JavaScript
Essentials

The purpose of most JavaScript scripts is to make a Web
page interactive, whether or not a program is running on
the server to enhance that interactivity. Making a page
interactive means tracking user action and responding with
some visible change on the page. The avenues for
communication between user and script include familiar on-
screen elements, such as fields and buttons, as well as
dynamic content in level 4 browsers.

To assist the scripter in working with these elements, the
browser and JavaScript implements them as software objects.
These objects have properties that often define the visual
appearance of the object. Objects also have methods, which
are the actions or commands that an object can carry out.
Finally, these objects have event handlers that trigger the
scripts you write in response to an action in the document
(usually instigated by the user). This chapter begins by
helping you understand that the realm of possibilities for
each JavaScript object is the key to knowing how you can use
JavaScript to convert an idea into a useful Web page. From
there you see how to add scripts to an HTML page and learn
several techniques to develop applications for a wide range
of browsers — including nonscriptable browsers.

Language and Document Objects

As described briefly in Chapter 2, the environment you will
come to know as JavaScript scripting is composed of two
quite separate pieces: the core JavaScript language and the
document object models of “things” you script with the
language. By separating the core language from the objects it
works with, the language’s designers created a programming
language that can be linked to a variety of object collections
for different environments. In fact, even within Web
applications, the same core JavaScript language is applied to
the browser document object model and the server-side
object model for processing requests and communicating
with databases. Everything an author knows about the core
language can be applied equally to client-side and server-side
JavaScript.

CHAPTE-R

O O O O
In This Chapter

Understanding the
document object
model

Where scripts go in
your documents

How to develop a
single application for
multiple browser
versions

g g g g



144  Part 1l O JavaScript Object and Language Reference

Core language standard — ECMAScript

Although the JavaScript language was first developed by Netscape, Microsoft
incorporated its version of the language, called JScript, in Internet Explorer 3. The
core language part of JScript is essentially identical to that of JavaScript in
Netscape Navigator, albeit usually one generation behind. Where the two browsers
greatly differ, however, is in their document object models.

As mentioned in Chapter 2, standards efforts are in various stages to address
potential incompatibilities among browsers. The core language is the first
component to achieve standard status. Through the European standards body
called ECMA, a formal standard for the language has been agreed to and published.
This language, dubbed ECMAScript, is roughly the same as JavaScript 1.1 in
Netscape Navigator 3. The standard defines how various data types are treated,
how operators work, what various data-specific syntax looks like, and other
language characteristics. You can view the ECMA-262 specification at
http://www.ecma.ch. If you are a student of programming languages, you will find
the document fascinating; if you simply want to script your pages, you will
probably find the minutia mind-boggling.

Both Netscape and Microsoft have pledged to make their browsers compliant
with this standard. Because of the fortuitous timing of the completion of the
standard and the formal release of Internet Explorer 4, the latest version of the
Microsoft browser is the first to comply with ECMAScript (with a couple minor
omissions). Navigator 3 and 4 are already very close to the standard.

Document object standard

A recommendation for a document object model standard has yet to be finalized
as this book goes to press. A comparison of the object models in Navigator 4 and
Internet Explorer 4 reveals what appears to be diverging strategies — at least for
now. While Navigator currently adheres to a fairly simple model, as previewed in
earlier chapters and discussed in more detail later in this chapter, Internet
Explorer 4 defines an object model that is at once extremely flexible and
significantly more complicated to work with.

A key beneficiary of the added complexity in Internet Explorer 4’s object model
is the scripter who wishes to make a lot of changes to content on the fly — beyond
the kind of object positioning possible with standard Cascading Style Sheet-
Positioning (see Chapter 41). Internet Explorer 4’s page rendering engine is fast
enough to reflow content when a script changes the text inside a tag or the size of
an object. Virtually everything that can be defined in HTML with a tag is an object
in Internet Explorer 4. Moreover, properties for each of these objects include the
body text that appears in the document and the very HTML for the element itself
— all of which can be modified on the fly without reloading the document.

Standards efforts on the document object model are under way under the
auspices of the W3C, the same organization that oversees the HTML specification.
While both Netscape and Microsoft again pledge to support industry standards,
each company is taking its own route until this particular standard is established,
and both are not bashful about including their own proprietary extensions.

Later in this chapter, | say more about how to address issues of incompatibility
among browser versions and brands. Suffice it to say that because this book



Chapter 13 [ JavaScript Essentials 145

focuses on Netscape’s implementation of the JavaScript language, it also focuses
on its document object model. Throughout the rest of this chapter, when | refer to
objects and the object hierarchy, | am talking about document objects, as opposed
to core language objects.

The Object Hierarchy

In the tutorial chapters of Part Il, | speak of the JavaScript object hierarchy. In
other object-oriented languages, object hierarchy plays a much greater role than it
does in JavaScript (you don’t have to worry about related terms, such as classes,
inheritance, and instances, in JavaScript). Even so, you cannot ignore the hierarchy
concept, because much of your code relies on your ability to write references to
objects that depend on their position within the hierarchy.

Calling these objects JavaScript objects is not entirely accurate either. These are
really browser document objects: you just happen to use the JavaScript language
to bring them to life. Technically speaking, JavaScript objects are the ones that
apply to data types and other core language objects separate from the document.
These objects are covered in many chapters, beginning with Chapter 26. The more
you can keep document and core language objects separate in your head, the more
quickly you’ll be able to deal with browser brand compatibility issues.

Hierarchy as road map

For the programmer, the primary role of the document object hierarchy is to
provide scripts with a way to reference a particular object among all the objects
that a browser window can contain. The hierarchy acts as a road map the script
can use to know precisely which object to address.

Consider, for a moment, a scene in which you and your friend Tony are in a high
school classroom. It’s getting hot and stuffy as the afternoon sun pours in through
the wall of windows on the west side of the room. You say to Tony, “Would you
please open a window?” and motion your head toward a particular window in the
room. In programming terms, you’ve issued a command to an object (whether or
not Tony appreciates the comparison). This human interaction has many
advantages over anything you can do in programming. First, by making eye contact
with Tony before you spoke, he knew that he was the intended recipient of the
command. Second, your body language passed along some parameters with that
command, pointing ever so subtly to a particular window on a particular wall.

If, instead, you were in the principal’s office using the public address system,
and you broadcasted the same command, “Would you please open a window?” no
one would know what you meant. Issuing a command without directing it to an
object is a waste of time, because every object would think, “That can’t be meant
for me.” To accomplish the same goal as your one-on-one command, the
broadcasted command would have to be something like “Would Tony Jeffries in
Room 312 please open the middle window on the west wall?”

