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Optimal Orientations of Cells in
Slicing Floorplan Designs*

LARRY STOCKMEYER

Computer Science Department, IBM Research Laboratory,
San Jose, California 95193

A methodology of VLSI layout described by several authors first determines the
relative positions of indivisible pieces, called cells, on the chip. Various
optimizations are then performed on this initial layout to minimize some cost
measure such as chip area or perimeter. If each cell is a rectangle with given
dimensions, one optimization problem is to choose orientations of all the cells to
minimize the cost measure. A polynomial time algorithm is given for this
optimization problem for layouts of a special type called slicings. However, orien-
tation optimization for more general layouts is shown to be NP-complete (in the
strong sense).

1. INTRODUCTION

The increasing complexity of integrated circuits has motivated the
development of methodologies for VLSI design that are amenable to
automation, if not completely then at least in part. A class of related
methodologies, described by Lauther (1980), Otten (1982a, 1982b), Zibert
(1974), and Zibert and Saal (1974), among others, first determines the
relative positions of basic pieces of the circuit, called cells, on the chip. Cells
represent parts of the design which are regarded as indivisible, for example,
flip-flops or RAMs. The initial placement could be done, for example, by
repeated application of a min-cut partitioning algorithm. Various
optimizations are then performed on this initial layout to minimize some cost
measure such as chip area or perimeter. If each cell is a rectangle with given
dimensions, one optimization problem mentioned in Lauther (1980), Otten
(1982b), and Zibert and Saal (1974) is to choose orientations of all the cells
to minimize the cost measure. In this paper we show that this optimization
problem can be solved in polynomial time for layouts of a special type called
slicings (cf. Otten, 1982a, 1982b). For general layouts, orientation
optimization is shown to be NP-complete (in the strong sense).

* Part of this work was done while the author was with the Mathematical Sciences
Department, IBM Thomas J. Watson Research Center, Yorktown Heights, New York.
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2. DEFINITIONS AND RELATED WORK

The given layout consists of an enclosing rectangle subdivided by
horizontal and vertical line segments into nonoverlapping rectangles. Two
different line segments can meet but cannot cross. See Fig. 1. A rectangle
that is not subdivided by a line segment we call a basic rectangle. Such a
rectangle subdivision is called a floorplan. In optimizing the layout we are
allowed some freedom in moving line segments and in choosing the
dimensions of the basic rectangles. The features of a floorplan F that cannot
change are captured in a pair of planar acyclic directed graphs A4, and L,
each with one source and one sink, and possibly having multiple edges. The
graph A, the “above-relation,” has a vertex for every horizontal segment,
including the top and bottom of the enclosing rectangle. For every basic
rectangle R, there is an edge e, directed from segment o to segment o', where
(part of) o is the top of R and (part of) ¢’ is the bottom of R. Thus, there is
a one-to-one correspondence between basic rectangles and edges of 4. The
graph Ly, the “left-relation,” is defined similarly for vertical segments. 4,
and L, are dual planar graphs. Two floorplans F and G are equivalent 1ff
A F=AG and L= L. See Fig. 1. Viewing each line segment as a channel,
the graphs A, and L fix, for each side of each channel, the order of the
basic rectangles which lie on that side.

FiG. 1. Two equivalent floorplans and their common above-relation A, (edges drawn
solid) and left-relation L, (edges drawn dashed). Each basic rectangle in a floorplan
corresponds to one edge of Ay and one edge of L. When A, and L, are embedded as dual
planar graphs, these two edges cross.
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For the purposes of this paper, a floorplan also associates with each basic
rectangle R two positive integers a, and bg; these are intuitively the dimen-
sions of a rectangular cell that must fit in R. Each cell has two possible
orientations depending on whether the side of length a, or b, is horizontal.
Given a floorplan F and an orientation p of all the cells, there are integers
h.(p) and wg(p) giving the minimum height and width, respectively, of a
floorplan G equivalent to F for which each cell fits in its associated basic
rectangle. (By slight abuse of language we will sometimes identify a cell with
its associated basic rectangle.) #.(p) and w(p) can be defined more precisely
as follows. Given the orientation p, let A.(p) (resp. L(p)) be obtained from
A, (resp. L) by giving each edge e a “length” /(e) equal to the height (resp.
width) of the cell corresponding to e. Define an (F, p)-placement to be a
labeling ! of the vertices of A.(p) and L.(p) by nonnegative integers such
that (i) the sources are labelled zero, and (ii) if e is an edge from vertex o to
vertex ¢’ then

I(a’) > l(o) + l(e).

