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Abstract

We discuss some features of the BCRE model. Under some conditions, we show that it can
be understood as a mapping from a two-dimensional to a one-dimensional problem. We then
propose some modi0cations that (a) guarantee mass conservation (which is not assured in its
original form) and (b) correct undesired features that appear when there are irregularities in
the surface of the static phase. We also show that a similar model can be deduced both from
the principle of mass conservation (0rst equation) and from a simple thermodynamic argument
(from which the exchange equation can be obtained). Finally, we solve the model numerically,
using di4erent velocity pro0les and studying the e4ects of di4erent parameters. c© 2002 Elsevier
Science B.V. All rights reserved.

PACS: 81.05.Rm; 05.40.−a
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1. Introduction

Since the end of 1980s, when Bak et al. used a sandpile as a paradigm for self-
organized criticality [1], there has been a revival in the interest in granular materials.
This topic, however, is not recent. The 0rst studies with granular materials date back to
1773, when Coulomb 0rst observed that this kind of matter could stand in equilibrium
in piles at certain speci0c angles. Faraday discovered the convective instability in
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Fig. 1. In the BCRE model, a two-dimensional pile with (owing grains is divided into two “phases” (static
and rolling phases). They are described by the variables h and R= �r, where h and r are the heights of the
static and rolling phases, respectively.

vibrating grains and Reynolds introduced the notion of dilatancy, just to cite some
examples of well-known scientists who became interested in the problem.
The study of granular materials is important since their applications in industry is

wide enough to cover areas as distinct as civil construction and food transportation. The
study of (ows of grains can uncover the behavior of dunes, sand-storms and avalanches.
But those are just a few examples. Granular materials are present everywhere in
nature, and in several branches of industry. Chemical industries, pharmaceutics, mining,
geology are just some additional examples of other areas where the study of grains
can play an important role.
In 1994, a paper by Bouchaud et al. [2] presented a relevant model that came to be

known as the BCRE model. This model was successful in describing the qualitative
behavior of (owing grains, with the additional advantage of being very simple. It
assumes that a two-dimensional sandpile (Fig. 1), with rolling grains on its surface,
can be divided into two “phases” (a static phase h and a rolling phase R), and proposes
two coupled partial di4erential equations to model their behavior:

@R(x; t)
@t
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The variables h and R are related to the height of the static and rolling phases, respec-
tively, and h̃ = h + x tan �r; where �r is the angle of repose. Parameters � and 
 are
positive, v is the velocity pro0le of the rolling phase, and D is related to di4usion.
The 0rst equation de0nes how the pro0le of the rolling phase evolves in time, and

the second equation determines the pro0le of the static phase by setting the form of
the exchange between rolling and static grains, depending on the local slope of the
pile. This phenomenological model seems suitable to describe some of the properties
observed in the (ow of real grains. It has given important clues to how we could
describe some interesting phenomena occurring in granular (ow. A variety of papers
used these equations to model the behavior of avalanches, strati0cation and (ows in
general [3–7].
The original model, however, is very simpli0ed, has some problems of consistency

and, as stated before, lacks a derivation from 0rst principles or from a microscopic
point of view. In this paper we address some of these points. In Section 2, we show
that an expression equivalent to Eq. (1) can be obtained from the principle of mass
conservation, under the assumption that the densities of the static and rolling phases
are constant along the vertical direction. In Section 3, we discuss some limitations of
Eq. (2) and present some alternatives. In Section 4, we analyze the consequences of
considering di4erent velocity pro0les for the rolling phase and discuss the connections
with other models for granular materials in the literature. Also, we discuss the role
played by some of the parameters in the model. In Section 5, we present a new and
simple model to describe the mechanism that underlies the exchange of grains between
static and rolling phases. We are then able to deduce an expression similar to Eq. (2).
Finally, in the last Section, we summarize our results.

