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Performance of the Bayesian Online Algorithm
for the Perceptron

Evaldo Aratijo de Oliveira and Roberto Castro Alamino

Abstract—In this letter, we derive continuum equations for the general-
ization error of the Bayesian online algorithm (BOnA) for the one-layer
perceptron with a spherical covariance matrix using the Rosenblatt poten-
tial and show, by numerical calculations, that the asymptotic performance
of the algorithm is the same as the one for the optimal algorithm found
by means of variational methods with the added advantage that the BOnA
does not use any inaccessible information during learning.

Index Terms—Bayesian algorithms, online gradient methods, pattern
classification.

[. INTRODUCTION

Online algorithms have great importance in applications mainly be-
cause, if suitably designed, they can be able to adapt to situations where
the rule is changing although, in general, they perform worse than of-
fline algorithms in static scenarios.

The optimal performance of any perceptron learning rule is achieved
by the so-called Bayes learning rule which gives rise to a lower bound
for the generalization error that cannot be surpassed by any other
learning algorithm [4]. It is also generally accepted that online
Bayesian methods should perform better than non-Bayesian ones
because the former use the available information in the best possible
way.

Based on this and in the positive results obtained by the application
of the Bayesian approach to a broad range of different situations, a lot
of work! on Bayesian methods for machine learning has been made.
However, exact Bayesian methods turned out to be computationally
time-consuming and approximations had to be developed. One impor-
tant particular approximation, from now on called by us the Bayesian
online algorithm (BOnA), was proposed and analyzed by Opper [8]
for online learning on perceptrons and relies on a projection of the
posterior probabilities of the parameters to be estimated on a space of
tractable distributions minimizing the Kullback—Leibler divergence be-
tween both.

A different approach to learning is provided by variational methods.
Variational methods rely on minimizing the generalization error in each
step of learning to obtain the best possible performance in each case.
Applying a variational method to a one-layer perceptron learning with
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IThis can be seen by the crescent amount of papers on Bayesian methods
presented at the Neural Information Processing Systems (NIPS) Confer-
ence—http://www.nips.cc/.

a Hebbian rule, Kinouchi and Caticha [5] were able to show by means
of numerical calculations that the asymptotic behavior of its generaliza-
tion error when o — oo, where « is a scaling parameter proportional
to the number of examples, is approximately 0.88/«, which turns out
to be two times that of the offline Bayes learning rule. However, the de-
rived algorithm makes use of an unaccessible information: the teacher
field (to be defined later). This problem is circumvented in the cited
paper by using the mean of this variable as an estimator of its true value.

In this letter, we derive continuum equations for the generalization
error of the one-layer perceptron learning by the BOnA with a simpli-
fied covariance matrix, which we assume to be spherical, and compare
the resulting generalization curve with the optimal algorithm obtained
using the variational method in [5]. We show that the performance of
the Bayesian algorithm coincides with the performance of the optimal
algorithm with the additional advantage that there is no need to use any
unaccessible parameter, just the information available in the given data
set.

The rest of this letter is organized as follows. In Section II, we review
the variational approach to online learning given in [5]. In Section III,
the Bayesian method is presented and the Bayesian online algorithm is
described. In Section IV, we write the Bayesian simplified equations
and finally, in Section V, we discuss the results.

II. VARIATIONAL ALGORITHM

Let us consider the supervised learning situation where a one-layer
perceptron with N input units and parameterized by its synaptic
weights w € R is trained with a data set of examples given by pairs
Y. = (€, 0,.), Wwhere o, € {—1,1} is the answer given by a teacher
perceptron with synaptic weights w* € R to the input vector ¢ «- The
teacher is normalized as ||w™|| = 1.

A variational algorithm for a one-layer perceptron learning by a Heb-
bian rule is given in [5]. Using the update equation given by

W1 = Wy + %Wvu”ufu (D
the modulation function that gives the best gain in generalization ability
per example is found by taking the functional derivative with respect
to W, of the variation rate of p, the overlap of synaptic vectors of the
teacher and the student, with the number of examples and equating it
to zero. The solution is given by

F* a.b
W =l (727 = o @

where b, = w* - &, and h, = w,, - €. /||w|| are known, respectively,
as the teacher and student fields.