Intuitively, if o is a horizontal segment, /(o) is the distance from the top of
the enclosing rectangle to ¢, and the inequality says that the basic rectangle
with top ¢ and bottom ¢’ is high enough to contain a cell of height I/(e), and
similarly for vertical segments. Now A.(p) (resp. wg(p)) is the minimum label
of the sink of Ap(p) (resp. L(p)) over all (F, p)-placements. Equivalently, it
is easy to see that hp(p) (wg(p)) is the length of a longest path from the
source to the sink in 4.(p) (Lg(p)). We are also given some cost function
w(h, w), for example, perimeter (w(h, w)= 2h + 2w) or area (yw(h, w) = hw).
The objective is to minimize w(h.(p), we{p)) over all orientations p.

A floorplan is a slicing if either it is a basic rectangle or there is a line
segment (a slice) that divides the enclosing rectangle into two pieces such
that each piece is a slicing; see Fig. 2. Equivalently, a floorplan is a slicing
iff the graphs A, and L, are both series-parallel graphs (Otten, 1982).
Another useful way to describe a slicing floorplan is to specify the natural
hierarchical structure in an oriented rooted binary tree called a slicing tree.
Each nonleaf node of the tree is labeled either % or v, specifying whether this
is a horizontal or vertical slice. Each leaf corresponds to a basic rectangle.
See Fig. 2. Requiring slicing trees to be binary simplifies the description of
the algorithm in the next section and allows a simple expression for its
running time. This requirement causes no loss of generality since a node with
d > 2 children can be replaced by a binary subtree with d leaves. Thus, there
can be several slicing trees that describe a given slicing floorplan. For the
algorithm of the next section, a tree of smallest depth should be chosen.
Replacing the internal nodes of a tree by binary trees while minimizing depth
can be done in time O(n log n) using an algorithm of Golumbic (1976).
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FiG. 2. A slicing floorplan and a slicing tree which describes it.

Otten (1982a, 1982b) has pointed out that slicings have several
advantages over nonslicing floorplans, for example, slicings are natural for
top—down hierarchical design. Slicings are also used in the design
methodology described by Lauther (1980). Although the initial slicing is
eventually “squeezed” into a nonslicing floorplan, Lauther suggests doing
rotation optimization when the floorplan is still a slicing. He suggests using a
greedy heuristic, but we show in the-next section that an optimal solution
can be found in a reasonable amount of time. Specifically, the time bound is
O(nd), where n is the number of cells and d is the depth of the slicing tree.
Thus, the time is O(n?) in the worst case, or O(nlogn) for “balanced”
slicings with d = O(log n). For general floorplans, Zibert and Saal (1974)
use integer programming methods to do rotation optimization (as well as
several other optimizations simultaneously). Since rotation optimization is
NP-complete for general floorplans (Section 4) such time consuming
methods are probably necessary to find the true optimum in the general case.

3. A PoLYNOMIAL TIME ALGORITHM FOR SLICINGS

THEOREM. 1. Let w(h, w) be nondecreasing in both arguments (i.e., if
h<h' and ww' then y(h, w)< w(h',w')) and computable in constant
time. For a slicing floorplan F described by a binary slicing tree T, the
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problem of minimizing w(hr(p), w(p)) over all orientations p can be solved
in time O(nd), where n is the number of leaves of T (equivalently, the number
aof cells of F) and d is the depth of T.

Proof. If u is a node of T, let F(u) denote the floorplan described by the
subtree rooted at u and let L(u) be the set of leaves in that subtree. For each
node u of T the algorithm constructs a list of pairs

(1) (s wi)s (Bys W3)sos (s W)}
with
(1.1) m<|L@)+1,
(1.2) h;>h,, and w; < w,, for i with 1 <i<m,

(1.3) for each i with 1< i< m there is an orientation p of the
cells in L(u) such that

(Bys w)) = (Bry(0)s Wew (P,

(1.4) for each orientation p of the cells in L(u) there is a pair
(h;, w;) in the list with

hy < heay(P) and W; < Wew(0)-

The meaning of (1.4) is that we do not keep (h(p), w(p)) in the list if there is
another orientation p’ that is strictly better than p in the A or w dimension
(or both) and is not worse than p in either dimension. Since the cost function
v is nondecreasing, we can minimize y over all orientations by minimizing
w(h,, w;) over all pairs (h;, w,) in the list constructed for the root of T. In
order to construct an orientation that minimizes y, the algorithm also keeps
two pointers with each pair in each list.