2. Mass conservation

Consider, for instance, a two-dimensional sandpile with a rolling and a static phase.
The rolling phase is located above the static phase, and slides over it (see Fig. 1). Let
us assume that the sandpile can be treated as a continuous medium, �r being the area
density of the rolling phase. The mass inside an interval xo to xo + �x, where �x is
small, is then given by

�mr =
∫ xo+�x

xo

[∫ h(x; t)+r(x; t)

h(x; t)
�r(x; y; t) dy

]
dx ; (3)

where h(x; t) and r(x; t) are the heights of the static and rolling phases, respectively,
at position x and time t.
We now de0ne the linear density of the rolling phase,

R(xo; t) = lim
�x→0

�mr

�x
= lim

�x→0

1
�x

∫ xo+�x

xo

[∫ h(x; t)+r(x; t)

h(x; t)
�r(x; y; t) dy

]
dx : (4)

Using the identity

lim
�→0

1
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∫ x+�

x
f(u) du= f(x) ; (5)
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we can write Eq. (4) as

R(xo; t) =
∫ h(xo; t)+r(xo; t)

h(xo; t)
�r(xo; y; t) dy : (6)

If �r is independent of the vertical coordinate y, Eq. (6) becomes

R(x; t) = �r(x; t)r(x; t) : (7)

Repeating this procedure for the static phase, we obtain

S(xo; t) ≡ lim
�x→0

�ms

�x
=
∫ h(xo; t)

0
�s(xo; y; t) dy ; (8)

and

S(x; t) = �s(x; t)h(x; t) ; (9)

where ms is the mass and �s (which is again supposed to be independent of y) is the
area density of the static phase.
Eqs. (7) and (9) de0ne a one-to-one relation from h and r to S and R, respectively,

which maps the two-dimensional sandpile into a one-dimensional problem if the densi-
ties of the two phases do not change with y. A particular and frequent case that follows
in this category is given by �r = �s = constant. The possibility of this mapping is not
really unexpected, since, with this property, the involved variables will only depend on
the horizontal coordinate x and the time t.
Under the assumption of a continuous model, we can write a mass conservation

equation for the rolling phase. For a one-dimensional (uid of density R that (ows
under a velocity 0eld v (if v does not depend on the y coordinate), we have

@R
@t

+
@
@x

(vR) = Q ; (10)

where Q represents the sources or sinks of this (uid. The BCRE model allows the
exchange between rolling and static grains. Thus, regarding the rolling phase, the static
phase acts like a source=sink at every point (the extra mass gained by the rolling phase
equals the lost mass of the static phase). Then, we write

@R
@t

+
@
@x

(vR) =−@S
@t

: (11)

We see that Eq. (11) is a slightly modi0ed version of Eq. (1), where, instead of the
height h, we are working with the density S. The di4usion term (if there is one) will
now depend on the speci0c shape of the velocity 0eld v. In contrast with Eq. (1),
we now guarantee mass conservation for all forms of v. If we assume, for instance, a
constant velocity 0eld in Eq. (1), as it has already been done in some previous works
[6,3,4], the di4using term has to be discarded in order to ensure mass conservation.
In 1997, Makse [6] applied the BCRE model to a mixture of two grains. He wrote

Eq. (1), with constant velocity and without di4usion for each kind of grain,
@Ri
@t

+ vi
@Ri
@x

= �i; i = 1; 2 ; (12)

and simulated this model with v1 = v2, showing that, depending on the value of the
parameters, the grains either segregate or stratify. The assumption that v1 = v2 was not
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justi0ed in that paper. To exemplify the advantages of our equations, applying Eq. (11)
to a mixture of two grains, and considering that the mixture is rolling with a constant
average velocity v, we can write

@(R1 + R2)
@t

+ v
@
@x

(R1 + R2) = � ; (13)

which is similar to Eq. (12), obtained by Makse. However, now it is easy to see that
v1 = v2 is not an ad hoc assumption, but rather a requirement of the model.

One more advantage of Eq. (11) is that now we can obtain a whole series of di4erent
granular (ow regimes by varying the velocity pro0le of the rolling phase. This point
will be discussed in Section 4.