However, the above modulation function depends on a variable
which is not accessible in most practical applications: the teacher field
b,.. In the cited paper, the authors use an estimative for W given by its
expected value over |b|

W’N _ fd|b|P(b,h)IfV,f. 3)
[ d|b|P(b,R)

The asymptotic behavior of the resulting algorithm for o« — oo,
« = P/N, where P is the number of examples, is shown to be ap-
proximately 0.88/a by numerical calculations (assuming a spherical
distribution for £). This implies that the performance for a large number
of examples of this algorithm is approximately two times worse than

that of the offline Bayesian algorithm [4].

1045-9227/$25.00 © 2007 IEEE



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 3, MAY 2007

III. BONA

The BOnA was proposed by Opper and studied in some detail in
[8]. Consider the general case where a set of parameters w € R
needs to be estimated for some model based on a set Dp of P ex-
amples y,., # = 1,..., P. Before the beginning of the training pro-
cedure, an a priori parametric distribution P (w|%g, Co) of the param-
eters to be estimated is chosen as a Gaussian with mean and covari-
ance matrix, respectively, given by @y and Co. When a new example
is presented, the distribution is updated using the Bayes theorem. This
update, however, can take the posterior distribution out from the mani-
fold of Gaussian distributions. The posterior is then projected back into
a Gaussian by minimizing the Kullback—Leibler divergence between
both distributions (the posterior and the projected). The process is re-
peated iteratively and, at each iteration, the corresponding estimative
for the parameters w is given by the mean of the Gaussian with its co-
variance matrix giving a measure of the uncertainty of the estimative.
The update equations for both parameters are given, in matrix form, by

BRp
92

ad .
Cut1 =Cu+Cy <— 0 (P(ypt1]u + “"u»u,) Cu )]

1
052

Wppr =@ + Cp In (P(yu41]u + @p)),, “)

where (...), means the average over the zero-mean unit-covariance
Gaussian distributed variable « € R® and we used the conventions

(&:J)L N (8?;) <ai’2)zj - (6"31"’;’1') ©

with f an arbitrary function.

IV. BONA EQUATIONS FOR THE PERCEPTRON

Let us apply the BOnA to a perceptron learning situation. For sim-
plicity, we choose the parametric family of distributions to be the spher-
ical Gaussian

Gu(w) = exp{—||w _‘L'u”z/ZCu}/\/{—)TrCu )

with &, € RY and ¢,, € Ry. This choice results in an algorithm where
the increments to the synaptic weights are made in the direction of the
learned example as in a Hebbian rule, defining the likelihood of the
parameters using a Rosenblatt potential for the error potential [4], [7]
such that

e BV (wy)
Plylw) = T dae—vm ®
with
o weE L weE
Viw,y) = U\/l\_r()( U'\/_/\—") )

where O(x) is the Heaviside step function and 3 a free parameter. In
the limit 3 — oo, the BOnA applied to this particular case is called the
scalar BOnA. The equations we will obtain are?

. . [2C,
Wp41 =Wy + 0 p41 E;l-‘,—] ﬁf{m (10)
T 2 2
Gt =G — (vq/ﬁrC + ;ﬂ) an
TQp 7

2As we are interested in the asymptotic regime for @ with N — oo, we
consider £ - £ /N = 1(&; ~ N(0,1)) for obtaining (10) and (11).
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with 7, = 0,19, - Eprr /VN and Fp, = F(—7,/+/2C, ), where we
define the function F as

2
—

e

erfc(z)’

Fla) = (12)

The learning process described by the above equations is a stochastic
process, because, in each step, it receives a vector £, selected randomly
from a distribution P(&). Therefore, the usual procedure to solve the
dynamics would be to calculate the evolution of the probability distri-
butions of the variables we are interested in. However, as we are in-
terested in the behavior in the thermodynamic limit N — oo, we can
write down the differential equations at once and after that calculate
the asymptotic behavior of the algorithm.

For the perceptron, we will be interested in the norm of the synaptic
vector &, and its correlation with the teacher vector w*, since we are
using the generalization error e4(c) = (1/7)acosp(«) as a measure
of the performance.

