 p(Y)|2), (2.1)

where the indicated expectation is taken with respect to
both X and Y. A result from the theory of prediction
(e.g., Aitchison and Dunsmore 1975, pp. 47–50) tells
us that we should choose the predictor to be the con-
ditional expectation of X, given the observed data y:

E(X | Y 5 y). (2.2)

This result is derived by noting that
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2MSE 5 E [|X 2 E(X | Y) 1 E(X | Y) 2 p(Y)| ] (2.3)
25 E{tr[Cov(X |Y)]} 1 E [|E(X |Y) 2 p(Y)| ]. (2.4)

By choosing p(Y) 5 E(X | Y), the second term of (2.4)
vanishes. For design purposes our goal then becomes
optimization of the expected (with respect to Y) trace
of the conditional covariance matrix of X.

A message in this derivation is that we formulate a
criterion by first anticipating what predictive procedure
we plan to use. This procedure’s accuracy is unknown,
since both Y and X are unknown (‘‘random’’) at the
moment of design. Hence, we can only control expected,
not actual, behavior.

We present additional review of the literature and the
development of criteria for optimal design in appendix A.

a. Primary statistical formulation

1) MODEL AT TIME t0

We assume the following statistical and dynamical
formulations. At time t0 the information available to us
concerning X0 is summarized in the probabilistic sum-
mary, or ‘‘prior,’’

X0 ; N(n0, A0),

where this notation is read as ‘‘X0 has a multivariate
normal (Gaussian) distribution with expected value
(mean) n0 and covariance matrix A0.’’ Some readers
may find this counterintuitive: the state of the atmo-
sphere at an instant is some fixed vector. The statistical
view is to summarize our uncertainty via a probability
distribution, thereby treating X0 as a random vector.
Typically, this distribution will be the result of some
data assimilation process. In particular, n0 is the ana-
lyzed state and A0 is the corresponding analysis error
covariance matrix.

The dynamics of the evolution of the process are
represented as

X1 5 f (X0), (2.5)

where f is a known, nonlinear function. (We discuss
formulations that include model uncertainty in section
5.) Note that despite the determinism implicit in (2.5),
if X0 is random, then so is X1. Next, consider the tangent
linear approximation:

X1 ø f (n0) 1 F(n0)(X0 2 n0), (2.6)

where F(n0) is the n 3 n Jacobian matrix of the trans-
formation f, evaluated at n0. Based on this approxi-
mation, it follows from standard statistical theory that
our implied, approximate distribution for X1 is

X1 ; N(m1, B1), (2.7)

where

m1 5 f (n0) (2.8)

and

B1 5 F(n0)A0F(n0)T. (2.9)

(Also, see Ehrendorfer and Tribbia 1997.)
At time t 5 t0 we have the opportunity to design an

experiment that will take place at time t 5 t1. We will
observe a function of the state variables X1, with mea-
surement error. In the adaptive observation problem of
FASTEX, the problem was the selection of a limited
subarea of the region of interest for data collection. We
assume that the random data to be observed, denoted
by Y, follows a model,

Y 5 KX1 1 e, (2.10)

where K is a d 3 n matrix. We assume that the mea-
surement error vector e ; N(0, S). (Here S is a d 3
d matrix that implicitly depends on K.) The best choice
of K, under appropriate restrictions, is our problem. In
a simple adaptive observation context, K could be
viewed as an ‘‘incidence matrix,’’ consisting of d rows,
each containing n 2 1 zeroes and a single 1, to signify
that we are to take d total observations at the indicated
regions. Restrictions include the specification of d, typ-
ically very small compared to n, and the condition that
the regions used be geographically contiguous. Finally,
note that the linearity assumption implicit in (2.10) is
often itself an approximation, typically justified via ad-
ditional linearization arguments.

2) UPDATING AT TIME t1

A standard calculation provides the following updat-
ing of knowledge about X1, combining the actual ob-
served data y and the previous data and dynamical re-
lationships summarized by (2.7). Under the above spec-
ifications, it can be shown that conditional on Y 5 y,
the distribution of X1 is

X1 | y ; N(n1, A1), (2.11)

where

21 T 21 21A 5 (B 1 K S K) (2.12)1 1

T T 215 B 2 B K (S 1 KB K ) KB , (2.13)1 1 1 1

21 T 21n 5 A (B m 1 K S y) (2.14)1 1 1 1

T T 215 m 2 B K (S 1 KB K ) (Km 2 y). (2.15)1 1 1 1

The results in (2.13) and (2.15) were obtained via
application of Bayes’ theorem. [See West and Harrison
(1989) for details particularly relevant to the formula-
tion here.] It is well known that they coincide with
familiar results from the data assimilation literature, of-
ten known as the extended Kalman filter (Lorenc 1986;
Tarantola 1987; Courtier 1997). In particular, the esti-
mate given in (2.15) is obtainable as the solution to an
optimization problem: find the minimizer of

J(x1) 5 T 21(x 2 m ) B (x 2 m )1 1 1 1 1

1 (y 2 Kx1)TS21(y 2 Kx1). (2.16)
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The fact that the two approaches agree involves a bit
of calculus and the observation that for Gaussian dis-
tributions the most likely (maximum likelihood) or mod-
al value coincides with the mean of the distribution. For
our purposes it is convenient to present the analyses in
standard statistical notation. This permits a clear parallel
to statistical design theory and enables a clear tracking
of the impact on uncertainties resulting from the ap-
proximations used.

3) DESIGN FOR PREDICTION OF X2

The above notions are next applied to the basic prob-
lem described in section 1. Throughout this formulation,
we act as if all means and covariance matrices derived
using tangent linear approximations are exact, rather
than approximate. Our goal is to predict

X2 5 g(X1), (2.17)

where g is a known, nonlinear function. The notation g
allows for the possibility that the time lags t1 2 t0 and
t2 2 t1 may be different.

Applying the tangent linear approximation on (2.17)
yields the following approximation, conditional on the
data y:

X2 | y ; N(m2, B2), (2.18)

where

m2 5 g(n1) (2.19)

and

B2 5 G(n1)A1G(n1)T. (2.20)

The matrix G is the collection of first partials of the
transformation g; in (2.20) G is evaluated at n1. Note
that B2 depends on the values of the very data y whose
design is being formulated. Following the paradigm out-
lined earlier, we should seek optima of expectations of
functions of the predictive covariance matrix B2; name-
ly, optimize

E0[F (B2)]. (2.21)

The subscript 0 on the expectation operator reminds us
that this calculation is done at the present time.

b. Some issues

From a theoretical view the problem of adaptive ob-
servations is now well posed, statistically. However, se-
rious difficulties can arise in practical implementation.

The key difficulty is that the computation and sub-
sequent optimization of the criterion given in (2.21) are
virtually intractable in very high-dimensional problems.
Hence, additional simplifications are needed. These sim-
plifications involve additional statistical approximations
as well as numerical simplifications and dimension re-
duction.