3. Exchange of grains between static and rolling phases

We now make some considerations about the second equation of the BCRE model,
that we call exchange equation. In analogy with Eq. (11), we 0rst write an equation
similar to Eq. (2) but now in terms of the new variables R and S,

@S
@t

= R
[
�
(
@S
@x

+ �s tan �r

)
+ 


@2S
@x2

]
: (14)

Boutreux and RaphaMel [5] proposed a modi0ed version of this equation to take into
account a shielding e4ect that is present on the upper grains of the rolling phase due
to the lower grains of the same layer. With an adaptation to the variables R and S,
this shielding e4ect can be introduced into Eq. (14) which is then written as

@S
@t

=
R�′

R+ �′

[
�
(
@S
@x

+ �s tan �r

)
+ 


@2S
@x2

]
; (15)

where �′ is a small constant related to the thickness of the layer of rolling grains
that indeed interact with the static phase. Note that, if R ∼ �′ (a thin rolling phase),
R�′=(R+ �′) ∼ R, but if R��′, then R�′=(R+ �′) ∼ �′.

Eq. (15) is still not adequate to describe what happens close to the interface, in the
presence of irregularities. As the grains (ow, they can erode part of the static phase,
creating a (sometimes big) crater with a positive slope in the right border (see Fig. 2).
To see this e4ect, let us analyze a particular case, where the densities are constant.
The term @S=@x is directly related to the slope of the pile (given by @h=@x). If it is

negative, the pile is inclined to the right (and if it is positive the pile is inclined to the
left). There is no problem when the slope is negative. As expected, for a local slope
above the repose angle, we have erosion (and for a slope below it we have acrescion).
If this term is positive, we always have acrescion, which is not a reasonable behavior.
To correct this behavior, we suggest a modi0cation, where we consider the minus sign
of the modulus of @S=@x,

@S
@t

=
R�′

R+ �′
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�
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Fig. 2. The (ow of rolling grains can eventually erode the static phase creating a crater, and generating
regions of positive slope.

4. Di�usion and velocity pro!les

One interesting feature of the BCRE model is the possibility of di4usion of the
rolling grains. The presence of di4usion in this phase is observed and, in fact, very
obvious. This di4usion, however, leads to some constraints on the velocity pro0le v.
The correct expression for the velocity 0eld v in Eq. (11) should, in principle, be

derived from a momentum conservation equation. However, it is not an easy task to
write such an equation, since it should take into account all the interactions between
the grains and should depend on the stress tensor of the material. In general, we can
say that the velocity 0eld is a function of x and t that depends on a variety of factors.
For simplicity, most of the works in the literature assume a constant velocity pro0le.
We now analyze two possible functional forms of v, and report some results of

computer simulations to study the e4ects on the shape of the pile.
In all computer simulations we integrate the BCRE equations numerically by means

of a 0nite di4erence scheme (see Appendix) and construct an online animation of the
pro0le of both phases in real time. The 0gures presented below are snapshots of the
animation generated by the program. We considered the following pro0les:
(1) v= v(R) = �@xR+ �R+ �, where �; � and � are constants.
We 0rst take v as a function of R only, and perform a kind of gradient expansion.

Note that, in this case, v is an implicit function of x and t (v=v(R) where R=R(x; t)).
From Eq. (11) we have

@R
@t

+
@
@x

(vR) =
@R
@t

+ �
(
@R
@x

)2

+ (2�R+ �)
@R
@x

+ �R
@2R
@x2

: (17)

Note that the functional form of v includes a di4usion term. From this last equation,
it can also be seen that:

(i) The di4usion coeNcient is proportional to R. This means that, the higher the pile,
the more it will di4use. This is reasonable and can be understood as a consequence of
gravity.
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Fig. 3. Pro0le, at equivalent time t and same initial conditions, of the evolution of a pile in the following
cases: (a) the original model, with constant velocity (v = 1); (b) model with mass conservation, given by
Eq. (11), with � = −0:01 and (c) the same of (b) but now with � = −0:04. Gray area corresponds to the
static phase and white area to the rolling phase.