Using rescaled norms @, = &, - &, /N and M = w* - w* /N, we
have

) wr
Wy W

=N O

As the time parameter, we chose & = p1/N such that Aa = 1/N,
what is extremely convenient for large /N and, therefore, for the con-

13)

tinuum limit. Thus, starting with (10) and defining 7, = 7,,/1/Q ., we
find

- AN ECTI .
Qla+1/n) - Qa) = % |: NC(Q)*IO—(Q)T(Q)

what gives

QLo+ v/N) = Q)

v/N
23 2Q (v + %) Ve (e
—;n:o WXU(O( N)T(“ N)
+<(a+%)]_- -7 (a+ %)
[ 2¢ ((y+%)
wr| it r) .
2 (ot )

In the limit ¥ — oc and N — oo, n/N becomes a continuum vari-
able, the left-hand side of (15) becomes a time derivative (with respect
to ) and (1/v) 32"~" becomes an integral over D, or equivalently,
over {o,7,T}. So, we finally find3

oo { [ ()] ().

Summing over o, we finally find the differential equation for QQ(«)

(16)

3See [10] for a formal demonstration.



904

erfc(

dQ ZC/ Aerf(‘ AR

Q/C)

1+ Q/OF?

0 Q e QP2 /¢ -
I \/_t‘IfL \/7) a7
with r = 1/p% — 1.
Following the same procedure, we find for {{«)
d¢ _ _2¢ [ . efe(=1/Vr) it/
do T . erfe(—71/Q/C )
) = Q2 /¢
- . (18
g [T ¢ rate-rvaro | Y

Now, all we need is the equation for p. Multiplying (10) by w™, we
find

/ 1

_ /*./A %/7/
p_—N\/@<uJ o+ TrJT}->

with the variables with’ in time (« + 1/N) and the others in «, except
w™ that is kept constant during the learning. In this equation, we defined
7o) = w* - E(@)/VN and F = F(—7/Q/2().

Using (14), we have

19)

1 1 . ¢ > F ]
~ — [1—|o7y/2 T+ =F ~ (20)
7= 7|t (VT )
that substituting in (19) leads to
dp _ [ [2¢ . ”"$
0= < (/ pT)oF — Q - (21)
Integrating with respect to 7 and summing over o, we get
20 T —(1+Q/0)#?
do _ 20 /d%—eq
doo — w3/2 erfc®(—7/Q/()
X Eerfc(—% Q/{)eﬂﬂ/r
Q
S bl Sy @F2C
Qelfc( /e (22)

In Fig. 1, we show e, () and {(«) for the scalar BOnA, obtained
by numerically integrating the coupled differential (17), (18), and (22).
As can be seen, the generalization error converges to 0.88/«, which
is exactly the same asymptotic error obtained by the variational algo-
rithm. Nevertheless, the great advantage of this approach is not using
inaccessible information like p or 7. Besides, equating () = /{(«)
in (10), we see that asymptotically ()  1/«, that for () is a suf-
ficient condition for a local convergence of @(«a) to @ [3], [9].

V. CONCLUSION

One of the main problems of gradient-descent algorithms is the ad-
justment of the learning rate, which, in order to prevent asymptotic
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Fig. 1. Numerical solution for the scalar BOnA. The dashed line represents
f(a) = 0.88/a, the continuous line is f(«) = e4(), and the dotted line
f(a) = ((«). For large o, we have e, () ~ 0.88/avand { x a=2.

TABLE I
ASYMPTOTIC GENERALIZATION ERROR FOR THE ROSENBLATT
ONLINE ALGORITHM [4], VARIATIONAL OPTIMAL [5],
BOnA, AND THE BAYESIAN RULE (BOffA) [4]

Rosenblatt On.  Variat. Opt.  BOnA BOffA.

0.28/at/3 0.88/a 0.88/a  0.44/c

fluctuations, must drop after a transient phase depending on the error
potential. A Bayesian approach requires that this transient should be
estimated by means of the update of some a priori distribution by the
algorithm itself. This kind of behavior is clearly noted in the presented
algorithms where we have a learning rate proportional to the variance of
the a priori distribution, e.g., (10) and (11). Although this variance also
depends on the error potential, this dependence will not be direct on the
given potential V', but on an induced potential & = — In{exp(—3V)).
This change in potentials was observed also in algorithms obtained by
variational methods [5], [6].

We conclude that the BOnA uses the same optimal functional form
with respect to the minimization of the generalization error, but the
learning rate is differently adjusted. In the optimal algorithm, the
learning rate is given by the square root of r, while in BOnA it is
given by the a priori width. In practical situations, BOnA is the correct
choice because we hardly have access to quantities such as p, but
the key information about the learning rate is revealed in r. In the
beginning of the learning process, the correlation between the teacher
perceptron and the student is small, which means that r is large. As @
becomes closer to w*, p — 1 and » — 0. In the BOnA, the student
has no access to p and estimates its correlation with the teacher based
on {(w — ().