1) DESIGN FOR ESTIMATION OF X1

Rather than attempting to arrive at the most efficient
prediction of X2, consider the problem of efficient es-
timation of X1. The hope, parallel to much of the rea-
soning in the data assimilation literature, is that a very
good estimate of X1, say n1, can be used to obtain rea-
sonable predictions of X2. The resulting design problem
is then one of finding optima of functions of A1. This
problem is well posed, since A1 does not depend on the
actual value of the data y. (This feature is quite depen-
dent on the Gaussian assumptions used here.) This ap-
proach also seems natural in settings in which the an-
alyst wishes to predict at a variety of future time points.
This notion seems to be a motivation of the discussion
presented in Lorenz and Emanuel (1998).

2) APPROXIMATING THE DESIGN CRITERION

The primary criterion (2.21) is complex. Referring to
(2.20), the matrix G is a complicated function of the
data through the quantity n1. Furthermore, G(n1) itself
enters the criterion function (2.21) nonlinearly. These
complexities and the size of the problem combine to
mandate a significant simplification.

Recall that E0(n1) 5 m1 5 f (n0). [See (2.8) and
(2.15).] The suggestion is that we simply ‘‘plug in’’ the
expected value of n1 , that is, replace G(n1 ) in
E0{F [G(n1)A1G(n1)T]} by G(m1). This eliminates the
need for computing an expectation, since, as noted ear-
lier, A1 is independent of the observed data. Analyses
based on the resulting criterion,

F [G(m1)A1G(m1)T], (2.22)

are considered in section 3.
To clarify the simplification accruing from the plug-

in approximation, consider the following special cases
(see appendix A for discussion of these example cri-
teria).

1) Considering the determinant function (D optimality)
leads to

E0[F (B2)] 5 E0{det[G(n1)A1G(n1)T]}

5 det(A1)E0{det[G(n1)TG(n1)]}. (2.23)

Applying the approximation reduces to optimizing
det(A1). Note that the dynamics beyond t1 would play
no role and we are in the mode of section 2b(1).

2) The basic A-optimality criterion corresponds to op-
timization of

E0[F (B2)] 5 E0{tr[G(n1)A1G(n1)T]}

5 tr{A1E0[G(n1)TG(n1)]}. (2.24)

Applying the approximation implies that we opti-
mize tr[A1G(m1)TG(m1)]. [Interest in features of the
matrix A1G (m1)TG(m1) will arise again in section 3.]

3) For E optimality the approximation implies that we
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are to minimize the largest eigenvalue of the matrix
in (2.22).

3) DIMENSION REDUCTION

In most settings the dimension of the state variable
of interest is very high, on the order of millions. The
dimensions of the corresponding covariance matrices
lead to severe limitations on the numerical search for
statistically optimal designs. A natural suggestion is to
seek designs based on low-dimensional collection of
variables that are themselves functions of the larger state
vector. Once a small number of variables are agreed
upon, the design approach is that outlined here, with
the reduced set of variables simply replacing the original
state variables, X. In some cases this strategy may re-
move the need for the plug-in approximation described
in section 2b(2).

4) MODEL UNCERTAINTY

To this point, we have have not attempted to adjust
for model uncertainty or unmodeled forcings. Suppose
that we extend the formulation in (2.5) and (2.17) to

X1 5 f (X0) 1 S1 (2.25)

and

X2 5 g(X1) 1 S2, (2.26)

respectively, where S1 and S2 are independent vectors
of mean-zero stochastic elements. We also assume that
these shocks are independent of the state of the system
at the instant before they are added (i.e., X0 and S1 are
independent). Finally, let J1 and J2 be the covariance
matrices of S1 and S2, respectively.

If we are willing to assert the validity of the tangent
linear approximations, we can develop a simple analog
of the design problem. First, the analogs of (2.7)–(2.9)
are that the approximate prior for X1 is

X1 ; N(m1, ),(s)B1 (2.27)

where m1 is as given in (2.8) and

5 B1 1 J1,(s)B1 (2.28)

where B1 is defined in (2.9).
The assimilation of the adaptive observations is per-

formed as in (2.11). One simply replaces B1 by (s)B1

everywhere in (2.13)–(2.15). Let the resulting analog of
A1 be denoted by . To go forward to t 5 t2, we could(s)A1

consider approximations as in section 2b. In particular,
a natural suggestion is to simply replace B2 given in
(2.20) by

B2
(s) 5 G(n1)A1

(s)G(n1)T 1 J2, (2.29)

and proceed with the optimization.

c. Alternative data collection procedures

In most practical weather forecasting contexts, a va-
riety of additional, sometimes termed ‘‘routine,’’ ob-
servations are available after time t0. Adaptive design
should adjust for such data. We consider three cases:
routine observations are 1) before, 2) (essentially) si-
multaneous with, or 3) after the adaptive observations.
We briefly describe adjustments to the analyses so far
discussed to account for such data. In designing adaptive
observation collection for prediction, the recipe for the
statistical approach is to find a formula by the predictive
covariance matrix for the state X2 at time t2, as a func-
tion of the representation of the adaptive design (in our
notation, K), and the unobserved data (now both the
adaptive and routine observations). We then find K to
optimize the expectation of a function of the covariance
matrix where the expectation is taken over the unob-
served data; in practice we typically approximate the
expectation. Hence, there is virtually no new conceptual
baggage to introduce beyond that already described.
However, technical problems in deriving formulas for
covariances and approximate expectations may not be
obvious. We formulate the setup in this section, but defer
the calculations to appendix B.

Case 1. Suppose that at some time ta, t0 , ta , t1,
we will observe a dataset, denoted by Ya, that is
directly informative about the state of the system
Xa at time ta.

At time t0 we can compute a linearization-based
approximation [analogous to (2.3)] for the distri-
bution of Xa. Updating based on the observed data
ya leads to an analog of (2.11). Next, our predictive
distribution, conditional on the data ya, for X1 can
be approximated by employing another lineariza-
tion (from time ta). The final step is to form the
conditional distribution of X2 given both ya and y.
With these definitions, one can proceed as in sec-
tion 2a.

Case 2. Now suppose that the routine and adaptive
observations are to be (essentially) simultaneously
observed (ta 5 t1). We then find new formulas
corresponding to (2.13) and (2.15) based on both
sets of data and again proceed as in section 2a.

Case 3. Finally, suppose that the routine data is col-
lected at time tb, t1 , tb , t2. The analysis proceeds
identically to that in section 2a up through the def-
inition of the conditional distribution X1 given y.
Hence, if one seeks optimal designs for estimating
X1 the analysis is unchanged.

For optimal prediction of X2, two linearization
arguments (one from t1 to tb and then from tb to
t2) would be used. We propagate this information
forward in time to t2.