(ii) There is a non-linear term with a constant coeNcient � (� �=0). If di4usion is
small and can be neglected (as in most cases studied in the literature), the non-linear
term is unimportant, and the above equation is in agreement with previous works.
Di4usion, however, a4ects the pro0le of the pile. Fig. 3 shows the e4ects of this term.
It compares the pro0le of a pile of grains, at the same time and for the same initial
condition, for: (a) the original model with constant velocity; (b) Eq. (17), as proposed
by us, with v= �@xR, for �=−0:01; and (c) the same as (b), but with �=−0:04. We
can see that the 0nal shape of the bump is quite di4erent, if � is not too small.
(iii) This equation has also an advective term, i.e., a term with a 0rst derivative of R

with respect to x. Its coeNcient depends linearly on R (for � �=0). Note that a similar
term has already been proposed in other papers, as in [8]. Fig. 4 shows how it a4ects
the pro0le of the pile. We can see that there is a tendency to the formation of shock
fronts in one of the sides of the bump.

(2) v= f(@xh)
In a real pile of grains, there may be irregularities with positive slope, due to erosion.

In this case, the velocity must depend on the sign of the slope, otherwise we will have
avalanches climbing up the pile at the points with positive slope, with the same velocity
as in the negative slope side. To correct this defect, we have taken

v=

{
�@xR+ �R+ �; if @xh6 0 ;

vs; if @xh¿ 0 ;
(18)

where vs is a constant.
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Fig. 4. E4ects of di4usion. Pro0le, at equivalent time t and same initial conditions, of the evolution of a
pile with a velocity pro0le given by v= �@xR+ �R+ �, with �= 1. �= 0:01 and (a) �= 2, or (b) �=−1.
A negative � means that the thicker the rolling phase is, the more diNcult it is to the grains to roll. Gray
area corresponds to the static phase and white area to the rolling phase.

Fig. 5. Pro0le, at equivalent time t and same initial conditions, of the evolution of a pile in the following
cases where (a) the velocity is independent of the sign of slope and (b) the velocity depends on the sign of
the slope and vs = 0:9 and (c) the same of (b) but now with vs = 0:4. Gray area corresponds to the static
phase and white area to the rolling phase.

For @xh6 0, this expression is equivalent to the previous form of v. But, for @xh¿ 0,
the rolling grains meet a barrier of static grains, and move up this barrier with a constant
velocity. There is no di4usion in this case, since the velocity is constant. But now this
is a desired property; the grains slowly accumulate in the barrier (and do not di4use).
Fig. 5 shows the pro0le of the pile at the same time but for di4erent forms of v: (a)
if the velocity is independent of the slope; (b) if v depends on the slope according to
Eq. (18), for vs=0:9, and (c) the same as in (b), but with vs=0:4. The static phase is
gray, and has been settled to an irregular shape to amplify the e4ects of the changes.
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At the 0nal stages of this work, we learned about a work of Herrmann and Sauer-
mann on the behavior of the Barchan Dunes [9] that was also based on the BCRE
model, and dealt with some of the points we present in this paper. They consider a
two-dimensional version of Eq. (11) but they do not deduce it. In particular, there is
no mention of the need of independence of the densities with respect to the y coordi-
nate. Indeed, we believe that, although it is not explicitly written, the simulations were
performed under constant densities, which is a particular case of y independence. They
also used a slightly di4erent version of Eq. (2), with the modulus of the slope of the
static phase.