Let’s convert this last command to JavaScript “dot” syntax form (see Chapter 4).
Recall from the tutorial that a reference to an object starts with the most global
point of view and narrows to the most specific point of view. From the point of
view of the principal’s office, the location hierarchy of the target object is



146  Partlil O JavaScript Object and Language Reference

room312.Jdeffries.Tony

You could also say that Tony’s knowledge about how to open a window is one of
Tony’s methods. The complete reference to Tony and his method then becomes

room312.Jeffries.Tony.openWindow()

Your job isn’t complete yet. The method requires a parameter detailing which
window to open. In this case, the window you want is the middle window of the
west wall of Room 312. Or, from the hierarchical point of view of the principal’s
office, it becomes

room312.westWall.middleWindow

This object road map is the parameter for Tony’s openWindow() method.
Therefore, the entire command that comes over the PA system should be

room312.Jeffries.Tony.openWindow(room312.westWall.middleWindow)

If, instead of barking out orders while sitting in the principal’s office, you were
attempting the same task via radio from an orbiting space shuttle to all the
inhabitants on Earth, imagine how laborious your object hierarchy would be. The
complete reference to Tony’s openWindow() method and the window that you
want opened would have to be mighty long to distinguish the desired objects from
the billions of objects within the space shuttle’s view.

The point is that the smaller the scope of the object-oriented world you're
programming, the more you can assume about the location of objects. For
JavasScript, the scope is no wider than the browser itself. In other words, every
object that a JavaScript script can work with is within the browser application. A
script does not access anything about your computer hardware, operating system,
or desktop, or any other stuff beyond the browser program.

The JavaScript document object road map

Figure 13-1 shows the complete JavaScript document object hierarchy as
implemented in Netscape Navigator 4. Notice that the window object is the
topmost object in the entire scheme. Everything you script in JavaScript is in the
browser’s window — whether it be the window itself or a form element.

Of all the objects shown in Figure 13-1, you are likely to work most of the time
with the ones that appear in boldface. Objects whose names appear in italics are
synonyms for the window object, and are used only in some circumstances.

Pay attention to the shading of the concentric rectangles. Every object in the
same shaded area is at the same level relative to the window object. When a link
from an object extends to the next darker shaded rectangle, that object contains
all the objects in darker areas. There exists at most one of these links between
levels. A window object contains a document object; a document object contains a
form object; a form object contains many different kinds of form elements.

Study Figure 13-1 to establish a mental model for the scriptable elements of a
Web page. After you script these objects a few times, the object hierarchy will
become second nature to you — even if you don’t necessarily remember every
detail (property, method, and event handler) of every object. At least you will
know where to look for information.



Chapter 13 O JavaScript Essentials 147

window
frame | self| top | parent

| histlory | |document| | Ioca;tion | |t00|b&lll', etc.|

Iirl1k || anclhor || Ia;ller || fo;'m || ap;g)let || imallge || arlea

| text || ra(ljlio || butlt;)ln ||fiIeU;l)Ioad|

| textarea | |checkb0x| | reset |

Figure 13-1: The JavaScript document object hierarchy in Navigator 4

Creating JavaScript Objects

Most of the objects that a browser creates for you are established when an
HTML document loads into the browser. The same kind of HTML code you’ve used
to create links, anchors, and input elements tells a JavaScript-enhanced browser to
create those objects in memory. The objects are there whether or not your scripts
call them into action.

The only visible differences to the HTML code for defining those objects are the
one or more optional attributes specifically dedicated to JavaScript. By and large,
these attributes specify the event you want the user interface element to react to
and what JavaScript should do when the user takes that action. By relying on the
document’s HTML code to perform the object generation, you can spend more time
figuring out how to do things with those objects or have them do things for you.

Bear in mind that objects are created in their load order, which is why you should
put most, if not all, deferred function definitions in the document’s Head. And if
you’re creating a multiframe environment, a script in one frame cannot communicate
to another frame’s objects until both frames load. This trips up a lot of scripters who
are creating multiframe and multiwindow sites (more in Chapter 14).

Object Properties

A property generally defines a particular, current setting of an object. The
setting may reflect a visible attribute of an object, such as a document’s
background color; it may also contain information that is not so obvious, such as
the action and method of a form when it is submitted.

Document objects have most of their properties assigned by the attribute
settings of the HTML tags that generate the objects. Thus, a property may be a
string (for example, a name) or a number (for example, a size). A property can also
be an array, such as an array of images contained by a document. If the HTML does
not include all attributes, the browser usually fills in a default value for both the
attribute and the corresponding JavaScript property.



148 Part 11l O JavaScript Object and Language Reference

A note to experienced object-oriented programmers

Although the JavaScript hierarchy appears to have a class-subclass relationship, many of the
traditional aspects of a true, object-oriented environment don’t apply to the document
object model. The JavaScript document object hierarchy is a containment hierarchy, not an
inheritance hierarchy. No object inherits properties or methods of an object higher up the
chain. Nor is there any automatic message passing from object to object in any direction.
Therefore, you cannot invoke a window’s method by sending a message to it via a docu-
ment or form object. All object references must be explicit.

Predefined document objects are generated only when the HTML code containing their
definitions loads into the browser. Many properties, methods, and event handlers cannot
be modified once you load the document into the browser. In Chapter 34, you learn how
to create your own objects, but those objects cannot be the type that present new visual
elements on the page that go beyond what HTML, Java applets, and plug-ins can portray.

—
Note When used in script statements, property nhames are case-sensitive. Therefore, if
~ you see a property name listed as bgColor, you must use it in a script statement

with that exact combination of lowercase and uppercase letters. But when you are
setting an initial value of a property by way of an HTML attribute, the attribute
name (like all of HTML) is not case-sensitive. Thus, <BODY BGCOLOR="white">
and <body bgcolor="white"> both set the same property value.

Each property determines its own read-write status. Some objects are read-only,
whereas others can be changed on the fly by assigning a new value to them. For
example, to put some new text into a text object, you assign a string to the object’s
value property:

document.forms[0].phone.value = "555-1212"

Once an object contained by the document exists (that is, its HTML has loaded
into the document), you can also add one or more custom properties to that
object. This can be helpful if you wish to associate some additional data with an
object for later retrieval. To add such a property, simply specify it in the same
statement that assigns a value to it:

document.forms[0].phone.delimiter = "-"

Any property you set survives as long as the document remains loaded in the
window and scripts do not overwrite the object.

Object Methods

An object’s method is a command that a script can give to that object. Some
methods return values, but that is not a prerequisite for a method. Also, not every
object has methods defined for it. In a majority of cases, invoking a method from a
script causes some action to take place. It may be an obvious action, such as
resizing a window, or something more subtle, such as processing a mouse click.



Chapter 13 O JavaScript Essentials 149

All methods have parentheses after them and always appear at the end of an
object’s reference. When a method accepts or requires parameters, their values go
inside the parentheses.

