ESTABLISHING SOFTWARE SIZE USING THE PAIRED COMPARISONS METHOD

Eduardo Miranda
eduardo.miranda@Imc.ericsson.se
Ericsson Research Canada O All rights reserved, August 1999

INTRODUCTION

In our everyday life, we rely on measurement
scales and measurement instruments to make all
kind of decisions: We listen to the radio to learn
about the temperature before deciding how to
dress, we look at the Dow Jones index before
making an investment, and we calculate the
distance separating two cities before starting a
trip. But, what do we do when we need to
establish the software size at the beginning of a
project, before a detailed specification or draft
design exists?

Lines of code and function points are good
examples of size metrics, but the counting
process requires effort and information, which in
too many projects, is only available after the
project budget and schedule have already been
decided. Furthermore, product managers and
other stakeholders with non-software
background, simply refuse to accept measures
that are foreign to them.

To solve the problem of measuring in the
absence of a unique and accepted measurement
scale, or in cases were a measurement
instrument does not exist, the social sciences
have adopted the method of paired comparisons
for establishing the relative merit of an entity with
respect to others. Entities in the social sciences
take the form of attitudes, preferences, brand
recognition, etc.

The same approach could be used to size
software. Although the idea is not new, it has
received very little attention in the literature.
Earlier attempts include Target Software’s
Software Sizing Method [1], and more recently a
paper by Focal Point AB [2] where an instance of
the method, called the Analytic Hierarchy
Process, is used to prioritize requirements
relative to their cost.

The idea behind the paired comparisons method,
is to estimate the size of n entities, be these
tasks, requirements, use cases, modules,
features or objects, based on their relative
largeness as judged by one or more experts.

This article explains the advantages of the
approach, the selection of scales, the
computational methods and the necessary tool
support.

OVERALL APPROACH

Assume that a Project requires us to develop
three Use Cases™: A, B, C, whose size in lines of
code we want to estimate to use them as input to
an estimation model like CoCoMo, and that there
is a fourth use case, D, whose size is known
from a previous development.

Lets suppose that after looking at their
functionality and complexity, we judge Use Case
A to be approximately four times larger than B, B
half the size of C and A three times bigger than
D.

From these relationships, captured by Table 1, it
is possible to calculate a vector [ry, r,..., Iy
called a ratio scale, in which each number r, is
proportional to the size of entity i.

! A “use case” is a unit of functionality in the Unified Modeling
Language (UML). It encompasses the system response to a
given event. Use cases are chosen here, without loss of
generality, with the sole purpose of giving concrete meaning
to the example. The method is not dependent on their use.

International Workshop on Software Measurement (IWSM'99) — September 8-10, 1999

Lac Supérieur, Canada

A B C D
A 4 2 3
B .75
C 15
D

Element a; shows the relative size of
entity i with respect to entity j. For
example, a;; = 4 express the fact, that
Use Case A has been judged four times

bigger than B.

Table 1 — Relative size of each Use Case with respect to the others

rr Sze
Then by using the relationship — = 3 8 and a reference point, we could calculate the size of each
r ze
J J
entity.
Table 2 illustrates the procedure given the ratio scale [0.48, 0.12, 0.24, 0.16]2 and D’s size®.
Use Case | Largeness | Reference | Calculated
Size Size
A 0.48 1,500.0
B 0.12 375.0
C 0.24 750.0
D 0.16 500.0 500.0

Table 2 - Basic calculations

PAIRED COMPARISONS

Why use comparisons instead of an absolute
number bestowed by an expert? Why multiple
comparisons instead of a simple ranking?

First the human mind is better at establishing
differences than at estimating absolute values.
Second by comparing each entity to every other
entity, the paired comparison method produces
redundant values, which compensate for errors
and inconsistencies incurred in the judgement
process”.

By requiring the comparison of each entity
against all others, rather than using a single
comparison to some vague notion of size buried

How to calculate this scale will be explained later.
Remember this is known from a previous project.

| have conducted several tests to verify this assumption
which are not included here for reasons of space. The
results are available on request.

133

in the mind of the estimator, the paired
comparisons method forces explicit decisions
about the relative size of two entities. These
decisions could be later discussed and reviewed
by all the stakeholders in the estimation
process.

JUDGEMENT MATRICES

A judgement matrix is a matrix of nxn elements,
much like Table 1, where element a;, express
how bigger or smaller, one entity is with respect

to other in terms of the ratio of the

Size,
entities being compared. In more formal terms

the elements of a judgement matrix A are
defined as follows:

-5
S.

