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Abstract. We present and analyze three different online algorithms for learning in discrete Hidden 
Markov Models (HMMs) and compare their performance with the Baldi-Chauvin Algorithm. Using 
the Kullback-Leibler divergence as a measure of the generalization error we draw learning curves 
in simplified situations and compare the results. The performance for learning drifting concepts of 
one of the presented algorithms is analyzed and compared with the Baldi-Chauvin algorithm in the 
same situations. A brief discussion about learning and symmetry breaking based on our results is 
also presented. 
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INTRODUCTION 

Hidden Markov Models (HMMs) [1,2] are extensively studied machine learning models 
for time series with several applications in fields like speech recognition [2], bioinfor-
matics [3, 4] and LDPC codes [5]. They consist of a Markov chain of non-observable 
hidden states qt G S, t = 1,...,T5 S = {si,s2 , . . . ,sn}5

 w i t n initial probability vector 
Ki = V{q\ = s^ and transition matrix Aij(t) = V(qt+i = Sj\qt = s^, ij = 1, ..,n. At 
discrete times t, each qt emmits an observed state yt G O, O = {oi,..., om}, with emis­
sion probability matrix Bia(t) = V(yt = oa\qt = s^), i = 1, ...,n, a = 1, ...,ra, which are 
the actual observations of the time series represented, from time t = 1 to t = T, by the 
observed sequence yj = {2/1,2/25 •••?2/T}- The gt's form the so called hidden sequence 
Qi = {(Zi> #2, ••-, QT}- The probability of observing a sequence y[ given UJ = (7r, A, B) is 

T 

V(yT\uj) = ^P(2/ i )P(2/ i |g i )n^fe + i |%)^(2/ t |%) . (1) 
QT

 t=2 

The learning process consists in presenting a series to the HMM which adapts its 
parameters in order to produce sequences that mimic it. Depending on how data is 
presented, it can range from offline, when the whole data is given and parameters are 
calculated all at once, to online, when the data is given only by parts and a partial 
calculation of the parameters is made. 
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We study a scenario with a data set generated by a HMM of unknown parameters. This 
is an extension of the student-teacher scenario extensively studied in neural networks. 
The performance of the learning process, as a function of the number of observations, 
is given by how far, measured by a suitable criterion, is the student from the teacher. 
Here we use the naturally arising Kullback-Leibler divergence (KL-divergence), which 
although not accessible in practice since it needs knowledge from the teacher, is a simple 
extension of the idea of generalization error and therefore can be very informative. 

We propose three algorithms and compare them with the Baldi-Chauvin Algorithm 
(BC) [6]: the Baum-Welch Online Algorithm (BWO), an adaptation of the offline Baum-
Welch Reestimation Formulas (BW) [1], then, starting from a Bayesian formulation, an 
approximation called the Bayesian Online Algorithm (BOnA), which can be simplified 
further without noticeable deterioration of performance to a Mean Posterior Algorithm 
(MPA). The last two methods, inspired by the work of Amari [7] and Opper [8] are 
essentially mean field methods [9] in which a manifold of tractable distributions to be 
used as priors is introduced and the new datum leads, through Bayes theorem, to a non-
tractable posterior. The key inference step is to take as the new prior, not the posterior 
itself, but the distribution in the manifold which is the closest in some sense. 

The paper is organized as follows: first, BWO is introduced and analyzed. Next, we 
derive BOnA for HMMs and, from it, MPA. We compare the behaviour of MPA and BC 
with respect to learning drifting concepts and then present a discussion about learning 
and symmetry breaking based upon our results followed by our conclusions. 

BAUM-WELCH ONLINE ALGORITHM 

The Baum-Welch Online Algorithm (BWO) is an adaptation of BW to online situations 
where in each iteration of BW, which is a step towards a maximum of the average over 
the hidden sequences ofV(q, y), y becomes yp, the p-th observed sequence. Multiplying 
the BW increment by a learning rate r\Bw we get the update equations 

uup+1=u;p^r]BWAu;p, (2) 

with AUJP the BW variations of UJ calculated with yp. The complexity of BWO is 
polynomial in n and T. 

In figure 1, the HMM learns sequences generated by a teacher with n = 2, m = 3 and 
T = 2 for different TJBW- Initial students have matrices with all entries set to the same 
value, what we call a symmetric initial student. We took averages over 500 random 
teachers and distances are given by the KL-divergence between two HMMs UJI and UJ2 

dKL(vi,V2) = y^V{yi\uJi)ln 

vT 

We see that after a certain number of sequences the HMM stops learning, which is 
particular to the symmetric initial student and disappears for a non-symmetric one. 

nviM 
WW. 