While an object has its methods predefined by the object model, you can also
assign one or more additional methods to an object that already exists (that is, its
HTML has loaded into the document). To do this, a script in the document (or in
another window or frame accessible by the document) must define a JavaScript
function, then assign that function to a new property name of the object. In the
following Navigator 4 script example, the fullScreen() function invokes one
window object method and adjusts two window object properties. By assigning the
function reference to the new window.maximize property, | have defined a
maximize() method for the window object. Thus, a button’s event handler can call
that method directly.

function fullScreen() {
this.moveTo(0,0)
this.outerWidth = screen.availWidth
this.outerHeight = screen.availHeight

}

window.maximize = fullScreen

<INPUT TYPE="button" VALUE="Maximize Window"
onClick="window.maximize()">

Object Event Handlers

Event handlers specify how an object reacts to an event, whether the event is
triggered by a user action (for example, a button click) or a browser action (for
example, the completion of a document load). Going back to the earliest
JavaScript-enabled browser, event handlers were defined inside HTML tags as extra
attributes. They included the name of the attribute, followed by an equals sign
(working as an assignment operator) and a string containing the script
statement(s) or function(s) to execute when the event occurs. Event handlers also
have other forms. In Navigator 3 and later, event handlers have corresponding
methods for their objects and every event handler is a property of its object.

Event handlers as methods

Consider a button object whose sole event handler is onC11ck=. This means
whenever the button receives a click event, the button triggers the JavaScript
expression or function call assigned to that event handler in the button’s HTML
definition:

<INPUT TYPE="button" NAME="clicker" VALUE="Click Me" onClick="doIt()">

Normally, that click event is the result of a user physically clicking on the button
in the page. You can also trigger the event handler with a script by calling the
event handler as if it were a method of the object:

document.formName.clicker.onclick()



150  Part 1l O JavaScript Object and Language Reference

Notice that when summoning an event handler as a method, the method name
is all lowercase, regardless of the case used in the event handler attribute within
the original HTML tag. This lowercase reference is a requirement.

Invoking an event handler this way is different from using a method to replicate
the physical action denoted by the event. For example, imagine a page containing
three simple text fields. One of those fields has an onFocus= event handler defined
for it. Physically tabbing to or clicking in that field brings focus to the field and
thereby triggers its onFocus= event handler. If the field did not have focus, a
button could invoke that field’s onFocus= event handler by referencing it as a
method:

document.formName.fieldName.onfocus()

This scripted action does not bring physical focus to the field. The field’s own
focus () method, however, does that under script control.

A byproduct of an event handler’s capability to act like a method is that you can
define the action of an event handler by defining a function with the event
handler’s name. For example, instead of specifying an onLoad= event handler in a
document’s <BODY> tag, you can define a function like this:

function onload() {
statements

}

This capability is particularly helpful if you want event handler actions confined
to a script running in Navigator 3 or later. Your scripts won’t require special traps
for Navigator 2 or Internet Explorer 3.

Event handlers as properties

Although event handlers are normally defined in an object’s HTML tag, you also
have the power to change the event handler from Navigator 3 onward, the reason
being that an event handler is treated like any other object property whose value
you can both retrieve and modify. The value of an event handler property looks
like a function definition. For example, given this HTML definition:

<INPUT TYPE="text" NAME="entry" onFocus="dolIt()">
the value of the object’s onfocus (all lowercase) property is

function onfocus() {
dolIt()

}

You can, however, assign an entirely different function to an event handler by
assigning a function reference to the property. Such references don’t include the
parentheses that are part of the function’s definition (you see this again much
later in Chapter 34, when you assign functions to object properties).

Using the same text field definition you just looked at, assign a different function
to the event handler, because based on user input elsewhere in the document, you
want the field to behave differently when it receives the focus. If you define a
function like this:



Chapter 13 [ JavaScript Essentials 157

function doSomethingElse() {
statements

}
you can then assign the function to the field with this assignment statement:
document.formName.entry.onfocus = doSomethingElse

Because the new function reference is written in JavaScript, you must observe
case. In Navigator 3, the handler name must be all lowercase; in Navigator 4, you
can also use the more familiar interCap version (for example,
document.formName.entry.onFocus = doSomethingElse).

Caution Be aware, however, that as with several settable object properties that don’t
manifest themselves visually, any change you make to an event handler property
disappears with a document reload. Therefore, | advise you not to make such
changes except as part of a script that also invokes the event handler like a method.

Because every event handler operates as both property and method, | won't list
these properties and methods as part of each object’s definition in the next
chapters. You can be assured this feature works for every JavaScript object that
has an event handler from Navigator 3 onward.

Embedding Scripts in Documents

JavasScript offers three ways to include scripts or scripted elements in your
documents — the <SCRIPT> tag, the external library, and the JavaScript entity for
HTML attributes, discussed in the following sections. Not all approaches are
available in all versions of Navigator, but you do have everything at your disposal
for Navigator 3 onward and for some versions of Internet Explorer 3 onward.

<SCRIPT> tags

The simplest and most compatible way to include script statements in a
document is inside a <SCRIPT>...</SCRIPT> tag set. You can have any number of
such tag sets in your document. For example, you can define some functions in the
Head section to be called by event handlers in HTML tags within the Body section.
Another tag set could be within the Body to dynamically write part of the content
of the page. Place only script statements and comments between the start and end
tags of the tag set. Do not place any HTML tags inside unless they are part of a
parameter to a document.write() statement that creates content for the page.

Every opening <SCRIPT> tag should specify the LANGUAGE attribute. Because
the <SCRIPT> tag is a generic tag indicating that the contained statements are to
be interpreted as executable script and not renderable HTML, the tag is designed
to accommodate any scripting language the browser knows about.

All scriptable browsers (from Navigator 2 onward and Internet Explorer 3
onward) recognize the LANGUAGE="JavaScript" attribute setting. However, more
recent browsers typically acknowledge additional versions of JavaScript or, in the
case of Internet Explorer, other languages. For example, the JavaScript interpreter
built into Navigator 3 knows the JavaScript 1.1 version of the language; Navigator 4
and Internet Explorer 4 include the JavaScript 1.2 version. For versions beyond the



152  Partlil O JavaScript Object and Language Reference

original JavaScript, you specify the language version by appending the version
number after the language name, without any spaces, as in

<SCRIPT LANGUAGE="JavaScriptl.1">
{SCRIPT LANGUAGE="JavaScriptl.2">

How you use these later-version attributes depends on the content of the
scripts and your intended audience. For example, while Navigator 4 is JavaScript
1.2-compatible, it works with all versions of the JavaScript LANGUAGE attribute.
Even features of the language new in JavaScript 1.2 will be executed if the
LANGUAGE attribute is set to only "JavaScript". On rare occasions (detailed in
the succeeding chapters) the behavior of the language change, in a Navigator 4
browser if you specify the JavaScript 1.2 language instead of an earlier version.