1
a

(bigger) than E;

In practice all the judges need to do, is provide
i n*(n- 1)

€

size

estimates of the ratio for the

j
upper elements of matrix A. All the other values
could be derived from them.

If the judge or judges making the comparisons
were perfectly consistent in their evaluations, all
the elements on the matrix would satisfy the

condition &;a,; =a, for all i, j, k. In such a

case, any column of matrix A would become a
ratio scale for the size of the entities being
estimated and the process would stop there.
However, as judges are seldom so consistent, a
mathematical procedure is needed for estimating
[ry, r2, ..., ry]. The values listed in the column

61 4 2 30
é a
é u
é25 1 5 750
e u

@ & g ()
€5 2 1 180
e u
é u
€333 1.33 666 1Y
61.92()
é u
et
€.48 0
e . u

@ €% (e)
€ 96U
e—u
g4y
8 gql
e
é4a

48 .48

é 480 é.920

é U é

€ 4 e du

812 12 .12 .120 .48

e u e u

¢ a © e

€24 24 24 240 €.96 U

e u e u

€ 4 e u

&16 .16 .16 .16Y &64H

7 AY A * ¥
§48llj 2500 A48 :15003
é a s 16 u
e u ~ p
~ - e *. u
&120 8500712 _
é > .16 -
co 0 g
P - *

2_243 a 500* .24 =750
e !
&164 g 50 §

,How much bigger (smaller) is E; with respect to E

,Every element has the same size as itself

,If E;is a; times bigger (smaller) thanE;, then E; is 1/a; times smaller

labeled “Largeness” in Table 2 above, constitute
one of such scales.

There are many ways to calculate ratio scales. In
this paper we will discuss only two: Saaty’s
Eigenvectors Procedure [3] and Crawford &
Williams’ Geometric Mean Procedure [4]. See
Appendix at the end of the article for the detailed
calculations.

Once the ratio scale and a measure of the
consistency of the judgements are calculated
using either approach, the size of the entities is

rr Sze
derived using the — = 8

r, Sze
1, shows an step by step estimation acording to
Saaty’s procedure.

relationship. Figure

48

Figure 1 - Numerical solution. (a) Judgement matrix, (b) Normalized matrix, (c) Sum of rows, (d)
Normalized sum of rows, (e) Ratio scale, (f) Calculated sizes

134

The Consistency Ratio (CR)S, for the example in

Figure 1, is 0 =0.
0.90

In the preceding example the judge has been
perfectly consistent, in reality this is hardly the
case, so assuming that the judge evaluating Use
Cases A through D would introduce some
inconsistency in the process, we could have
gotten a table like Table 3.

A |B C D

A 3.8 24 2.6
B 5 .75
C 15

D

Table 3 - Slightly inconsistent matrix

In this case, the Consistency Ratio would have

0.0035

been ————=0.0039. Saaty considers a
0.90

consistency ratio of 0.10 or less acceptable.
Higher values will require a careful revision of the
judgements.

It is important to emphasize, that the estimators
do not need to be aware of all these calculations
as they could be easily implemented in a
spreadsheet.

HOW SMALL IS SMALLER, HOW BIG IS BIGGER?

Although not an essential part of the
methodology, having a shared understanding of
how small is smaller and how big is bigger, helps
reach consensus among participants in the sizing
process.

A predefined value scale, keeps us from wasting
time discussing values down to the second
decimal, when our judgement error is one or two
orders of magnitude bigger than that.

The range of sizes exhibited by the entities being
compared limits our ability to judge or accurately
discriminate size. It is meaningless to compare
items whose size is more than one order of
magnitude away. A comparative estimation
based on an attribute, which can be rated in a
scale from O to ¥ is likely to be useless.

® Refer to appendix at the end of the article for the calculation
procedure.

135

Quoting an earlier work from Ernest H. Weber,
Saaty proposes to use a scale from 1 to 9 and
their reciprocals, to pass judgment on the entities
been evaluated.

Definition Explanation Relative Reciprocal
Value
Equal size The two entities are roughly the 1 1
same size.
Slightly bigger | Experience and/or judgement 3 .33
(smaller) recognize one entity as being
somehow bigger (smaller)
Bigger (smaller) Experience and/or judgement 5 2
recognize one entity as being
definitely bigger (smaller)
Much Bigger | The dominance of one entity over 7 14
(smaller) the other is self-evident. Very strong
difference in size (smaller)
Extremely bigger | The difference between the entities 9 A1
(smaller) being compared is of an order of
maghnitude
Intermediate values | When compromise is needed 2,4,6,8| .5,.25, .16,
between adjacent A2
scales

Table 4 - Saaty's verbal scale

An experiment, ran among some colleagues6,
suggests that the correspondence between size
and verbal description in the software domain, is
closer to the one provided by Table 5, rather
than Saaty’s.