(3) 
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FIGURE 1. Log-log curves of BWO for three different TJBW indicated next to the curves. 

Denoting the variation of the parameters in BC by A, in BW by A, in BWO by A, 
and with jt(i) = T(qt = Si\yp,ujp), we have to first order in A 

A7T?; = A7T?; = A ^ , 

AA;, 

ABjry — 

n 

^VBC 

nriBW 

(4) 

"T-l 

Xr] ]BC 

t=i 
T 

AA, 

AR-r, — 

A rjBc 

nriBw 

XIJBC_ 

nrjBw 

'T- l 

t=i 
" T 

E-*« 

AA,?, 

AR;r 

For 77^^ « XrjBc/n and small A, variations in BC are proportional to those in BWO, 
but with different effective learning rates for each matrix depending on yp. Simulations 
show that actual values are of the same order of approximated ones. 

THE BAYESIAN ONLINE ALGORITHM 

The Bayesian Online Algorithm (BOnA) [8] uses Bayesian inference to adjust UJ in the 
HMM using a data set DP = {y1, ...,yp}. At each sequence we update a prior distri­
bution by Bayes' theorem, which takes a prior in a parametric family to a posterior no 
longer in it. BOnA projects it back by minimizing its KL-divergence with the projected 
distribution. Parameters are estimated as the means in the projected distribution. 

For a family of the form P(x) oc e~^Xz^x\ which is obtained by MaxEnt constrain­
ing the averages over P(x) of arbitrary functions fi(x), minimizing the KL-divergence 
is equivalent to equating these averages to those over the unprojected posterior. 

For HMMs, the vector ir and each row of A and B are different discrete distributions 
which we assume independent in order to write the factorized distribution 

V(u\u)=V^\p)\{V(Al\al)V(Bl\bl). (5) 

where Ai = (An,..., Am), Bi = (Bt 

of the distributions. 
iii-- , Bim) and u = (p, a, b) represents the parameters 
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As each factor is a distribution over probabilities, the natural choice are the Dirichlet 
distributions, which for a TV-dimensional variable x is 

V(XW = = ^ 
N 

with UQ = J2i ui- These can be obtained from MaxEnt with fi{x) = lnx^ [13]: 

/ dfiV(x)lnXi = Qti, dfji = 5 I 2_lXi~ ^ Y\0(xi)dxi. )lnxi = ai 

The function to be extremized is 

C= dfiVlnV^xl dfiV-l) + ^ A j dfiVlnXi-aA , 

(6) 

(7) 

(8) 

and with SC/SV = 0 we get the Dirichlet with normalization eA+1 and u{ = 1 — Â . 
Each factor distribution is separately projected by equating the average of the loga­

rithms in the original posterior Q and in the projected distributions 

(9) 

ip(ai:j)-ip I ^aik J = (InAij)Q = /%(a), 

^(bia)-^{^2bip\ = (In Bia)Q=iJLia(b), 

where ijj(x) = d\nT(x)/dx is the digamma function. We call a set of TV equations 

•-IH, (10) ^(XI)-^W2XJ\ 

with i= 1, ...TV a digamma system in the variables Xi with coefficients /^. 
Let us call PP(UJ) the projected distribution after observation of yp, and QP+1(UJ) the 

posterior distribution (not projected yet) after yp+1. By Bayes' theorem, 

QP+1(OJ) = ^ ( ^ p ^ + V + V ) , (11) 

where ZQ is the normalization. 
The calculation of/i's in (9) leads to averages over Dirichlets of the form [10] 

IT 
L J 

\nx; (ui + ri)-il;(uo + ro)]. (12) 
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In order to solve (10), we solve for xiy sum over i with x0 = J2ixi a n ^ write it as a 
one-dimensional map 

<+ 1 = E ^ ~ V i + </>«)], (13) 
i 

finding numerically the fixed point by iterating from an arbitrary initial point. We found 
a unique fixed point except for /i^'s too close to 0, which is rare in most applications. 

BOnA suffers from a common problem of Bayesian algorithms: due to the sum over 
hidden variables, the complexity scales exponentially in T. Also, the calculation of 
several digamma functions is very time consuming. In the next section, we develop an 
approximation that runs faster, although still with exponential complexity in T, which is 
not a problem for we can fix T with the algorithm scaling polynomially in n. 

MEAN POSTERIOR APPROXIMATION 

The Mean Posterior Approximation (MPA) is a simplification of BOnA inspired in its 
results for gaussians, where we match the first and second moments of posterior and 
projected distributions. Noting this, instead of minimizing CIKL we just match the mean 
and one of the variances of posterior and projected distributions as an approximation. 