Writing scripts for a variety of browser versions requires a bit of care, especially
when the scripts may contain language features available only in newer browsers.
As demonstrated in an extensive discussion about browser detection later in this
chapter, there may be a need to include multiple versions of a script function, each
in its own <SCRIPT> tag with a different LANGUAGE attribute.

JavaScript versus JScript and VBScript

As previously explained, Internet Explorer’s version of JavaScript is called
JScript. As a result, Internet Explorer’s default script language is JScript. While
Internet Explorer acknowledges the LANGUAGE="JavaScript" attribute, Netscape
Navigator ignores the LANGUAGE="JScript" attribute. Therefore, if you are writing
scripts that must work in both Internet Explorer and Netscape Navigator, you can
specify one language ("JavaScript") and count on both browsers interpreting the
code correctly (assuming you take into account the other compatibility issues).

An entirely different issue is Internet Explorer’s other scripting language,
VBScript. This language is a derivative of Visual Basic and offers no
interoperability with JavaScript scripts (even though both languages work with the
same Internet Explorer object model). You can mix scripts from both languages in
the same document, but their tag sets must be completely separate, with the
LANGUAGE attributes clearly specifying the language for the <SCRIPT> tag.

Hiding script statements from older browsers

As more versions of scriptable browsers spread among the user community, the
installed base of older, nonscriptable browsers diminishes. However, public Web
sites can still attract a variety of browsers that date back to the World Wide Web
Stone Age (before A.D.1996).

Browsers from those olden days do not know about the <SCRIPT> tag. Normally,
browsers ignore tags they don’t understand. That’s fine when a tag is just one line
of HTML, but a <SCRIPT> tag sets off any number of script statement lines in a
document. Old browsers don’t know to expect a closing </SCRIPT> tag. Therefore,
their natural inclination is to render any lines they encounter after the opening
<SCRIPT> tag. Unfortunately, this places script statements squarely in the
document — surely to confuse anyone who sees such gibberish on the page.

You can, however, exercise a technique that tricks most older browsers into
ignoring the script statements. The trick is surrounding the script statements —
inside the <SCRIPT> tag set — with HTML comment markers. An HTML comment



Chapter 13 [ JavaScript Essentials ] 53

begins with the sequence <!-- and ends with -->. Therefore, you should embed
these comment sequences in your scripts according to the following format:

<SCRIPT LANGUAGE="JavaScript">
<l--

script statements here

[1-=>

</SCRIPT>

JavaScript interpreters also know to ignore a line that begins with the HTML
beginning comment sequence, but the interpreter needs a little help with the
ending sequence. The close of the HTML comment starts with a JavaScript
comment sequence (//). This tells JavaScript to ignore the line; but a
nonscriptable browser sees the ending HTML symbols and begins rendering the
page with the next HTML tag or other text in the document. Since an older browser
won’t know what the </SCRIPT> tag is, the tag is ignored, and rendering begins
after that.

Even with this subterfuge, not all browsers handle HTML comment tags
gracefully. Some older America Online browsers will display the script statements
no matter what you do. Fortunately, these browsers are disappearing.

If your pages are being designed for public access, include these HTML
comment lines in all your <SCRIPT> tag sets. Make sure they go inside the tags, not
outside. Also note that most of the script examples in this part of the book do not
include these comments, for the sake of saving space in the listings.

Hiding scripts entirely?

It may be misleading to say that this HTML comment technique hides scripts
from older browsers. In truth, the comments hide the scripts from being rendered
by the browsers. The tags and script statements, however, are still downloaded to
the browser and appear in the source when viewed by the user.

A common wish among authors is to truly hide scripts from visitors to a page.
Client-side JavaScript must be downloaded with the page and is, therefore, visible in
the source view of pages. There are, of course, some tricks you can implement that
may disguise client-side scripts from prying eyes. The most easily implemented
technique is to let the downloaded page contain no visible elements, only scripts
that assemble the page that the visitor sees. Source code for such a page is simply
the HTML for the page. But that page will not be interactive, because no scripting
would be attached unless it were written as part of the page — defeating the goal of
hiding scripts. If you are worried about your scripts being “stolen” by other
scripters, a perfect way to prevent it is to include a copyright notification in your
page’s source code. Not only are your scripts visible to the world, but so, too,
would a thief’s scripts be. This way you can easily see if someone has lifted your
scripts verbatim.

Script libraries

If you do a lot of scripting or script a lot of pages for a complex Web application,
you will certainly develop some functions and techniques that could be used for
several pages. Rather than duplicate the code in all of those pages (and go through
the nightmare of making changes to all copies for new features or bug fixes), you
can create separate script library files and link them to your pages.



154  Part 1l O JavaScript Object and Language Reference

Such an external script file contains nothing but JavaScript code — no
<{SCRIPT> tags, no HTML. The script file you create must be a text-only file, such as
an HTML source file, but its filename must end with the two-character extension
.js. To instruct the browser to load the external file at a particular point in your
regular HTML file, you add a SRC attribute to the <SCRIPT> tag, as follows:

<SCRIPT LANGUAGE="JavaScript" SRC="hotscript.js"></SCRIPT>

This kind of tag should go at the top of the document so it loads before any
other in-document <SCRIPT> tags load. If you load more than one external library,
include a series of these tag sets at the top of the document.

Note two features about this tag construction: First, the <SCRIPT> ...
</SCRIPT> tag pair is required, even though nothing appears between them. You
can mix <SCRIPT> tag sets that specify external libraries and include in-document
scripts in the same document.

How you reference the source file in the SRC attribute depends on its physical
location and your HTML coding style. In the preceding example, the js file is in the
same directory as the HTML file containing the tag. But if you want to refer to an
absolute URL, the protocol for the file is http://, just like with an HTML file:

<SCRIPT LANGUAGE="JdavaScript" SRC="http://www.cool.com/hotscript.js">
</SCRIPT>

A very important prerequisite for using script libraries with your documents is
your Web server software must know how to map files with the .js extension to a
MIME type of application/x-javascript. If you plan to deploy JavaScript in this
manner, be sure to test a sample on your Web server beforehand and arrange for
any server adjustments that may be necessary.