The use of the verbal scale simplifies and
speeds-up the estimation process without, as
will be shown later, jeopardizing the accuracy of
the results.

Definition Explanation Relative Reciprocal
Value

Equal size Ei/E£1.25 il 1
(0~25%)

Slightly bigger | 1.25< E;/ E;£ 1.75 1.15 .87

(smaller) (25 ~ 75%)

Bigger (smaller) 1.75<E;/ E£ 2.275 15 .66
(75 ~ 275%)

Much Bigger | 2.275 < E;/ E;£ 5.75 3 .33

(smaller) (275 ~ 575%)

Extremely bigger | 5.75 < E;/ E£ 10 6 .16

(smaller) (575 ~ 1000%)

Table 5 - Software verbal scale

Thirty people from different industries, countries and
academia provided their input for this scale. This table
might need to be reformulated if the entities being
compared are far apart from each other.

136

1. Actual’ E;values in KSLOC: [50, 30,25, 24,
24,10, 9, 8, 5, 5];

100

LOC

@ actual O 15% error

L. — — — — — — — —

L. — — — — — — — — 00—

r®-———————— — — — — 00—

O 30% error

module no

softw are scale Saaty scale

Figure 2 - Results of experiment No. 1

ACCURACY AND PRECISION

In the theory of measurements, accuracy is
defined as how close the measurement is with
respect to the true value or known input, and
precision as the ability to reproduce a set of
measurements with a given accuracy. The closer
the individual measurements are to one another,
the higher the precision.

As with any other measurement instrument, it is
important to understand the accuracy and
precision that could be expected when using the
paired comparison method.

In order to measure the accuracy and precision
of the method, two experiments were run with the
results illustrated by Figures 2 and 3. In these
charts, the encircled area corresponds to the
standard deviation of the observations.

The first experiment was based on simulated
inputs under the conditions described bellow.

137

2. Estimation with judgements (Ei / E)+ €,

where € is a random variable with normal
distribution, m= 0 and s = .30 (E; / E). In
other words, assuming that 68% of the time,
the judgements will be within 30% of their
true value;

3. Same as 2, but with s = .15;

4. Estimation according to the verbal scale for
the software domain; and

5. Estimation according to Saaty’s verbal scale.

The second experiment was based in a survey of
30 professionals and graduate students, who
were asked to assess the absolute or relative
size of the data structures® mentioned in the
chart, using one of three methods:

” Remember that in a real situation, we do not know these
values with the exception of those, one or more, we plan to
use as reference.

8 Jurors were provided with a brief specification, as

assumptions about the language to use, amount of error
checking and comments, such as to provide a common
framework for the estimation. The actuals are an average
of actual programs extracted from libraries written in C,

500
450
400
350
300
250

LOC

200
150
100

50

linked
list (a)

linked
list (b)

hash
table

balanced
tree

reference
(string)
modules

stack queue binary

tree

@ Actual

Paired comparisons (numeric scale)

O Finger in the wind
O Paired comparisons (verbal scale)

Figure 3 - Results for experiment No. 2

1. Finger in the wind, specify the absolute
size of the data structures based on our
best knowledge;

2. Paired comparisons numeric scale, in
this case the relative largeness of one
data structure with respect to the others
was rated using a number; and

3. Paired comparisons verbal scale, in
this case the relative largeness of one
data structure with respect to the others
was rated using the verbal scale for the
software domain.

As could be easily seen, the paired comparisons
method produces accurate and precise results
for all the scenarios evaluated.

For the second experiment, it is also possible to
conclude with a 95% confidence®, that there are
significant differences between the “finger in the
wind” type of estimation and the results obtained
using paired comparisons. Furthermore, using
the same kind of test, it is possible to conclude
that there are not significant differences between

Ada and C++ and adjusted for the functionality defined in
the questionnaire.

In order to avoid making assumptions about the
underlying distribution of the answers to the
questionnaire, a non-parametric t-Test for samples with
unequal variance was used.

138

the results obtained based on the use of either,
the numeric or the verbal scales.