Extensions of these analyses can be pursued. First,
we may envision collections of both future times for
adaptive observations as well as times at which we will
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make predictions. Those predictions will be modified as
we collect future observations. The adaptive observa-
tions problem is then a sequential statistical design prob-
lem. (In this article we have used a ‘‘greedy’’ or one-
step approximation in which we only have controlled
prediction variance at t2, but no control downstream.)
Further, selection of times as well as locations for adap-
tive observation may be considered in the optimization.
Indeed, statistical design can, in principle, take a unified
approach to the design of both routine and adaptive data
collection. Though such fully sequential statistical de-
signs have been studied and applied in other contexts
(Chernoff 1972), the complexities and size of weather
forecasting applications may moderate the richness of
the approach.

3. Results and comparisons

In this section we derive statistical design results for
the A-optimality criterion. These results are based on
the plug-in approximation idea of section 2b(2). Further,
under the assumptions that (i) adaptive observations
have negligible errors and (ii) the design K is of an
arbitrary form (i.e., the observation may be any linear
combination of the state variables), we obtain formulas
for optimal designs that carry substantial intuitive value.
Our results also lead to new interpretations of previously
proposed strategies for adaptive observations (Langland
and Rohaly 1996; Bishop and Toth 1996; Lorenz and
Emanuel 1998; Palmer et al. 1998; see also Snyder
1996).

a. Computations for A-optimal designs

1) SINGLE OBSERVATION SETTING

Suppose that a single adaptive observation is to be
taken. That is, K is a single row vector. If that obser-
vation is to represent one coordinate of X1, we restrict
the admissible K to be row vectors whose elements are
all zero, except for one element equal to 1; that is, K is
an incidence vector [see (2.10)]. Our data Y 5 KX1 1
e is a scalar. We assume that the measurement error e
has variance , for K containing its 1 at index i. As2s i

in section 2b(2), all calculations will be based on the
plug-in approximation

G0 [ G(m1). (3.1)

Under these assumptions (2.13) reduces to

TB K KB1 1A 5 B 2 .1 1 2 Ts 1 KB Ki 1

An (approximate) A-optimal design minimizes tr(G0A1 )TG0

or, equivalently, maximizes

T T T Ttr(G B K KB G ) KB G G B K0 1 1 0 1 0 0 15 . (3.2)
2 T 2 Ts 1 KB K s 1 KB K1 i 1

The solution is well defined: namely, we should ob-
serve at that site that maximizes (over i) the quantity

(gb)ii , (3.3)
2s 1 bi ii

where (gb)ii is the ith diagonal element of B1 G0B1 andTG0

bii is the ith diagonal element of B1.
Finding the optimal site requires further knowledge

of B1 and G0 to make progress. To provide some intu-
ition, note that in the unlikely situation that both G0 and
B1 are diagonal matrices, (3.3) implies that we should
observe at that site that maximizes (biigii)2/( 1 bii),2s i

where gii is the ith element of G0. The trade-offs between
the magnitudes of bii, , and are interesting. For2 2s gi ii

example, if the bii and vary very little compared to2s i

the gii, then the dynamics reflected in G0 dominate the
design. Alternatively, if all gii are essentially equal, the
optimal site is that which has the largest total variance

1 bii.2s i

2) MULTIPLE OBSERVATIONS SETTING

Here, K is a d 3 n matrix, where d is the number of
observations in the design. An (approximate) A-optimal
design minimizes a 5 tr(G0A1 ) whereTG0

T Ttr(G A G ) 5 tr(G B G )0 1 0 0 1 0

T 21 T T2 tr[(S 1 KB K ) KB G G B K ].1 1 0 0 1

(3.4)

Hence, A optimality is equivalent to maximizing the
quantity

ã 5 tr[(S 1 KB1KT)21KB1 G0B1KT], (3.5)TG0

with respect to K {recall [see (2.10)] that S depends on
K}.

Computation of the optimal design in this case is
challenging in general. If K is an incidence matrix, we
must calculate ã n!/[d!(n 2 d)!] times; this is certainly
prohibitive for n huge and d moderate. However, in
practical adaptive observation problems, not all designs
are feasible. For example, if the elements of the state
vector X1 represent sites, it is often the case that the d
sites to be selected must be contiguous neighbors. This
yields a major reduction in the computational overhead.
Also, note that the matrix inversion indicated in (3.5)
is of a d 3 d matrix; typically, we expect d to be com-
paratively small.

3) UNRESTRICTED DESIGNS FOR SMALL

OBSERVATION ERRORS

Further approximations to A-optimal solutions can be
obtained if the measurement error variances are essen-
tially zero and the elements of K are unrestricted. That
is, we are asking which linear combinations of X1 would
be best to observe. Formally, we should impose some
normalization side conditions on K. Here, we are only
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interested in the direction of solutions. Hence, normal-
ization may be ignored. [Note that observing an unre-
stricted linear combination of X1 is implausible in the
context of real adaptive observations. We pursue this
case for its intuitive value; also, this case enables an
interesting comparison to an analysis in Palmer et al.
(1998).]

First, consider the single-observation case. Suppose
that all are very small, so that may be neglected2 2s si i

in the denominators in (3.2) for approximation purposes.
To roughly assess the validity of this approximation,
note that algebra yields

T T T T 2KB G G B K KB G G B K s1 0 0 1 1 0 0 1 i5 1 2 .
2 T T 2 T[ ]s 1 KB K KB K s 1 KB Ki 1 1 i 1

(3.6)

Hence, should be at least an order smaller than the2s i

smallest feasible value of KB1KT for the approximation
to be of value.

Setting 5 0 and assuming K is unrestricted, max-2s i

imization of (3.2) is equivalent to finding the leading
eigenvector of the eigenvalue problem,

G0B1KT 5 lKT.TG0 (3.7)

Let

KT

* (3.8)

denote that eigenvector.
In the multiple-observation case, a corresponding

analysis can be obtained when S is small. By small, we
mean a condition analogous to that motivated for the
single-observation case: namely, S(KB1 KT )21 is
‘‘small.’’ Setting S equal to a matrix of zeros in (3.5),
we have

ã5 T 21/2 1/2 1/2 T 1/2 1/2 T T 21/2tr[(KB K ) KB (B G G B )B K (KB K ) ].1 1 1 0 0 1 1 1

(3.9)

The maximizer of ã is

KT

* 5 ( , . . . , ),T Tk k1 d (3.10)

where , . . . , denote leading d eigenvectors cor-T Tk k1 d

responding to the eigenproblem

G0B1kT 5 lkT.TG0 (3.11)

(See Rao 1973, p. 74.)
As a closing comment, we note that if the unrestricted

solutions above are highly localized, they can directTkj

the search for the restricted, ‘‘incidence’’ solutions.

b. A simple principle for adaptive design

We reconsider the design for estimation of X1 problem
as discussed in section 2b(1) in the context of small
observation errors. Results for this case are most readily
obtained by simply setting G0 to be the identity matrix
in the A-optimality condition (3.5) as well as the ei-

genvalue problem (3.11). Assuming again that K is an
incidence matrix, note that specification of K is equiv-
alent to specification of a partition X1 5 ( , )T whereT TX Xo u

Xo is the d vector of variables to be directly observed
and Xu correspond to the unobserved sites. It follows
that (3.5) reduces to

ã 5 tr{[S 1 Cov(Xo)]21

3 [(Cov(Xo))2 1 Cov(Xo, Xu)(Cov(Xo, Xu))T]},

(3.12)

where Cov(Xo, Xu) is the d 3 n matrix of pairwise
covariances of elements of Xo with elements of Xu. If
S is small, ã is approximated by

tr{cov(Xo) 1 [cov(Xo)]21 cov(Xo, Xu) cov(Xo, Xu)T}.