The algorithm begins by constructing a list (1) for each leaf of T. If the
leaf cell has dimensions a and b with a > b, the list is {(a, b), (b, @)} and the
pointers are null. If a = b, there is just one pair (g, b) in the list. (If for some
reason the cell has a fixed orientation, then the list has one pair defined by
the fixed orientation.) Note that in this case there is one leaf in the subtree
and the length of the list is <2 as required by (1.1). The algorithm now
works its way up the tree. In general, let u be a nonleaf node of T with
children v and v’, say that u specifies a vertical slice, and let

{(Bys Wi (Bis Wi)}s
{(h1s WDseens (Rpns Wi}
be the lists constructed for v and v’, respectively, where

k<L) + 1 and m|L@') + 1.
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Note that a pair (h;, w;) and a pair (h/, w}) can be put together to give a pair
join((h;, w;), (hj, w))) = (max(h;, h}), w; + w})

in the list for u (see Fig. 3). A key fact is that we do not have to consider all
km such new pairs since many of them are clearly suboptimal. For example,
in Fig. 3 with k; > hj, there is no reason to join (k;, w;) with (h., w!) for any
z > j since, recalling (1.2),
max(h;, h;) = max(h,, b)) = h;,
Wi+ w; > w; + wi.

The following procedure for combining the two lists to obtain a list for u is
similar to merging two sorted lists.

(1) Initialize i« 1, j« 1.

(2) Ifi> k orj> m then halt.

(3) Add join((h;, w;), (h}, w})) to the list for u with pointers to (h,, w,)
and (A}, w;).

(4) X h;>hjtheni—i+1 and go to 2.
(5) Ifh;<hjthenj«j+1 and go to 2.
(6) Ifh,=hj’theni4—i+1,j<—j+l?andgoto2.

Note that the running time of this procedure is O(k + m). The length of the
list produced for u is at most

k+m—1<|L@)|+1+|L@")+1—1=|L()+1

W; w;

Fi1G. 3. Illustrating the merging step in the algorithm of Theorem 1.
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so (1.1) is satisfied for the new list. The reader can easily check that (1.2)-
(1.4) are also satisfied, assuming by induction that they are satisfied for the
two lists for v and v’. It is obvious how to modify this procedure if u
specifies a horizontal slice. After the list (1) for the root of T is constructed
and y is minimized over all pairs in the list, it should be clear how to use the
pointers to reconstruct an orientation that achieves the minimum y.

The running time and storage requirements are both O(nd), where n is the
number of leaves (i.e., cells) of T and d is the depth of T. To see this, simply
note that for each fixed k with 0 < k < d, the sum of the lengths of the lists
constructed for all nodes at depth k is at most 2n, and the time to construct
all of these lists in O(n). 1

4. NP-COMPLETENESS FOR GENERAL FLOORPLANS

We assume familiarity with the definition of NP-completeness in the
strong sense (Garey and Johnson, 1979). Briefly, this means that the
problem is NP-complete when restricted to instances where the magnitudes
of all numbers appearing in the instance are bounded above by some fixed
polynomial in the size of the instance. Orientation optimization is defined as
a recognition problem in the usual way.

y-OPTIMAL ORIENTATION
Instance. A floorplan F and an integer k.

Question. Is there an orientation p of the cells of F such that w(A:(p),
wr(p)) < k?

THEOREM 2. Let w(h, w) be strictly increasing in both arguments (i.e.,
h < h' implies y(h, w) < w(h', w) and w < w' implies y(h, w) < w(h, w')) and
computable in polynomial time. Then y-OPTIMAL ORIENTATION is NP-
complete in the strong sense.

Proof. The problem clearly belongs to NP. We show that the following
3-PARTITION problem is reducible to y-OPTIMAL ORIENTATION. 3-
PARTITION is known to be NP-complete in the strong sense (Garey and
Johnson, 1979).

3-PARTITION
Instance. A set {a,,..,a,} of n positive integers and positive integers B
and m such that @, + :-- + a,=mB.

Question. Can {1, 2,...,n} be partitioned into m pairwise disjoint sets
I,,..., I, such that, for 1 <i<m, } e, a,=B?
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(The definition of 3-PARTITION in Garey and Johnson (1979) has the

restrictions n = 3m and B/4 < a; < B/2 for all j, but these are not essential to
our reduction.)