5. Simple model for the exchange of grains between rolling and static phases

On the bases of a naive model, it is possible to deduce an equation to describe the
exchange of grains between rolling and static phases. Remember that the densities of
the rolling and static phases are di4erent, the latter being larger than the former. As
the rolling phase rolls over the static phase, friction removes energy from the rolling
grains. Part of this energy becomes heat, but the rest is transferred to the grains of
the static phase. This energy agitates grains and the density of the static phase right
below the interface decreases, until it reaches the critical dilatancy and starts to move,
becoming part of the rolling phase. This process is similar to a solid to liquid 0rst
order phase transition, the static phase playing the role of the solid (receives energy
and starts to “melt”). Indeed, there is experimental evidence that, at least in the case
when the transition is induced by tilting, it does display features of a 0rst order phase
transition [10]. We will assume that this analogy is valid. We can then calculate the
amount of mass of the static grains that will “melt” (that is, receives energy and starts
to roll) using an analogy with the latent heat equation

�Q = L�ms ; (19)

where �Q is the energy gained from the rolling phase, �ms is the amount of mass of
the static grains that melts, and L is a constant, analogue to the latent heat.
Let us now focus on what happens in a small interval �x of the horizontal coordinate

of the pile (see Fig. 1). The amount of mass that is melted is a portion of the total
mass of static grains. However, not all the static grains receive energy from the rolling
phase. The upper grains shield the lower grains from the contact with the rolling phase.
We consider that the amount of mass that can actually receive energy (and, therefore,
melt) is a fraction �h of the static phase (later, we will justify this assumption, that is
now adopted for the sake of simplicity).
In the interval �x, the mass that can be melted is given by

ms = �sV = �h�x�s = �h�x
S
h
= �S�x : (20)

Thus, the amount of mass that melts is given by �ms = �S��x. Therefore, we have

�Q = L��S�x ; (21)

where �S is the change of S due to the melting of the static phase. Note that, if the
pile is too high, internal forces and gravity act to de-stabilize it, which increases the



R.C. Alamino, C.P.C. Prado / Physica A 308 (2002) 148–160 157

melting. This can justify the assumption that ms is proportional to h (instead of being
a constant layer).
If all the energy to melt the static phase comes from the rolling phase, and if it is

a fraction of the kinetic energy that is lost due to friction in the interface, we have

�Q = c�K ; (22)

where �K is the kinetic energy lost by the rolling phase. But K = p2=2mr , where mr

is the mass of the rolling phase and p its momentum. So we have

�K =
2p�p
2mr

=
(mrv)�p

mr
= v�p : (23)

Recalling that mr = R�x, supposing that the rolling phase transfers energy to the static
phase only by friction, and that friction is proportional to the weight of the rolling
phase at x, we have

dp
dt

= %mrg ⇒ �p= %mrg�t = %gR�x�t ; (24)

From Eqs. (21)–(24), we can write

L��S�x = c%gvR�t�x : (25)

Thus, in the limit �t, �S → 0, we have
@S
@t

= �vR ; (26)

where � = c%g
L� is a constant.

This is a quite simple expression for the exchange equation. It can assume a variety
of forms, depending on the velocity 0eld v. It explicitly incorporates the velocity 0eld,
thus indicating that the exchange of grains between both phases depends on the exact
shape of v, which is very reasonable, since the velocity of the rolling grains interferes
directly with the energy lost in the collisions (which are ultimately responsible for the
transformation of the static grains into rolling grains).
Note also that if Eq. (26) is inserted into Eq. (11) the mass conservation equation,

we get
@R
@t

+ v
@R
@x

= q ; (27)

where

q=
(
�v− @v

@x

)
R : (28)

If the velocity is a function of x, t and R only, q will also be a function of these three
variables (because R is a function of x and t only), and the resulting equation will be
a well-known quasi-linear partial di4erential equation of 0rst order in R, that can be
solved by the method of characteristics, given by the simple system (see, for example,
Ref. [11])

dt
1

=
dx

v(x; t; R)
=

dR
q(x; t; R)

: (29)

The only diNculty is that, if v has an explicit dependence on R, the variable q will
have a dependence on @R=@x, which may turn the system of characteristics diNcult to



158 R.C. Alamino, C.P.C. Prado / Physica A 308 (2002) 148–160

be solved analytically. However, a solution for R(x; t) will consequently give a solution
for S(x; t) by means of Eq. (26). We intend to further explore this point in a following
paper.
Furthermore, if Eqs. (26) and (16) are equivalent, the velocity 0eld must assume

the form:

v=
�′=�
R+ �′

[
�
(
�s tan �r −

∣∣∣∣@S@x
∣∣∣∣
)
+ 


@2S
@x2

]
: (30)

This velocity 0eld has some interesting features. First, note that v depends on the slope
of the pile. The 0rst term inside the square brackets becomes positive for a slope below
the angle of repose and negative above it, which means that the velocity is higher as
the pile is steeper. Second, the factor (R+�′)−1 suggests that v is inversely proportional
to the weight of the pile of rolling grains.