(3.13)

Hence, A-optimal choices for the sites to be observed
involve sites that not only have large variances but are
also highly correlated with those sites that are unob-
served. (We refer to variances and correlations given in
B1.) The intuition seems clear; observing such sites both
reduces our uncertainty at those sites and provides in-
direct information about the unobserved sites through
the high correlation structure.

c. Other approaches

In the atmospheric science literature it is common to
represent notions gauging quality of estimates in terms
of ‘‘analysis errors’’ (here denoted by a) and ‘‘forecast
errors’’ (here denoted by e). In particular, our expression
(2.6) could be written as

e01 ø F(n0)a0, (3.14)

where the subscript 01 on e explicitly notes that we
mean the forecast error in forecasting from t0 to t1;
similarly, a0 is the analysis error at t0. For the statis-
tician, it is natural to describe formulations in terms of
the probability distributions of these errors, rather than
the errors themselves; that is, at t0, we consider a prob-
ability model a 0 ; N(0, A 0 ) and e 01 ; N[(0,
F(n0)A0F(n0)T)].

At time t0 the forecast error for X2 is e02. Based on
the tangent linear approximation, the actual forecast is

5 g(m1) 5 g[ f (n0)].om2 (3.15)

The corresponding forecast covariance is

5 G0B1 ,o TB G2 0 (3.16)

where G0 is defined in (3.1). That is, we act as if

e02 ; N(0, ).oB2 (3.17)

1) BISHOP AND TOTH (1996)

We will show that one suggestion of Bishop and Toth
is to minimize (with the respect to K) the largest ei-
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genvalue of the (approximate) forecast covariance ma-
trix G0A1 . In our terminology, they suggest an E-TG0

optimal design, for the approximate design as we de-
scribed in section 2b(2).

Bishop and Toth propose minimizing, over all feasible
designs, the quantity

Te e12 12max . (3.18)
T 21[ ]a A aa 1 1 11

(Here is a function of K.) Note that under the tangent21A1

linear approximation at t 5 t1, we would act as if e12

5 G0a1. However, use of this fact creates a dilemma
(we do not know n1 at t0), as described in section 2b(2).
Applying the approximation e12 ø G0a1, we can rewrite
(3.18) as

T Ta G G a1 0 0 1max . (3.19)
T 21[ ]a A aa 1 1 11

Mathematically, the indicated maximization is equiva-
lent to finding the largest solution l1(K) to the eigen-
value problem

G0a1 5 l a1.T 21G A0 1 (3.20)

Setting e12 5 G0a1, (3.20) becomes

G0A1 e12 5 le12.TG0 (3.21)

In more recent work, Bishop and Toth also consider
designs that minimize forecast variance, that is, A-op-
timal designs (C. Bishop 1998, personal communica-
tion).

2) PALMER ET AL. (1998)

In our notation, a simplified, though useful version
of the formulation of Palmer et al. is as follows. They
study features of the leading eigenvectors for the fol-
lowing problem:

G0e01 5 l e01.T 21G B0 1 (3.22)

They advocate taking the adaptive observations at lo-
cations corresponding to the large absolute amplitudes
of those leading eigenvectors.

Note that simple algebra implies that (3.22) is equiv-
alent to

G0B1 G0e01 5 lG0e01.TG0 (3.23)

Next, we can rewrite (3.23) as

G0B1 e02 5 le02.TG0 (3.24)

Hence, Palmer et al. focus on the forecast error e02

and its approximate covariance matrix defined inoB2

(3.16). They suggest locating the leading eigenvectors
(‘‘worst forecast errors’’) of . By reversing the aboveoB2

steps, this is related to finding the corresponding error
e01 at time t 5 t1. The idea is then that if one reduces
the length of this ‘‘error,’’ one improves the structure

of the forecast error covariance for e12. However, is0B2

not the covariance for e12. Indeed, it is independent of
the choice of adaptive observations design K, whereas
the statistical analysis yields criteria [see (2.20) and
(2.22)] that depend on K through the forecast covariance
matrix B2 [see (2.12) and (2.20)].

We note that Palmer et al. actually consider the case
in which routine observations are also made available
at or before time t1. This coincides with our discussion
in section 2c and appendix B. Indeed, to account for
routine observations to be collected at time t1, they
would replace B1 in (3.21) by our B* given in (B.13)
of appendix B and then proceed as described above.
Nevertheless, this enhancement still yields a criterion
that does not depend on the adaptive design K.

There is a second relationship between the statistical
approach and that of Palmer et al. Let v1 be the leading
eigenvector for (3.22). Algebra relates (3.22) and (3.7).
Indeed, our small observation error solution [see (3.8)]
is

KT

* 5 v1,21B1 (3.25)

that is, a rotation of the vector Palmer et al. study. Note
that if and G0 have the similar eigenstructures or21 TB G1 0

commute, B1 G0 5 G0B1 (e.g., if B1 is a scalar mul-T TG G0 0

tiple of the identity matrix), then KT

* ø v1. However, in
general, the A-optimal K* does not necessarily have
large (absolute) elements at the same locations where
v1 does. Further, even if v1 is highly localized, K* need
not be. At the extreme, if v1 is composed of all zeros
save a single element equal to 1, then K* is the corre-
sponding column of .21B1

To further understand the meaning of (3.8), note that
by definition of the solutions to (3.22) we may write
the random forecast error e01 5 X1 2 m1 [see (2.8)] as

n

ie 5 a v , (3.26)O01 i
i51

where the ai are random variables. By the orthog-21B1

onality of the vi’s [i.e., (vi)T vj 5 dij], we have that21B1

1 T 21K*e 5 (v ) B e (3.27)01 1 01

n

1 T 21 i5 a (v ) B v (3.28)O i 1
i51

5 a . (3.29)1

Hence, our optimal choice for K implies that we are to
measure the projection of e01 onto v1. This suggests21B1

that adaptive observation locations should be biased
away from those suggested by Palmer et al.

3) LORENZ AND EMANUEL (1998)

Their suggestion is most directly related to our sec-
tions 2b(1) and 3b. To achieve good estimation of X1,
they suggest taking adaptive observations of its coor-
dinates having the largest variances in B1. Note that this
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does not coincide with our A optimality suggestion in
section 3b, unless B1 is a diagonal matrix. However, in
the single-observation context, their approach can be
related to statistical D optimality. This result does not
hinge on a small observation error approximation.