In Table I, we can see a comparison between the asymptotic behavior
of the generalization error in four different algorithms showing that
BOnA is as good as the variational algorithm and both are slower than
Bayesian offline algorithm (BOffA) only by a factor of two, while the
Rosenblatt algorithm has a much slower asymptotic behavior than all
the others due two the correspondent exponent of «.

Summarizing, we showed that the BOnA applied to the perceptron
with the Rosenblatt potential leads to the same asymptotic performance
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of the optimal algorithm obtained by variational methods with the ad-
vantage that no extra information beyond the data set (e.g., the param-
eters of the professor) is needed to make the algorithm more adaptive.

APPENDIX
OBTAINING THE UPDATE EQUATIONS FOR THE BOnA
In order to calculate (4) and (5), we start with the Bayes’ rule
J dwwL(yusr1|w) P(w|Dy)
JdwL(yuqa1lw) P(w|Dy)

S = [ dowPelDyn) =

where L(y,4+1|w) is the likelihood of the new datum and P(w|D,,) is
the Gaussian distribution

—(wp—op) O Hwp—op) /2

vV 2m)N|Cul

P(w|D,) = < (23)

This can be written as

Py duue™ 3L (g u + ©)
N i 1‘“- P} N
Jdue™2 ot Ly |u+ &)

where we are using ’ to the time index u + 1 and we do not use any
index when the variables are at time p (or for integration variables).
Note that uze "7 "/2 = — 52 Cij0u, e " /2 with 9, =
(0/0uy), then one integration by parts leads to
1

—1

R R due~z* 9" "9, L Yut1|u + @

wgzwz-l-g Ci]'f T 071,3 Wt | )
r Jduem 2T Lyuyi|u + @)

Equation (4) is obtained using the identity O, F(u; + ©;) =
0, F(ui + ;)

&i =it Y Cijdo; n (L{yu[u 4 2)) .

7

For (5), we start defining A&, = & — &, then
Cy = /du(ui — AD)(u; — Aw;)P(u+ 9| Dyyq).

Now, using the identity

—u-C~Lu/2 —u-C— Ly /2
wiu; = Cize 2 4 E Cir Ci;0u, 0u e /
Kl

and the same tricks used before with two integration by parts, we finally
find the update equation for the covariance matrix

Cly = Cij+ Y CirCrjdzy 0z n (LYt [u + &) -

kl

Equations (10) and (11) are obtained by following the same way and
using (8) and (9) to calculate (P(y.+1|t + &)
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Variational Bayesian Approach to Canonical
Correlation Analysis

Chong Wang

Abstract—As a dimension reduction algorithm, canonical correlation
analysis (CCA) encounters the issue of selecting the number of canonical
correlations. In this letter, we present a Bayesian model selection algo-
rithm for CCA based on a probabilistic interpretation. A hierarchical
Bayesian model is applied to probabilistic CCA and learned by variational
approximation. This method not only estimates the model parameters, but
also automatically determines the number of canonical correlations and
avoids overfitting. Experiments show that it performs better compared
with maximum likelihood and some other model selection methods.

Index Terms—Bayesian inference, canonical correlation analysis (CCA),
dimensionality reduction, model selection, variational approximation.

[. INTRODUCTION

Canonical correlation analysis (CCA) [4], similar to principal com-
ponent analysis (PCA), is a widely used tool in the dimensionality re-
duction, feature extraction, and visualization for pattern recognition.
CCA and its extended methods have been used in many applications,
such as facial expression recognition [2] and text-image modeling [5].
Given two random vectors x1 and 2, with dimensions d; and d>, CCA
can be used to find the basis vectors for ;1 and -, so that the corre-
lation between projections of variables onto these basis vectors is mu-
tually maximized. One of the central problems in CCA is model selec-
tion or how to select the dimensions to be retained. In [1], Bach and
Jordan propose a novel probabilistic interpretation of CCA with latent
variables. With this probabilistic interpretation, various Bayesian treat-
ments can be applied. In this letter, we propose a hierarchical Bayesian
model using novel variational approach to address the CCA model
selection problem.
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