Two other interesting observations arising from
the experiment are:

The high variability, of the “finger in the wind
approach”, which is almost two to three
times bigger than the corresponding to the
paired comparisons method; and

The high correlation, r =.979, existing
between the relative sizes of the modules
independent of the estimation method
employed. This seems to corroborate the
premise that the human mind is better at
establishing differences than at guessing
absolute values.

IMPLEMENTATION

The paired comparisons method for software
sizing is specially well suited for the early stages
of a development project or during feasibility
studies, when the knowledge available to the
members of the project team, is mostly
qualitative.

The mathematics of the method, are fool proof,
the judgments on which the calculations are
based, are not. In order to produce a valid
assessment of the relative largeness of an entity,

it is necessary understand the things being
evaluated. Those making the comparisons shall
understand both, the functional and the
technological dimensions of the system being
sized.

Successful implementation of the paired
comparisons method, requires a tool capable of
automating the calculations and the tracking of
judgements made.

MULTIPLE JUDGES

When the number of entities to evaluate is large,
the work can be divided among multiple judges;
this approach could also be used to minimize the
bias introduced by a single judge. The maximum
number of judges used to evaluate n entities,
should not be bigger than é&/3{ otherwise the
advantage of the method will be lost as each
judge will not get the opportunity to make
multiple comparisons for a given entity. A simple
way to allocate comparisons to judges is by
assigning every other comparison to a different
judge in a sequential fashion.

CHOOSING A REFERENCE VALUE

Choosing a reference value in either extreme of
the scale could result on significant under or over
estimation of the entities’ size depending on the
quality of the judgements. To minimize this risk,
the best is to choose as reference, an artifact

that will divide the population being estimated in
halves, or to use two references instead of one.

References could be obtained from previous
development efforts in the same domain.

TOOoL SUPPORT - MINIMUMTIME

MinimumTime, is an internal Ericsson tool, which
implements different sizing methods and
estimation techniques, among them the paired
comparisons method.

Figure 4, shows the input interface which has
been designed to reduce the strain and the
feeling of being lost, caused by the large number
of comparisons required by the method. The tool
does this, by constantly displaying the decisions
already made in a matrix format. The inputs
could be show in symbolic, as well as in numeric
formats.

In keeping with the idea of providing range,
rather than point estimates, MinimumTime
calculates a confidence interval based on the
scale dispersion.

The analysis capability, illustrated by Figure 5,
provides the means for detecting inconsistencies,
so that it is possible trough an iterative process,
to refine the initial estimate.

Reference Adifact s . o e Ratio Estimated + i
- _
YWalue Marne T § T F § % Scale “alue
-
Reqa =|=|=|=>[= 0.12 96.5 1.2
Reqhb > 0.13 101.6 1.2
»
=
> d . d
Reqqg = = | = 0.09 736 0.9
Reqh | = 0.08 65.9 0.8
Reqi = 0.07 59.5 0.7
Reqj 0.08 60.5 0.7
Tatal 793.1 9.5
Calculatel Clear I Req ¢ i = < = > > than Req i Inconsistency Index 3%
o o= O O O
Analyze l _‘_..I% talerance

Figure 4 - Graphical Interface

139

Reference Artifact Ratio Estimated

Walue Marne E 'E. E E. E E Scale Walue
¥ & & 2 o o I
Req a = = | » = 0.12 96.5
Req b =| == > 0.13 101.6
Req c = | « = 0.11 86.0
90 |Req d > > 0.11 90.0
Re >

0.11 85.0
19 69
Rea g > | » 0.09 736

Req h = > 0.08 659 0.g
Req i = 0.08 63.0 0.7
foa, inconsisency Disgnosie]

REQ A iz equalto REQ C. REQ Cis 0.8 times smaller than REQ | S0 REQ A should be 0.8 imes H
smaller than REQ 1. but its value is 1.3,

In a perfectly congistent relationship, AfiL) * AfLk] / &lLk] = 1. The cument value iz 0.56.
Review the relationships between the artifacts named above

MOTE:
Alijliz red. Allk] blue and Afi.k] purple.

Calculatei Clear i Req f is

Analyze i -“:AAA—i% tolerance

Figure 5 - Consistency analyzer

LOOKING AHEAD

The results observed so far show promise, but further experimentation is necessary to establish the
validity of the verbal scale for the software domain and to verify that the method scales up when used with
larger or more complex entities.