Recall from section 2b(2) that the plug-in-approxi-
mated D-optimal designs for prediction of X2 are those
that minimize det(A1). That is, under the approximation,
dynamics beyond t1 play no role; see (2.23). Next sup-
pose K is a row vector whose elements are all zero,
except for one element equal to 1. One can show that

2s
det(A ) 5 detB . (3.30)1 12 Ts 1 KB K1

Thus, the D-optimal design corresponds to that site that
makes KB1KT as large as possible, namely, the location
with largest variance.

A fourth approach is suggested by Langland and Ro-
haly (1996). In order to identify locations where changes
in the analysis at t 5 t1 would produce large changes
in the forecast of X2, they propose calculating the gra-
dient w.r.t. conditions at time t1 of some scalar function,
say h, of the forecast variables. Formally, they calculate

]h ]h
T5 G(n ) .0]X ]X1 2

They suggest locating observations at sites where
|]h/]X1| is large. Palmer et al. discuss the relationship
between this strategy and those based on the eigenvec-
tors of (3.22).

Finally, the calculations proposed by both Bishop and
Toth (1996) and Palmer et al. (1998) require simplifi-
cation in practice because of computational constraints.
These simplifications center on modeling the various
required covariance matrices and, in the case of Bishop
and Toth, on estimating how those matrices change as
K varies. We refer readers to the above papers for further
details.

4. Example

Lorenz and Emanuel (1998) considered a low-order
model that exhibits chaotic behavior that in some re-
spects resembles that of the atmosphere. The model con-
sists of variables X(t) 5 [x1(t), x2(t), . . . , xn(t)]T defined
at n points and evolving according to

dxi 5 2x x 1 x x 2 x 1 F, (4.1)i22 i21 i21 i11 idt

where F is a forcing and the variable xi is taken to be
periodic:

xi1n 5 xi. (4.2)

One may visualize that the n dimensionless variables
represent the values of some atmospheric quantity at n
sites that are equally spaced about a latitude circle, in-
deed, a ‘‘toy’’ equator. The forcing F appears to control

the complexity of the system. Here F 5 8 gives rise to
a fairly complex system. For values of F tending to 8,
the system undergoes a bifurcation from periodic to cha-
otic behavior. For additional discussion of the model
and its motivation, see Lorenz and Emanuel (1998).

a. Description of an experiment

A reference or true state of the system, which will
be subsequently sampled in our experiment, is computed
as follows. First, in all calculations we set n 5 40 and
F 5 8. Next, we choose initial values xi 5 i/10.0, for
1 # i # 39 and x40 5 x1. The first 6000 time steps are
discarded as transients; the next 1000 steps are saved
as the reference states.

Following the dimensionalization of Lorenz and
Emanuel, 1 day corresponds to nondimensional time
intervals in (4.1) of duration 0.2; hereafter, all times will
be dimensional. We also assume, as did Lorenz and
Emanuel, that sites 21–40 represent land stations and
sites 1–20 represent ocean stations. The land stations
receive observations every 12 h; observations over the
ocean are made intermittently as described below.

The Jacobian matrices needed at various stages of
design are computed using the tangent linear model re-
lated to (4.1), which was derived by differentiating (4.1).

1) STEP 1

To start up the experiment, a first guess (n0) and
associated covariance matrix for analysis errors (A0) at
the present time t0 are needed. To mimic a real analysis,
we ran the following M iterations of data assimilations
based on simulated data. At time step t21 5 t0 2 10M
(M/2 days) prior to t0, the true state is perturbed by
adding independent Gaussian noises N(0, d2) at land
sites and N [0, (2d)2] at ocean sites. This perturbed state
is used as the best guess at that time. A hypothesized
analysis error covariance matrix associated with this in-
formation is defined as follows: a diagonal matrix with
variance (2d)2 at ocean sites and d2 at land sites. At the
next step t0 2 10(M 2 1), this information is combined
with simulated observations at all land stations as well
as a single ocean site (described below). The observa-
tional errors are assumed to be independent and follow
N(0, ) for land stations and N(0, ) for ocean. Data2 2s s1 2

assimilation is computed at this stage using formulas in
(2.9), (2.15), and (2.13). This procedure is repeated (M
2 1) times up to time t0.

The ocean site chosen in each step was that site that
had the largest predictive variance (i.e., following the
Lorenz and Emanuel approach). This feature of the spi-
nup was introduced to reduce the possibility of pro-
ducing dominant analysis variances at some ocean sites.
Such sites could exert undue influence on subsequent
adaptive designs. (As we will describe, despite our spi-
nup, such dominant sites did occur.)

The point of this spinup strategy is to mimic the an-
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TABLE 2. Various times for four cases. Note that the times are
dimensional and measured in days. Day 1 is iterated 500 from the
actual long run.

Case

Start-up
time
t21

Design time
t0

Obser-
vation
time

t1

Forecast time
t2

1
2
3
4

1
2
6
7

11
12
16
17

11.5
12.5
16.5
17.5

12, 12.5, 13.5
13, 13.5, 14.5
17, 17.5, 18.5
18, 18.5, 19.5

ticipated structure of the adaptive observation setting,
in which reasonably accurate, land-based data are avail-
able at the design stage. Specifically, the spinup intro-
duces an unbalanced structure in the matrix A0, in that
sites over land should have much smaller variances than
ocean sites.

2) STEP 2

At the present time t0, we suppose there is an op-
portunity to observe one of the ocean sites, labeled 1–20,
with error N(0, ), at time t1. The goal here is to im-2s 2

prove forecast at future time t2.
We set d 5 0.3, M 5 20, s1 5 0.5, and s2 5 0.5.

Four experiments were run at different times, within the
same long run of the system. Table 2 provides design
time, adaptive observation time, and three choices of
prediction times for each of the four cases.

There are two additional clarifications. First, the adap-
tive designs followed the formulation of section 2a. In
particular, while we used routine observations during
spinup, we did not adjust for routine observations at the
observation times such as the analyses outlined in sec-
tion 2c. Second, all four spinups involved independent
data. For example, the spinup for case 2 made no use
of data from the spinup of case 1.

b. Results

To provide some intuition regarding results, Fig. 1
presents information summarizing the expected state of
the system at time t1 based on information available at
time t0 for case 2. (Figure 2 contains the same infor-
mation for case 4.) Specifically, Fig. 1a shows the true
value of X1 along with its prediction m1. Figure 1b
presents the diagonal elements of the corresponding B1.
Also based on B1, the third panel (Fig. 1c) provides
information about the covariance structure for neigh-
boring sites, that is, covariances of forecast errors be-
tween site xi and xi1t where t 5 1, 2, or 3 is plotted.
Results for case 4 appear in Fig. 2.

Figure 3 shows the values of the average of the var-
iances in case 1 as a function of adaptive observation
site, corresponding to the data assimilation as well as
three forecast times. The same information for cases 2–
4 is reported in Figs. 4–6, respectively. In each of these

four problems, our A-optimal solution corresponds to
the site yielding the smallest average variance. Resulting
optimal designs are summarized in Table 3.