6. Conclusions

In the 0rst two sections of this paper, we pointed out some problems with the
equations of the BCRE model, suggesting that they should be changed and written as:

@R
@t

+
@
@x

(vR) =−@S
@t

; (31)

and
@S
@t

=
R�′

R+ �′

[
�
(
�s tan �r −

∣∣∣∣@S@x
∣∣∣∣
)
+ 


@2S
@x2

]
: (32)

where R = �rr and S = �sh are the linear densities of the rolling and static phases,
respectively, �r is the repose angle, v is the velocity pro0le, � and 
 are positive
parameters and �′ is a small constant.

The 0rst equation explicitly assures mass conservation. The second equation was
changed to take into account the sign of the slope in the static phase. In addition, we
introduced the new variables R and S, giving a precise de0nition for them, which was
not entirely clear in the literature.
We used Eqs. (31) and (32) to simulate two possible velocity 0elds, and found

acceptable results. Also, we have proposed a model for the exchange of grains between
the rolling and static phases. We then obtained the alternative @S=@t = �vR for the
exchange equation, that is simpler, includes the velocity 0eld explicitly, and leads to
interesting results.
We are aware that many of the underlying hypothesis of this simple model must be

examined in more detail. We assumed that friction is proportional to the weight of the
rolling phase, and this is surely oversimpli0ed. Probably, there is a more complicated
dependence on other parameters of the model as well. For instance, it is reasonable to
suppose that the energy transferred to the static phase also depends on the shape of
the grains, its density, the toughness of the material and a variety of other factors.
We believe that the fraction of static grains that receives energy from the rolling

phase is probably a more general function of h, not to mention explicitly a dependence
on the other variables of the model.



R.C. Alamino, C.P.C. Prado / Physica A 308 (2002) 148–160 159

We have also neglected the inverse process, i.e., the transformation of rolling grains
into static ones. Our model may be good to describe an avalanching process, where the
inertia of the rolling grains is large, but may fail to describe a more general situation.
We hope to address these points in a following paper. However, we think that it is

already very interesting that a somewhat richer expression for v, as Eq. (30), can be
obtained from such a naive model.
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Appendix A

The equations of the BCRE model were integrated with the operator splitting method
[12]. Suppose a di4erential equation of the form:

@u
@t

= L(u) ;

where L(u)=
∑m

i=1 Li(u) is a generic non-linear operator that can be written as a sum
of m other operators, and u is a function of x and t. If we have a good method to
integrate each of the equations @u=@t = Li(u), then un+1 can be obtained through m
successive time steps,

un+(1=m) = L1(un; �t) ;

un+(2=m) = L2(un+(1=m); �t)

... =
...

un+1 = Lm(un+(m−1)=m; �t) :

For Eq. (1) (and its variants), the Li operators are of the form:

L1(r) = f(r)
@r
@x
; L2(r) = g(r)

@2r
@x2

; L3(r) = q(r) ;

and

L4(r) = k
(
@r
@x

)2

;

where f, g and q are arbitrary functions of r, and k is a constant. L1 and L2 were
integrated with variants of the Crank–Nicholson method; the operator L3 was inte-
grated with a fourth order Runge–Kutta procedure, and L4 was integrated with a FTCS
0nite-di4erence scheme.
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The second equation can be split into two operators of the form:

L1(h) = a
@2h
@x2

;

and

L2(h) = b
@h
@x

;

where a and b are constants. Now L1 was integrated with the aid of Crank–Nicholson
and the operator L2 with the aid of a two-step Lax–Wendro4 [12] procedure.
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