When a user chooses Document Source from Navigator’s View menu, code from
a .js file does not appear in the window, even though the browser treats the loaded
script as part of the current document. However, the name or URL of the .js file is
plainly visible (displayed exactly as you wrote it for the SRC attribute). Anyone can
then open that file with the browser (using the http:// protocol) and view the .js
file’s source code. In other words, an external JavaScript source file is no more

- hidden from view than JavaScript embedded directly in an HTML file.
Note Navigator 3 exhibits a bug if you specify an external .js library file in a tag that
— specifies JavaScript 1.2 as the language. Unfortunately, Navigator 3 ignores the

language version and loads the external file no matter what language is specified in
that tag. Therefore, if you don’t want those scripts to run in Navigator 3, surround
the scripts in the external file in a version-checking i f clause:

if (parselnt(navigator.appVersion) > 3) {
statements to run here

}

Compatibility issues

On the Netscape Navigator side, the external capability was new with Navigator
3. Therefore, the SRC attribute is ignored in Navigator 2, and none of the external
scripts become part of the document.

The situation is more clouded on the Internet Explorer side. When Internet
Explorer 3 shipped for Windows, the external script library feature was not



Chapter 13 [ JavaScript Essentials 155

available. By most accounts, Internet Explorer Version 3.02 included support for
external libraries, but | have heard reports that this is not the case. | know that the
Version 3.02 installed on my Windows 95 computers loads external libraries from
Js files. It may be a wise tactic to specify a complete URL for the .js file, as this has
been known to assist Internet Explorer 3 in locating the script library file
associated with an HTML file.

JavaScript entities

Another feature that started with Navigator 3 was the JavaScript entity. The idea
behind this technique was to provide a way for the browser to use script
expressions to fill in the data for any HTML tag attribute. Netscape entities are
strings that allow special characters or symbols to be embedded in HTML. They
begin with an ampersand symbol (&) and end with a semicolon (;). For example,
the &c; entity is rendered in Netscape browsers as a copyright symbol (©).

To assign a JavaScript expression to an entity, the entity still begins and ends
like all entities, but the expression is surrounded by curly braces. For example,
consider a document containing a function that returns the current day of the
week, as follows:

function today() {
var days = new
Array("Sunday","Monday","Tuesday", "Wednesday","Thursday","Friday",
"Saturday")
var today = new Date()
return days[today.getDay()]
1

This function can be assigned to a JavaScript entity such that the label of a
button is created with the returned value of the function:

<INPUT TYPE=button VALUE=&{today()}; onCLick="handleToday()">

Expressions can be used to fulfill only attribute assignments, not other parts
related to a tag, such as the text for a document title or link. Those items can still
be dynamically generated via document.write() statements as the document
loads.

Browser Version Detection

Without question the biggest challenge facing client-side scripters is how to
program an application that accommodates a wide variety of browser versions and
brands, each one of which can bring its own quirks and bugs. Happy is the intranet
developer who knows for a fact that the company has standardized its computers
with a particular brand and version of browser. But that is a rarity, especially in
light of the concept of the extranet — private corporate networks and applications
that open up for access to the company’s suppliers and customers.

Having dealt with this problem since the original scripted browser, Navigator 2,
had to work alongside a hoard of nonscriptable browsers, | have identified several
paths that an application developer can follow. Unless you decide to be autocratic
about browser requirements for using your site, you must make compromises in



Part 11l O JavaScript Object and Language Reference

desired functionality or provide multiple paths in your Web site for two or more
classes of browsers. Plenty of Web surfers are still using the text-only, server-based
browser called Lynx. In this section, | give you several ideas about how to
approach development in an increasingly fragmented browser world.

Is JavaScript on?

Very often, the first decision an application must make is whether the client
accessing the site is JavaScript-enabled. Non-JavaScript-enabled browsers fall into
two categories: a) JavaScript-capable browsers that have JavaScript turned off in
the preferences; and b) browsers that have no JavaScript interpreter built in.

Using the <NOSCRIPT> tag

Except for some of the earliest versions of Netscape Navigator, all JavaScript-
capable browsers have a preferences setting to turn off JavaScript (and a separate
one for Java). You should know that even though JavaScript is turned on by default
in Navigator, many institutional deployments have it turned off by default. The
reasons behind this MIS deployment decision vary from scares about Java security
violations incorrectly associated with JavaScript, valid JavaScript security
concerns on some browser versions, and the fact that some firewalls try to filter
JavaScript lines from incoming HTML streams.

All JavaScript-capable browsers include a set of <NOSCRIPT>. . .</NOSCRIPT>
tags to balance the <SCRIPT>...</SCRIPT> tag set. If one of these browsers has
JavaScript turned off, the <SCRIPT> tag is ignored, but the <NOSCRIPT> tag is
observed. As with the <NOFRAMES> tag, you can use the body of a <NOSCRIPT> tag
set to display HTML that lets users know JavaScript is turned off and therefore the
full benefit of the page won’t be available unless JavaScript is turned on. Listing 13-
1 shows a skeletal HTML page that uses these tags.

Listing 13-1: Employing the <NOSCRIPT> Tag

<HEAD>
<TITLE>Some Document</TITLE>
<SCRIPT LANGUAGE="JavaScript">
// script statements
</SCRIPT>
<NOSCRIPT>
<B>Your browser has JavaScript turned off.</B><BR>
You will experience a more enjoyable time at this Web site if you turn
JavaScript on.<BR>
Open your browser preferences, and enable JavaScript.<BR>
You do not have to restart your browser or your computer after you
enable JavaScript. Simply click the 'Reload' button.
<HR>
</NOSCRIPT>
</HEAD>
<BODY>
<H2>The body of your document.</H2>
</B0ODY>
</HTML>



Chapter 13 O JavaScript Essentials 157

You can display any standard HTML within the <NOSCRIPT> tag set. An icon
image might be a colorful way to draw the user’s attention to the special advice at
the top of the page. If your document is designed to dynamically create content in
one or more places in the document, you may have to include a <NOSCRIPT> tag
set after more than one <SCRIPT> tag set to let users know what they’re missing.
Do not include the HTML comment tags that you use in hiding JavaScript
statements from older browsers. Their presence inside the <NOSCRIPT> tags
prevents the HTML from rendering.

Other nonscriptable browsers

Unfortunately, browsers that don’t know about JavaScript also don’t know about
the <NOSCRIPT> tag. They generally do not render the content of those tags.

At this point | must point out that newcomers to scripting frequently want to
know what script to write to detect whether JavaScript is turned on. Because
scripters are so ready to write a script to work around all situations, it takes some
thought to realize that a non-JavaScript browser cannot execute such a script: If no
JavaScript interpreter exists in the browser (or it is turned off), the script is
ignored. | suppose that the existence of a JavaScript-accessible method for Java
detection — the navigator.javaEnabled() method — promises a parallel
method for JavaScript. But logic fails to deliver on that unspoken promise.

Another desire is to have JavaScript substitute document content when the
browser is JavaScript-enabled. But you cannot create a script to write scripted
content where normal HTML is destined to appear. All HTML in a document
appears in the browser, while scripted content can only be additive.