The first observation in these results is that for this
small experiment, A optimality and the strategies of
Lorenz and Emanuel (1998) and Palmer et al. (1998)
tend to agree if one seeks optimal estimation of X1. (An
exception occurs in case 3, though the improvements of
A optimality in expected average mean-squared esti-
mation error appear modest.) Differences in results are
more evident for forecasting. This is certainly plausible
in comparison to Lorenz and Emanuel, since their sug-
gestion does not ‘‘look ahead’’ via G0. Note that in
constructing a 2-day forecast for case 1, the A-opti-
mality solution suggests a relative savings of 19.4%
[(0.618 2 0.498)/0.618] in predictive mean-squared er-
ror over the best estimation at t1 approach. In case 3,
for 2-day forecasting, we see a relative savings of 31.4%
in using the A-optimal design versus that suggested by
Palmer et al., while the savings over Lorenz and Palmer
is only 8.4%. In case 4, A optimality showed a 24.5%
relative savings over the other approaches for a 2-day
forecast.

It is interesting to inquire about impacts of designing
for a particular forecast time. That is, are designs for
forecasting one day ahead at least reasonable for fore-
casting for less than one day ahead? To examine this
question, first consider case 1. The A-optimal solution
for 2-day forecasting is site 7. This site is also A optimal
for a 1-day forecast, but we observe a relative savings
loss of 3.6% in terms of average prediction variance
compared to the best (site 9) for a half-day forecast. In
case 2, the A-optimal (and Palmer et al.) procedure for
2-day forecasting is site 7, for which we expect an av-
erage prediction variance of 0.148 for a half-day lead.
(Site 7 is also optimal for a 1-day lead.) The corre-
sponding optimal value of 0.145 (for site 12) leads to
a relative loss of only 2%. Case 3 also suggests little
regret in designing for 2-day forecasts. However, in case
4, using site 17 gives relative savings loss of 30.7% for
a half-day forecast. (Site 17 is optimal for 1-day fore-
casting.) Case 4 leaves the issue unsettled. If the tangent
linear approximations driving the A-optimal 2-day so-
lution are poor approximations to the true dynamics,
then obviously the solution is not robust. On the other
hand, if the tangent linearization is reasonable for 2
days, then designing only for the very short term is
inefficient.

A final important point concerns anticipated differ-
ences in results for various approaches. We suggest that
in the presence of sites with relatively large variances
(diagonal elements) in B1, any sensible approach to
adaptive observation selection for either estimation of
X1 or short-term forecasting will suggest observing
those sites. The situation is clearest in case 4. In that
example, site 12 has an extraordinarily large (B1) var-
iance (see Fig. 2). This appears to dominate Palmer et
al. in this case, despite the use of the same dynamics
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FIG. 1. Predicted field (m1) and covariance (B1) for case 2.

for long-term forecasting as in the A-optimal approach.
Of course, B1 variance determines the Lorenz and Eman-
uel suggestion, but also appears to dominate A opti-
mality for short-term forecasting. This may seem at odds
with our section 3b, where we suggested that both var-
iance and correlation drive the A-optimal solution. That
claim is correct; this system, however, produces highly
oscillatory sample paths and spatial correlation patterns
in B1, leading to a diminished role for spatial correlation.

5. Discussion

a. Summary

While there has been much recent interest in the prob-
lem of adaptive observations, all investigations to date
begin from the intuitive notion that adaptive observa-
tions seek to improve the quality of the analysis or the
skill of subsequent forecasts. Our fundamental contri-

bution is a rigorous statistical formulation of the adap-
tive design problem. This formulation provides a precise
mathematical framework for further understanding of
the importance of various components of the problem,
such as the uncertainty of the current analysis, the dy-
namics of error evolution, the form and errors of ob-
servations, data assimilation, and the choice of criterion
to be optimized.

We discuss properties of optimal statistical solutions
in a variety of contexts. To enable calculation of optimal
solutions, several approximations were used. First, cri-
teria to be optimized may depend on (expected) fore-
casts from future times. At the time of design such fore-
casts are unknown (since they depend on data not yet
observed). Such forecasts were replaced by longer-lead
forecasts from the time of adaptive design. Second, anal-
ysis and forecast errors are assumed to be Gaussian and
to evolve linearly in time. (As discussed below, neither
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FIG. 2. Predicted field (m1) and covariance (B1) for case 4.

of the Gaussian nor linear assumptions are required in
the formulation of the problem.) For a single, accurate
observation, the optimal observation is that which ‘‘ob-
serves’’ the projection onto errors at the current time
(in either an analysis or a short-term forecast) of the
structure that will evolve subsequently into the leading
eigenvector of the forecast error covariance matrix at
the desired forecast time.

The relationships of other proposed approaches to
optimal statistical solutions are discussed in general and
in the context of a numerical example involving the 40-
variable model of Lorenz and Emanuel (1998). This
example suggests that other proposed approaches may
often be close to a statistically optimal solution, at least
for this highly idealized model. However, this may not
be representative of results in more general situations.

Further improvement in adaptive observing strategies
over the heuristic techniques employed to date (such as

in FASTEX) will require progress in several areas. First,
it is clear that much of the subtlety of the problem arises
when the covariance matrices for the analysis and fore-
cast have nontrivial structure. Understanding and esti-
mating this structure are difficult and are the subject of
much current research in data assimilation. For adaptive
observations, there is the additional difficulty that, in
practice, data assimilation schemes only approximate
the optimal estimates [(2.12)–(2.15)] assumed here and
the covariances in question will depend on the specific
scheme employed to assimilate data. Even given good
estimates of the covariance matrices, work will remain
to be done in computing the optimal design, especially
incorporating the constraints and form of existing ob-
servational platforms.

Practical implementation of adaptive strategies also
awaits the advent of novel observing techniques and
technologies to replace the use of manned aircraft. In-
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FIG. 3. Average predictive variances in case 1. FIG. 5. Average predictive variances in case 3.

FIG. 6. Average predictive variances in case 4.FIG. 4. Average predictive variances in case 2.

deed, the framework presented here may have its soon-
est practical application in the adaptation of existing
systems such as the radio-sounding network.

b. Assumptions

Our statistical formulations rely heavily on selection
of the mean-squared error criterion to gauge predictive
accuracy, tangent linear approximations, and knowledge
of analysis error covariance matrices (this aspect was
discussed in section 5a), and appear to also rely on
Gaussian distributional assumptions. Extremely impor-
tant issues involve the impacts of departures from these

assumptions. A complete analysis is beyond the scope
of this article, though the following perspectives merit
discussion.