REFERENCES
1. G. Bozoki, An expert judgement based software sizing model, Lockheed Missiles & Space Company

and Target Software

2. J. Karlsson & K. Ryan, A Cost-Value Approach for Prioritizing Requirements, IEEE Software,
September/October 1997

3. T. Saaty, Multicreteria Decision Making: The Analytic Hierarchy Process, RWS Publications, 1996

4. G. Crawford and C. Williams, The Analysis of subjective judgement matrices, Rand Corporation, 1985

140

APPENDIX

SAATY EIGENVECTORS

T. Saaty started investigating the use of
judgement matrices on the early '70. He
developed multicriteria decision-making
procedure called Analytic Hierarchy Process
(AHP). From the whole body of AHP knowledge,

(&) Normalize the columns of the judgement
matrix;

Calculate the sum of the rows;

(b)
()

Average the sum of the rows; the vector of
the averaged sum of rows, is a ratio scale
corresponding to the size of the entities [E;,

Ez, veey En],
(d)

Given a reference size sy, the expression s; =
sk * (ri / r) is used to calculate the sizes of

we'll take only the part corresponding to the entities [Ey, By, ..., Ek, ..., Eql.
derivation of priority scales from subjective
judgements. To produce an estimate based on
Saaty’s proposal, follow the procedure bellow:
é d d U é g
ey =a,/q &, d,=an/a ana éb,=a d;; ¢
é i=1 : g i=1 U é j=1 u
é ... l'J e 61 l:J
¢ 4 &, =a dy; 0
e u e j=1 u
(a) G R l,J (b) (:a ___________________ u
¢ | g ¢ g
€ SR NS SO u € u
& = : - y ép = a
gjnl_anllaail dnn_ann/aaml'J Abn_adnj -
8 i=1 : i=1 H 8 j=1 H
é . nu
, . &0
gr _b, u e 'k u
e1" u X)
= y e r,u
€ "G &S 24
é _b,0 e kg
&= u &
© u (d) € a
e a e .
& G & q
? l,J e Sk l:J
€ bp,Y é . a
&, =—r0 e u
e nu ésk* Mg
g H

Figure Al - Saaty's procedure. (a) Normalized
judgement matrix, (b) Sum of rows, (c) Ratio
scale, (d) Size calculations

Since judgements are rarely as consistent as in
the proposed example, it is important to quantify
their inconsistency in order to assess the quality
of the results. To the effect, Saaty proposes an
index called the Consistency Ratio (CR) as a

141

measure of the degree of agreement among
judgements. The CR is calculated by dividing the
Consistency Index (Cl) by the Random Index
(RI). The RI is a pre-calculated vector, which
reflects the random variability of a judgement
matrix whose comparisons are ranked from 1 to
9, with the iy, element of the vector corresponding
to a matrix of order i.

Cl

(a) CR=ﬁ
1 -n
(b) Cl—n_1
()
énki/ri
@ == ®)
n
re A2 - (a) Consistency Ratio, (b)

Consistency Index, (c) Random Index, (d) &
(e) Auxiliary calculations

CRAWFORD & WILLIAMS' GEOMETRIC MEAN
PROCEDURE

Back in 1985, Gordon Crawford and Cindy
Williams from Rand Corporation published a
report for the United States Air Force on the use
of judgement matrices for long term planning.
They proposed to use the normalized geometric

Ri =[O 0O 058 090 112 124 132 141 145 149 151 148 156 157 1.59]

&0 éay 8y, U én Urjgy
e u e ue u
e 4 06 G
&,0 &, uer,u
é“u_é ué-a
é u-é aé a
é u é aé a
é u é aé a
e G 06 G
8(nH %nl annH gnH

mean of the row's elements as an estimator of

the ratio scale.

(72)

(a) Calculate the geometric mean of the rows’
element

(b) Normalize the geometric means
(c) Calculate the size of the entities

The inconsistency index (ll), is defined by the
distance existing between a perfectly consistent
and the given judgement matrix. The Crawford &
Williams procedure is illustrated by Figure A3.

Y n.
(@ ni=p O g; (b) r=— :
=1 én
|
1=1
é . rnu
ésk*r a
e '«
é ru
e k2 7
— 2
¢ § & na, - nc,)
g d aa Inaij - Incij
= i i=1 j>i n;
(c) é u d = (e) Ci =—
e u n-1)(n- 2) Yo,
é u
€s u
€. ... u
¢
gsk*_l,J
€ nH

Figure A3 - Crawford and Williams’ procedure. (a) Row’s geometric mean, (b) Ratio scale, (c) Size
vector, (d) Inconsistency Index, (e) Auxiliary calculation

142