You can use this additive scripting to create unusual effects when displaying
different links and (with a caveat) body text for scriptable and nonscriptable browsers.
Listing 13-2 shows a short document that uses HTML comment symbols to trick
nonscriptable browsers into displaying a link to Netscape’s Web site and two lines of
text. A scriptable browser takes advantage of a behavior that allows only the nearest
<A> tag to be associated with a closing </A> tag. Therefore, the Netscape link isn’t
rendered at all, but the link to my Web site is. For the body text, the script assigns the
same text color to a segment of HTML body text as the document’s background. While
the colored text is camouflaged in a scriptable browser (and some other text written
to the document), the “hidden” text is still in the document, but not visible.

Listing 13-2: Rendering Different Content for Scriptable
and Nonscriptable Browsers

<HTML>

<BODY BGCOLOR="yellow">

<A HREF="http://www.yahoo.com">

<SCRIPT>

<l--

document.writeln("<A HREF=\"http://www.excite.com\">")
/1-->

</SCRIPT>

Where?</A>

(continued)



Part 11l O JavaScript Object and Language Reference

Listing 13-2 Continued

<HR>

<SCRIPT>

<h--

document.write("Howdy from the script!<FONT COLOR='yellow';>")
//-->

</SCRIPT>

<h--

If you can read this, JavaScript is not available.
<SCRIPT>

document.write("</FONT>")

//-->

</SCRIPT>

<BR>

Here's some stuff afterward.

</BODY>

</HTML>

Scripting for different browsers

The number of solutions for accommodating different client browsers is large
because the specific compatibility need might be as simple as letting a link navigate
to a scripted page for script-enabled browsers or as involved as setting up distinct
areas of your application for different browser classes. The first step in planning for
compatibility is determining what your goal is for various visitor classes.

Establishing goals

Once you have mapped out your application, you must then look at the
implementation details to see which browser is required for the most advanced
aspect of the application. For example, if the design calls for image swapping on
mouse rollovers, that feature requires Navigator 3 or later and Internet Explorer 4
or later. In implementing Dynamic HTML features, you also have to decide if the
functionality you specified can be made to work on both Navigator 4 and Internet
Explorer 4 through some cross-platform scripting (see Chapter 41).

After you determine the lowest common denominator for the optimum
experience, you then must decide how gracefully you want to degrade the
application for visitors whose browsers do not meet the common denominator. For
example, if you plan a page or site that requires Navigator 4 or Internet Explorer 4
for all the bells and whistles, you could provide an escape path with content in a
simple format that every browser from Lynx to Navigator 3 would get. Or perhaps
you would provide for users of older scriptable browsers a third offering with
limited scriptability that works on all scriptable browsers.

Creating an application or site that has multiple paths for viewing the same
content may sound good at the outset, but don’t forget that maintenance chores lie
ahead as the site evolves. Will you have the time, budget, and inclination to keep
all paths up to date? Despite any good intentions a designer of a new Web site may



Chapter 13 [ JavaScript Essentials ] 59

have, in my experience the likelihood that a site will be properly maintained
diminishes rapidly with the complexity of the maintenance task.

Implementing a branching index page

If you decide to offer two or more paths into your application or content, one
place you can start visitors down their individual paths is at the default page for
your site. Numerous techniques are available that can redirect visitors to the
appropriate perceived starting point of the site.

One design to avoid is placing the decision about the navigation path in the hands
of the visitor. Offering buttons or links that describe the browser requirements may
work for users who are HTML and browser geeks, but the average consumers surfing
the Web these days likely won’t have a clue about what level of HTML their browsers
support or whether they are JavaScript-enabled. It is incumbent upon the index page
designer to automate the navigation task as much as possible.

A branching index page has almost no content. It is not the “home page” per se
of the site, rather merely a portal to the entire Web site. Its job is to redirect users
to what appears to be the home page for the site. Listing 13-3 shows what such a
branching index page looks like.

Listing 13-3: A Branching Index Page

<HTML>
<HEAD>
<TITLE>GiantCo On The Web</TITLE>
<SCRIPT LANGUAGE="JavaScript">
<l--

window.location = "homel.html"
//-->
</SCRIPT>

<META HTTP-EQUIV="REFRESH" CONTENT="1;
URL=http://www.giantco.com/home2.html">
</HEAD>

<BODY>
<CENTER>
<A HREF="home2.htm1"><IMG SRC="images/giantcoLogo.gif" HEIGHT=60
WIDTH=120 BORDER=0 ALT="GiantCo Home Page"></A>
</CENTER>
</BODY>
</HTML>

Notice that the only visible content is an image surrounded by a standard link.
The <BODY> tag contains no background color or art. A single script statement is
located in the Head. A <META> tag is also in the Head to automate navigation for
some users. To see how a variety of browsers would respond to this page, here are
what three different classes of browser would do with Listing 13-3:

A JavaScript-enabled browser. Although the entire page loads momentarily
(flashing the company logo for a brief moment), the browser executes the script
statement that loads homel.html into the window. This executes within about a



160  Part il O JavaScript Object and Language Reference

second after the page loads. In the meantime, the image has been preloaded into
the browser’s memory cache. This image should be one that is reused in
homel.html so the download time isn’t wasted on a one-time image. If your pages
require a specific brand or minimum version number, this would be the place to
filter out browsers that don’t meet the criteria (which may include the installation
of a particular plug-in). Use the properties of the navigator object (Chapter 25) to
allow only those browsers meeting your design minimum to navigate to the
scripted home page. All others fall through to the next execution possibility.

A modern browser with JavaScript turned off or missing. Several modern
browsers recognize the special format of the <META> tag as one that loads a URL
into the current window after a stated number of seconds. In Listing 13-3 that
interval is one second. The <META> tag is executed only if the browser ignores the
{SCRIPT> tag. Therefore, any scriptable browser that has JavaScript turned off or
browser that knows <META> tags but no scripting will follow the refresh command
for the <META> tag. If you utilize this tag, be very careful to observe the tricky
formatting of the CONTENT attribute value. The number of seconds is followed by a
semicolon and the subattribute URL. A complete URL for your nonscriptable home
page version is required for this subattribute. Importantly, the entire CONTENT
attribute value is inside one set of quotes.

Older graphical browsers, PDA browsers, and Lynx. The last category
includes graphical browsers some would call “brain-dead” as well as intentionally
stripped down browsers. Lynx is designed to work in a text-only VT-100 terminal
screen; personal digital assistants (PDAs) such as the Apple Newton and Windows
CE devices have browsers optimized for usage through slow modems and viewing
on small screens. If such browsers do not understand the <META> tag for refreshing
content, they will land at this page with no further automatic processing. But by
creating an image that acts as a link, the tendency will be to click on it to continue.
The link then leads to the nonscriptable home page. Also note that the ALT
attribute for the image is supplied. This takes care of Lynx and PDA browsers (with
image loading off), because these browsers show the ALT attribute text in lieu of
the image. Users click on the text to navigate to the URL referenced in the link tag.