First, the reader should not equate ‘‘statistical design’’
with linearization plus Gaussian assumptions. The latter
are simply a particular framework that is familiar and
in which we can readily construct criteria for optimi-
zation. If these assumptions are deemed to be untenable,
one would construct alternative procedures for con-
structing approximate predictive distributions (e.g., en-
semble forecasting–based ideas; see Bishop and Toth
1996). Similarly, our criteria were motivated by mean-
squared prediction error minimization. If this criterion
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TABLE 3. Optimal design example results. For optimal estimation
at time t1 and the three forecast times, the optimal sites are indicated
for three methods: A optimality, Palmer et al., and Lorenz and Eman-
uel. The numbers in parentheses are the average prediction variance
achieved for the corresponding design.

Case

Forecast
time

(days) A optimal Palmer et al.
Lorenz and

Emanuel

1 0
0.5
1
2

9 (0.101)
9 (0.135)
7 (0.183)
7 (0.498)

9 (0.101)
9 (0.135)
9 (0.195)
4 (0.503)

9 (0.101)
9 (0.135)
9 (0.195)
9 (0.618)

2 0
0.5
1
2

9 (0.101)
12 (0.145)
7 (0.251)
7 (0.944)

9 (0.101)
7 (0.148)

12 (0.253)
7 (0.944)

9 (0.101)
9 (0.150)
9 (0.283)
9 (1.203)

3 0
0.5
1
2

14 (0.095)
11 (0.123)
11 (0.218)
14 (0.544)

13 (0.104)
13 (0.150)
13 (0.282)
13 (0.794)

11 (0.100)
11 (0.123)
11 (0.218)
11 (0.594)

4 0
0.5
1
2

12 (0.152)
12 (0.196)
17 (0.364)
17 (0.956)

12 (0.152)
12 (0.196)
12 (0.390)
12 (1.267)

12 (0.152)
12 (0.196)
12 (0.390)
12 (1.267)

is not considered primary, the statistical method could
be applied to whatever is viewed more appropriate (at
least in principle).

Second, suppose one is interested in relaxing the
Gaussian assumptions, but maintaining linearization.
Then analyses hinge on what choices are made for the
predictive covariance matrices, not the assumptions
made to derive them. This article compared results based
on linearization-based covariances. If one wishes to ig-
nore all Gaussian assumptions and rather view these
derivations as an extended Kalman filter, so be it. The
comparisons are still valid. However, if the Gaussian
approximation breaks down due to multimodality or
nonnormal tails in the predictive distributions, the prop-
er issue for examination is the potential meaninglessness
of any analysis based on means and covariances. These
objects can be poor summaries of such nonnormal dis-
tributions.
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APPENDIX A

Statistical Design of Experiments

The statistical design of experiments is a fundamental
subdiscipline of statistics. Owing to seminal work of R.
A. Fisher early in the twentieth century and extended
by G. E. P. Box and others, statistical design has become
a stalwart in many scientific endeavors. The idea is to

design reasonable, informative experiments that can be
of value when one wishes to ‘‘learn’’ about the phe-
nomenon at hand. In combination with mathematical
propositions of design problems, a tradition of optimal
experimental design developed from early contributions
of J. Kiefer and V. V. Fedorov. (These two notions are
not mutually exclusive, of course.)

In the optimal design mode, the development of a
design criterion is coupled with choice of an estimation
or prediction rule. Indeed, designs are usually developed
assuming one will use optimal estimators or predictors.
(Recall how the use of conditional expectations as pre-
dictors arose in the MSE example of section 2.) A stat-
istician’s tenet is that to design an optimal experiment,
one must know what will be done with the data obtained.

In the Bayesian statistics tradition (Bernardo and
Smith 1994), all quantities are treated as if they are
random variables. Hence, Bayesian experimental design
is virtually identical to design for prediction. Our use
of the modifier ‘‘Bayesian’’ in this paper could easily
be replaced by ‘‘stochastic’’ or ‘‘probabilistic.’’ In read-
ing the literature the choice of what to call the type of
analysis varies considerably, suggesting that there are
many approaches to the problem. However, nearly all
formal approaches involve the principle indicated
above, in concert with the statistical view described
above.

For general introductions to optimal statistical design
of experiments, see Fedorov (1972), Pukelsheim (1993),
and Silvey (1980). See Chaloner and Verdinelli (1995)
for a review of Bayesian experimental design. See
Aitchison and Dunsmore (1975) for background dis-
cussion of statistical prediction. Also, see Ford et al.
(1989) for review of special issues in experimental de-
sign in nonlinear contexts.

Design in the context of prediction of stochastic pro-
cesses also has a history. A related topic is the sequential
design of experiments, referring to designing a sequence
of experiments. General background and further refer-
ences can be found in Chernoff (1972) and Titterington
(1980). Beyond the statistics and probability literature,
extensive use and development of these ideas can be
found in various disciplines. For example, as a referee
of this paper pointed out, techniques of statistical design
analogous to those presented here are discussed in some
engineering literatures; see El-Jai and Pritchard (1988),
Fedorov and Müller (1989), and Omatu and Seinfeld
(1989) for pertinent discussion and review.

In practice, design of experiments is based on opti-
mization with respect to a specified class of possible
experiments. While our focus here is on limitations dic-
tated by adaptive observation procedures, the principles
could be applied to the design of all data collection
procedures, including monitoring systems. Further, an-
alyses balancing economic costs of data collection com-
bined with computational overhead versus economic
value of improved weather forecasts can be pursued in
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TABLE B1. Guide to key definitions for case 1.

Expected value
(analysis or forecast) Covariance

At time t0

To estimate X0

To forecast Xa

To forecast X1

n0 (input)
ma (B.2)
m1 (2.8)

A0 (input)
Ba (B.3)
B1 (2.9)

At time ta, after Ya

To estimate Xa

To forecast X1

na (B.5)
m (B.6)a

1

Aa (B.4)
B (B.7)a

1

At time t1, after observation
To estimate X1

To forecast X2

n (B.9)a
1

m (B.11)a
2

A (B.8)a
1

B (B.12)a
2

principle, though such suggestions are beyond the scope
of this paper.

Criteria for optimal designs

Recall that best MSE-based prediction let to opti-
mization of (expected) trace of the conditional covari-
ance matrix of X, say B. More generally, a variety of
criteria aimed at making B ‘‘small’’ have been studied.
Of course, B is a matrix so the notion of the best (ex-
pected) B cannot be defined. To make the problem math-
ematically meaningful, some criterion function, gener-
ically denoted by F, taking B into a scalar must be
specified. We present a brief overview here. [See Chal-
oner and Verdinelli (1995) and Silvey (1980) for in
depth reviews; the following presentation relied heavily
on that of Silvey.] As we develop these we suspend
constantly writing that we optimize expected values
(with respect to the data Y) of these criteria.