Consider the floorplan shown in Fig. 4. Define integers D;, E; (1<j< n),
C, D, H, W as follows:

D,=m-1,

D;=D;, ,+(m—1)a;,, +1) for 1<j<n,

D=D,+D,+ - +D,,

W=D+B,

C=W+1+mD,/im—1)+maxa,,

J

E,=C—mD;)/(m—1)—a,

H=(m-1)C.
For each i with 1 <7< m and each j with 1 j< n, cell X;; has dimensions
D, by D;+ a; and cell Y, has dimensions E; by 1. Cell U has dimensions H

by H, and cell ¥ has dimensions H + W by H + W. All the small unlabeled
cells in Fig. 4 have dimensions 1 by 1.

v
X4
Xq1 | %12 13 0 L
Yir_| Y12 | Y13 Yin
Xp1 | Xo2 | X3 Xon
Ny _
Yor | Yoo |Ya3 Y2n
| T
! F
| |
1
Xm1 | X —_I
m2 Xm3 ces an

FiG. 4. The floorplan used in the proof of Theorem 2.
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Let k=yw(2H + W, H + W). Let F be the floorplan of Fig. 4 with cells U
and V deleted. Since y is strictly increasing, it is easy to see that there is an
orientation of all the cells in Fig. 4 that gives cost k iff there is an orientation
p of the cells of F with h.(p) < H and w,(p) < W. We show that there is such
a p iff the partition problem has a solution.

Only if Let p be an orientation of F with h.(p) < H and wg(p)< W.
Define a solution I,,...,I,, to the partition problem as follows. For each i
with 1 i m and j with 1 j<n,

J € I;iff p orients cell X;; so that it has width D; + a; and height D;.

Note that since E; > W, p must orient Y;; so that it has height E; and width
1. For each i, by considering the path from the left side of F to the right side
that passes through X;,, X;;,..., X;,, one sees that

¥ g,<B.
Jel;

For each j, by considering the path from the top to the bottom that passes
through X, Y,;, X3, Y35 Yooy, 55 Xy it follows that j appears in at least
one I;; otherwise the length of this path would be

Since the sum of the a;’s is mB, it follows that each j appears in exactly one
I;, and that

Z“j

jern;

B for all i.

if LetI,,.. I, be a solution to the partition problem. For each i and j,
let p orient X; to have width D; + a; iff j€ I,. Let p orient-all Y;; to have
height E;. We show that there is an (F,p)-placement that witnesses
h(p) = H and w,(p) = W. Consider first h.(p). Define a path in 4,(p) to be
critical if there exists a j such that each edge in the path is associated with
either X;; or Y,; for some i. For every horizontal segment ¢ of F other than
the top and bottom of F, define /(c) to be the length of the unique critical
path from the source (top) to o in A.(p). There are n critical paths from the
source (top) to the sink (bottom), but the jth such path has length

independent of j, so the sink is labeled H. The inequality
{(head(e)) > I(tail(e)) + I(e)
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is clearly satisfied for each edge e associated with an X;; or Y;;. We must
check that it is satisfied for the small cells of size 1 by 1. That is, letting ¢,
(b;;) denote the label of the top (bottom) of Y, it must be checked that

ty2tjat1

and
bij2by+1 forall 1<i<m and 1j<n.

By straightforward calculations that are left to the reader, these inequalities
follow from the definition of the D; and E; and the obvious inequalities

ty>(—DE;+(—1)D;+a)+Dy,
L SE—DE;  +iD;y,+a;,,)
b ji1ZiEj +(— 1D +a;,) + Dy,
b,;<iE;+i(D; + a)).

The argument that w(p) = W is easier. The placement of the left and right
sides of the X, are determined exactly by the widths of these cells (which are
determined by the solution to the partition problem as described above).
Since the Y;; all have width 1, there is considerable freedom in placing the
left and right sides of these cells. Details of the placement are left to the
reader. [

5. CONCLUSION

By isolating the orientation problem it has been possible to define the
problem precisely and show that it is tractable for slicings although it is NP-
complete in general. However, a more realistic model must consider the
orientation problem in the context of the full design process, including initial
placement, orientation, and wire routing. For example, one would expect the
area for wires to depend on the particular orientation. A problem for future
work is to model and investigate the complexity of orientation and wire
routing together.
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