I have a good reason to keep the background of the branching index page plain.
For those whose browsers automatically lead them to a content-filled home page,
the browser window will flash from a set background color to the browser’s default
background color before the new home page and its background color appear. By
keeping the initial content to only the company logo, less screen flashing and
obvious navigation are visible to the user.

One link — alternate destinations

Another filtering technique is available directly from links. With the exceptions
of Navigator 2 and Internet Explorer 3, a link can navigate to one destination via a
link’s onC11ick= event handler and to another via the HREF attribute if the browser
is not scriptable.

The trick is to include an extra return false statement in the onC11ick= event
handler. This statement cancels the link action of the HREF attribute. For example,
if a nonscriptable browser is to go to one version of a page at the click of a link
and the scriptable browser should go to another, the link tag would be as follows:

<A HREF="nonJdSCatalog.html" onClick="Tocation="'JSCatalog.html';return
false">Product Catalog</A>



Chapter 13 O JavaScript Essentials 1671

Only nonscriptable browsers, Navigator 2, and Internet Explorer 3 go to the
nonJSCatalog.html page; all others go to the JSCatalog.html page.

Multiple-level scripts

Each new JavaScript level brings more functionality to the language. You can
use the LANGUAGE attribute of the <SCRIPT> tag to provide road maps for the
execution of functions according to the power available in the browser. For
example, consider a button whose event handler invokes a function. That function
can be written in such a way that users of each JavaScript version get special
treatment with regard to unique features of that version. To make sure all
scriptable browsers handle the event handler gracefully, you can create multiple
versions of the function, each wrapped inside its own <SCRIPT> tag specifying a
particular language version.

Listing 13-4 shows the outline of a page that presents different versions of the
same event handler. For this technique to work properly, you must lay out the
{SCRIPT> tags in ascending order of JavaScript version. In other words, the last
function that the browser knows how to read (according to the LANGUAGE version)
is the one that gets executed. In Listing 13-4, for instance, Navigator 3 gets only as
far as the middle version and executes only that one.

Listing 13-4: Multiple Script Versions

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
<l--
function dolt() {
// statements for JavaScript 1.0 browsers
}
//-=>
</SCRIPT>
<SCRIPT LANGUAGE="JavaScriptl.1">
<l--
function dolt() {
// statements for JavaScript 1.1 browsers
}
//-->
</SCRIPT>
<SCRIPT LANGUAGE="JavaScriptl.2">
<l--
function dolt() f
// statements for JavaScript 1.2 browsers
}
//-->
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE=button VALUE="Click Me" onClick="doIt()">
</FORM>

(continued)



162  Partlil O JavaScript Object and Language Reference

Listing 12-2 Continued

</BODY>
</HTML>

If you use this technique, you must define an event handler for each level below
the highest version you intend to support. For example, failure to include a version
for JavaScript 1.0 in Listing 13-4 would result in a script error for users of Navigator
2 and Internet Explorer 3. If you don’t want an older browser to execute a function
(because the browser doesn’t support the functionality required for the action),
include a dummy function (a function definition with no statements) in the lower-
level <SCRIPT> tag to catch the event handlers of less-capable browsers.

Scripted event handler properties

Along the same lines of Listing 13-4, you can define event handlers for objects
within separate language versions. For example, in Listing 13-5, a button is
assigned an event handler within the context of a JavaScript 1.1-level script.
Navigator 2 and Internet Explorer 3 users won’t have their button’s event handler
set, because the HTML tag doesn’t have an event handler. In fact, you could also
specify a different function for JavaScript 1.2-level browsers by including another
{SCRIPT> tag below the one that currently sets the event handler. The new tag
would specify JavaScript 1.2 as the language and assign a different function to the
event handler.

Listing 13-5: Event Handler Assignments

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScriptl.l">
<l--
function dolt() {
// statements for JavaScript 1.1 browsers
}
//-=>
</SCRIPT>
</HEAD>
<BODY>
<FORM>

<INPUT TYPE=button NAME=janeButton VALUE="Click Me">
<SCRIPT LANGUAGE="JavaScriptl.1">
==
document.forms[0]. janeButton.onclick=dolt
//-=>
</SCRIPT>
</FORM>
</BODY>
</HTML>



Chapter 13 [ JavaScript Essentials ] 63

Designing for Compatibility

Each new major release of a browser brings compatibility problems for page
authors. It’'s not so much that old scripts break in the new versions (well-written
scripts rarely break in new versions). No, the problems center on the new features
that attract designers and how to handle visitors who have not yet advanced to
the latest and greatest browser version.

Adding to these problems are numerous bugs, particularly in first-generation
browsers from both Netscape and Microsoft. Worse still, some of these bugs affect
only one operating system platform among the many supported by the browser.
Even if you have access to all the browsers for testing, the process of finding the
errors, tracking down the bugs, and implementing workarounds that won’t break
later browsers can be a frustrating process, even when you’ve scripted pages from
the earliest days and have a long memory for ancient bug reports.

Catering only to the lowest common denominator can more than double your
development time, due to the expanded testing matrix necessary to ensure a good
working page in all operating systems on all versions. Decide how important the
scripted functionality you’re employing in a page is for every user. If you want
some functionality that works only in a later browser, then you may have to be a
bit autocratic in defining the minimum browser for scripted access to your page —
any lesser browser gets shunted to a simpler presentation of your site’s data.

Another possibility is to make a portion of the site accessible to most, if not all,
browsers, restricting the scripting to only the occasional enhancement that
nonscriptable browser users won’t miss. But once the application reaches a
certain point in the navigation flow, then a more capable browser is necessary to
get to the really good stuff. This kind of design is a carefully planned strategy that
lets the site welcome all users up to a point, but then enables the application to
shine for users of, say, Navigator 3 or higher.

The ideal page is one that displays useful content on any browser, but whose
scripting enhances the experience of the page visitor — perhaps in the way of
more efficient site navigation or interactivity with the page’s content. That is
certainly a worthy goal to aspire to. But even if you can achieve this nirvana on
only some pages, you will reduce the need for defining entirely separate, difficult-
to-maintain paths for browsers of varying capabilities.

Dealing with beta browsers

If you have crafted a skillfully scripted Web page or site, you may be concerned
when a prerelease version of a browser available to the public causes script errors
or other compatibility problems to appear on your page. Do yourself a favor —
don’t overreact to bugs and errors that occur in prerelease browser versions. If
your code is well written, it should work with any new generation of browser. If the
code doesn’t work correctly, consider the browser to be buggy. Report the bug
(preferably with a script sample) to the browser maker.