1) D OPTIMALITY

Suppose rather than simply predicting X, we wish to
provide a prediction region: that is, we are to calculate
a set such that, conditional on y, the probability that X
is in that region is some specified value, say P. (Note
the parallel to ‘‘confidence intervals’’ in estimation.)
Typically, we wish to choose the region as small as
possible while satisfying the probability condition. Un-
der the Gaussian assumptions used here, the desired
prediction region takes the form of an ellipsoid in n
dimensions, given by

{x : (x 2 E(X | y))TB21(x 2 E(X | y)) # cP}, (A.1)

where cP is a constant. Geometry tells us that the volume
of this ellipsoid is proportional to the square root of the
determinant of B. Designs that minimize the determi-
nant of B are D optimal.

2) G AND E OPTIMALITY

Next, suppose we actually plan to predict a particular
linear combination of X, say LTX, for some vector L.
The predictive variance is readily found to be LTBL.
We would find designs that minimize this quantity. (This
is sometimes called C optimality.) A generalization is
to consider a collection of interesting L and minimize
maximum predictive variance over that class. This is G
optimality. If the class is chosen to be the set of all n
vectors satisfying LTL 5 1, we refer to the approach
as E optimality. Note that an E-optimal design mini-
mizes the largest eigenvalue of B.

3) A OPTIMALITY

Rather than the ‘‘minimax’’ notion of G optimality,
we may wish to minimize an average prediction vari-
ance. Formally, we impose a probability distribution on

L. We then would find designs to minimize E(LTBL),
where this expectation is taken with respect to the dis-
tribution on L. A mathematical fact implies that for any
distribution on L,

E(LTBL) 5 tr[BE(LLT)], (A.2)

where tr indicates the trace operation. Designs mini-
mizing the right-hand side of (A.2) are A optimal. Note
that the minimization of tr(B), without the weights in-
dicated in (A.2.), can be motivated as minimizing the
simple average of the predictive variances of the indi-
vidual components of X (i.e., the diagonal elements of
B are these variances).

APPENDIX B

Technical Results for Alternative Data
Collection Procedures

a. Case 1

At time ta, t0 , ta , t1, we will observe a dataset,
Ya. Analogous to (2.10), assume that

Ya 5 MXa 1 ea, (B.1)

where M is a r 3 n matrix. Assume that the measurement
error vector ea ; N(0, Y) and that the error vectors e
[see (2.10)] and ea are independent of each other.

The following calculations are summarized in Table
B1. At time t0 we compute a linearization [analogous
to (2.3)] for the distribution of Xa. Assuming model
dynamics Xa 5 f a(X0) and defining Fa(n0) to be the
appropriate Jacobian, we have Xa ; N(ma, Ba), where

ma 5 f a(n0) (B.2)

and

Ba 5 Fa(n0)A0Fa(n0)T. (B.3)

[Compare these expressions to (2.8) and (2.9).] We then
update based on the observed data ya, that is, condi-
tional on Ya 5 ya, Xa | ya ; N(na, Aa), where

Aa 5 ( 1 MTY21M)2121Ba (B.4)

and
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TABLE B2. Guide to key definitions for case 3.

Expected value
(analysis or forecast) Covariance

At time t0

To estimate X0

To forecast X1

n0 (input)
m1 (2.8)

A0 (input)
B1 (2.9)

At time t1, after observation
To estimate X1

To forecast Xb

n1 (2.15)
mb (B.16)

A1 (2.13)
Bb (B.17)

At time tb, after observation
To estimate Xb

To forecast X2

nb (B.19)
m (B.20)b

2

Ab (B.18)
B (B.21)b

2

na 5 Aa( ma 1 MTY21ya).21Ba (B.5)

Next, our predictive distribution, conditional on the
data ya, for X1 can be approximated by employing a
linearization (from time ta). Assuming that X1 5
f 12a(Xa) and defining F12a(na) to be the appropriate
Jacobian, we have that X1 | ya ; N( , ), wherea am B1 1

5 f 12a(na)am1 (B.6)

and

5 F12a(na)AaF12a(na)T.aB1 (B.7)

To set up the design step, compute using (2.13)aA1

with all B1 there replaced by :aB1

5 [( )21 1 KTS21 K]21.a aA B1 1 (B.8)

The analyzed field is computed based on (2.15):an1

5 2 KT(S 1 K KT)21(K 2 y). (B.9)a a a a an m B B m1 1 1 1 1

To form the conditional distribution of X2 given ya

and y, follow the derivation of (2.18):

X2 | ya, y ; N( , ),a am B2 2 (B.10)

where

5 g( )a am n2 1 (B.11)

and

5 G( ) G( )T.a a a aB n A n2 1 1 1 (B.12)

The matrix G is the collection of first partials of the
transformation g; in (2.20) G is evaluated at n1.

Note that in selecting adaptive observations with the
intent of achieving optimal estimation of X1, we en-
counter an extra difficulty. Because of the extra line-
arization step at time ta, is a function of the routine,aA1

yet unobserved, observations ya. [This is similar to the
situation in section 2b(2).] In principle, design criteria
would be based on expectations over both these routine
observations. Approximations can be found by analog
to the idea in section 2b(2). Further, in design for op-
timal prediction at time t2, the relevant covariance ma-
trix depends (in a complicated fashion) on both theaB2

routine and adaptive data.

b. Case 2

To incorporate both datasets, we find formulas cor-
responding to (2.13) and (2.15). This is a standard prob-
lem in Bayesian analysis. The easiest way of repre-
senting the answer is to 1) replace B1 and m1 everywhere
in (2.13) and (2.15) by

B* 5 ( 1 MTY21M)2121B1 (B.13)

and

m*1 5 B* ( m1 1 MTY21ya),21B1 (B.14)

and then 2) proceed as in section 2a. The idea is that
we formally can first assimilate the routine data, leading

to (B.13) and (B.14), and then assimilate the adaptive
observations as in section 2a. Justification of this is an
argument in probability theory. This solution does hinge
on the assumption that the measurement errors in these
datasets are independent.

c. Case 3

Assume that the routine observations to be observed
at tb follows the model

Yb 5 MXb 1 «b, (B.15)

where M is a r 3 n matrix and «b ; N(0, Y). (There
is no reason that M, r, and Y need not be the same
specifications as in case 1.)

The following calculations are summarized in Table
B2. For optimal prediction of X2, first propagate (2.11)
forward in time to tb, yielding the approximate distri-
bution of Xb given y. To do this assume that Xb 5
gb(X1) and define Gb(m1) to be the appropriate Jacobian.
It follows that Xb | y ; N(mb, Bb), where

mb 5 gb(n1) (B.16)

and

Bb 5 Gb(n1)A1Gb(n1)T. (B.17)

After observing yb, this distribution would be updated
to yield

Ab 5 [(Bb)21 1 MTY21M]21 (B.18)

and analyzed field

nb 5 mb 2 BbMT(Y 1 MBbMT)21(Mmb 2 yb). (B.19)

Finally, assume X2 5 g22b(Xb) and let G22b denote
the Jacobian of g22b, evaluated at (B.19). Then X2 | y,
yb ; N( , ), whereb bm B2 2

5 g22b(nb)bm2 (B.20)

and

5 G22bAb .b TB G2 22b (B.21)
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