With hatted variables for reestimated values, the matching of the moments gives [10] 

/ \ MQ-^DQ nA, 
P^ = (Kilo , 9X / x2> ( 1 4 ) 

aij \aij)c 

®ia \Oia/( 

W > o -
(ail)Q-

}K)Q-
(bn)Q " 

/ \2 ' 

- <4)Q 

-{aa)2
Q' 

)o-(bil)Q Uil/Q 

The complexity is again of order nT , but the simplifications heavily reduce the real 
computational time making it better for practical applications. 

Figure 2 compares MPA and BOnA. The initial difference gets smaller with time and 
both come closer relatively fast. We used n = 2, m = 3 and T = 2 and averaged over 
150 random teachers with symmetric initial students. The computational time for BOnA 
was 340min, and for MPA, 5s in a 1GHz processor. Figure 3a compares MPA to BC 
and figure 3b to BWO. In both cases MPA has superior generalization. We used n = 2, 
m = 3, T = 2, symmetric initial students and took averages over 500 random teachers. 

LEARNING DRIFTING CONCEPTS 

We tested BC and MPA for changing teachers. In figure 4a, the teacher changes at ran­
dom after each 500 sequences (A = 0.01, r\Bc = 10.0). In figure 4b, each time a sequence 
is observed, a small random quantity is added to the teacher. Both simmulations used 
n = 2, m = 3 and were averaged over 200 runs. 
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FIGURE 2. Comparison in log-log scale of MPA (dashed line) and BOnA (circles). 

b) 

»_v \p .005 

^ ^ ^ 0 . 0 0 0 1 . 

\0.0005 \ 

"~~\ 

FIGURE 3. a) Comparison between MPA (dashed) and BC (continuous). Values of A are indicated next 
to the curves, TJBC = 0.5. b) Comparison between MPA (dashed) andBWO (continuous). Values of TJBW 
are indicated next to the curves. Both scales are log-log. 

Figure 4b shows that BC adapts better, but is not fully adaptive and we do not know 
how to modify it. MPA instead derives from Bayesian principles and we can guess 
the problem by analogy with similar Bayesian algorithms [12]: the variance of the 
distributions decreases in the process as in the perceptron case, where they turn out 
to be the learning rates, explaining the memory effect which difficults the learning after 
changes. Although we cannot prove it yet, we expect that variance and learning rate are 
similarly related in MPA, which can be used to improve its performance. 

FIGURE 4. Drifting concepts. Continuous lines correspond to MPA and dashed lines to BC. a) Abrupt 
changes at 500 sequences interval, b) Small random changes at each new sequence. 
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FIGURE 5. KL-divergence and student's parameters for a) BC and b) MPA. 

LEARNING AND SYMMETRY BREAKING 

Learning from symmetric initial configurations requires that in some point the student 
parameters break appart from each other and the student's symmetry is broken, marked 
as a sharp decrease in the generalization error. This point depends on the algorithm and 
is an important feature in online algorithms [11]. 

Instead of taking averages which smooth out abrupt changes, here we draw curves for 
only one teacher, rendering the changes visible. Flat pieces before a symmetry breaking 
are called plateaux and occur in situations where it is difficult to break the symmetry. 

Figure 5a shows the results for BC (A = 0.01, T]BC = 1-0). There are two abrupt 
changes in dKL- at the beginning of the process and after 1000 sequences, ir and A only 
break their symmetry in the second, while B breaks it at both points. Figure 5b shows 
that in MPA the second change is stronger and the symmetry breaking affects both B 
and A. Figure 6 shows BWO with r\Bw = 0.01 where only B breaks its symmetry. Note 
that the more symmetries are broken, the best is the generalization of the algorithm. 

In all simulations we set n = 2, m = 3 and T = 2 with a teacher HMM given by 

CONCLUSIONS 

We proposed and analyzed three learning algorithms for HMMs: Baum-Welch On­
line (BWO), Bayesian Online Algorithm (BOnA) and Mean Posterior Approximation 
(MPA). We showed that when the teacher does not change, MPA has superior perfor­
mance, but for drifting concepts, the Baldi-Chauvin (BC) algorithm is better, although 
the Bayesian nature of MPA suggests how to fix this behavior. 

The importance of symmetry breaking in learning processes is presented here in a 
brief discussion where the phenomenon is shown to occur in our models. 
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FIGURE 6. KL-divergence and student's parameters for BWO. 

Preliminary studies on real data seem to confirm the performance of the algorithms. 
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