It is often difficult to prevent yourself from getting caught up in browser makers’
enthusiasm for a new release. But remember that a prerelease version is not a
shipping version. Users who visit your page with prerelease browsers should know
that there may be bugs in the browser. That your code does not work with a
prerelease version is not a sin, nor is it worth losing sleep over. Just be sure to
report the bug so the problem doesn’t make it into the release version.



164 Part 11l O JavaScript Object and Language Reference

Browser version headaches

As described more fully in Chapter 25’s discussion of the navigator object, your scripts can
easily determine which browser is the one running the script. However, the properties that
reveal the version don't always tell the whole story about Internet Explorer 3.

For one thing, the Windows and Macintosh versions of the same major browser version
(3.0x) implement slightly different object models. The Mac version includes the ever-
popular image object for mouse rollover image swapping; the Windows version does not,
and any attempt to use such code in the Windows version results in script errors.

Next, the first release of Internet Explorer 3 for the Macintosh was not scriptable at all —
the JavaScript interpreter was left out. Macintosh Version 3.01 was the first Mac version to
be scriptable. Even among minor generation releases of Internet Explorer 3 for Windows,
Microsoft implemented some new features here and there.

But probably the most troublesome problem is that an improved JavaScript interpreter (in
the JScript.dll file) underwent substantial improvements between Version 1 and Version 2
for Windows. Many copies of browser Version 3.02 for Windows shipped with Version 1 of
the .dIl. Some users updated their browsers if they knew to download the new .dll from
Microsoft. Unfortunately, the interpreter version is not reflected in any navigator object
property. A nasty Catch-22 in this regard is that Version 2 of the interpreter includes a new
property that lets you examine the interpreter version, but testing for that property in a
browser that has Version 1 of the interpreter installed results in an error message.

Due to the insecurity of knowing exactly what will and won’t work in a browser that iden-
tifies itself as Internet Explorer 3.0x, you might decide to redirect all users of Internet
Explorer 3 to pages in your application that include no scripting. But before you think I'm
bashing Internet Explorer 3, you should also consider doing the same redirection for
Navigator 2 users due to the number of platform-specific bugs that littered that first round
of JavaScript. JavaScript Versions 1.1 and 1.2 are much more stable and reliable platforms
on which to build scriptable applications. If you have an opportunity to study the access
logs of your Web site, analyze the proportion of different browser versions over several days
before deciding where you set your lowest common denominator for scripted access.

Compatibility ratings in reference chapters

With the proliferation of scriptable browser versions since Navigator 2, it is
important to know up front whether a particular object, property, method, or
event handler is supported in the lowest common denominator you are designing
for. Therefore, in the rest of the chapters of this reference part of the book, |
include frequent compatibility charts, like the following example:

Nav2 Nav3 Nav4 IE3/J1 1E3/32 1IE4/313

Compatibility d d d @) d d




Chapter 13 [ JavaScript Essentials 165

The first three columns represent Navigator Versions 2, 3, and 4, respectively.
For Internet Explorer, two columns appear for Version 3. One, marked IE3/J1,
represents the combination of Internet Explorer 3 and JScript.dll Version 1; IE3/J2
represents Internet Explorer 3 and JScript.dll Version 2. The first shipping version
of Internet Explorer 4 comes with JScript.dll Version 3, which is the latest one
available as this book goes to press. A checkmark means the feature is compatible
with the designated browser. You will also occasionally see one or more of the
checkmarks surrounded in parentheses. This means some bug or partial
implementation for that browser is explained in the body text.

I also recommend that you print out the JavaScript Road Map file shown in
Appendix A. The map is on the companion CD-ROM in Adobe Acrobat format. This
quick reference clearly shows each object’s properties, methods, and event
handlers, along with keys to the browser version in which each language item is
supported. You should find the printout to be as valuable a day-to-day resource.

Object Definitions in This Book

Throughout the rest of Part Ill, | present detailed descriptions of each document
object (and many core language objects). Each object definition begins with a
summary listing of its properties, methods, and event handlers, giving you a sense
of the scope of everything a particular object has to offer. From there, | go into
detailed explanations of when and how to use each term.

Whenever a syntax definition appears, note the few conventions used to
designate items, such as the optional parameters and placeholders that describe
the kind of data that belongs in those slots. All syntax definitions and code
examples are in HTML, so expect to see plenty of HTML tags in the familiar angle
brackets (<>). Listing 13-6 shows the button object definition.

Listing 13-6: Sample Object Definition

<INPUT
TYPE="button" | "submit" | "reset"
NAME="buttonName"
VALUE="TabelText"
[onClick="handlerTextOrFunction"]
[onMouseDown="handlerTextOrFunction"]
[onMouseUp="handlerTextOrFunction"] >

You should recognize most of this definition as the typical form for an HTML
element. The entire definition is surrounded by angle brackets. Some attribute
parameters (for NAME=, VALUE=, and the event handlers) let you assign names and
other values meaningful to your script: In this case, the attribute parameters
represent how you name the button, what text you want to appear on the button’s
label, and what you want the button to do when someone clicks it. Those
placeholders appear in italics to remind you that you need to fill in those blanks
with your own names. The placeholders attempt to describe the nature of the
parameter. This is nothing more than what you’d find in a good HTML guide.



166  Partlil O JavaScript Object and Language Reference

The last three attributes of the definition in Listing 13-6 appear inside square
brackets. This convention means the attributes are optional. In this case, if you
omit the event handler attributes, the button is just another HTML button like
others you’ve probably specified before (although it won’t do anything when
clicked).

In other definitions, especially parameters for methods, the values to be
supplied must be a particular data type (string, number, or Boolean). When the
value must be of a specific type, the placeholder for that parameter indicates the
data type in its name. For example, look at the history object’s go () method:

go (deltaNumber | "TitleOrURL")

In this rare instance of JavaScript accepting either one of two data types (shown
on either side of the “|” character), the method can accept either a number or a
string (denoted by the quotes) containing a valid title or URL in the window’s
history list.

Some methods return values after they execute. For example, one window
method displays a dialog box that prompts a user to enter text. When the user
clicks on the OK button, the text entered into the dialog box is passed back as a
value that can be assigned to a variable or used directly as a parameter for
another method. Each method listed in the object definitions indicates what kind
of value, if any, is returned by that method.

The last item of note about these definitions concerns the way you handle
property values. Every property has a value that must be one of the valid
JavaScript data types. Whether a property returns a Boolean, a string, or a number
can be important for your scripting statements. Therefore, | note the kind of value
required for each property.




