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Abstract

Increasing throughput and maximizing bandwidth usage is a potential requirement in both

unicast and multicast comunication networks. For any given point-to-point communication

network with multiple mutually exclusive information sources mulitcasting information bits

to some sets of destinations, it is difficult to characterize the admissible coding rate region.

Network switching alone can never reach to max-flow min-cut bound however, by employing

coding at the nodes, referred to as network coding, bandwidth can in general be saved.

Ahlswede, Cai, Li, and Yeung have shown that maximum achievable information rate by

network coding in a single source multicast network is more than that for the case of network

switching. WE have this problem of finding the maximum admissible coding rate region for

a given network and then devising a suitable information broadcast strategy for a given

communication network. We have analyzed the switching gap for a special network, defined

as the ratio of maximum achievable information rate using network coding (NC ) to that of

network switching (NS ). In this work, I have found the switching gap of a singular-symmetric,

dual-symmetric, triple-symmetric and then give an intuitive observation for the n th version

of singular symmetric butterfly network which I term as generic butterfly network.

Keywords : Network switching, Network coding, max-flow min-cut theorem, multicast

networks, convex Optimizations, Linear Programming, Route packing
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Chapter 1

Introduction

In their pioneering work on network coding [1], Ahslwede et al determined the capacity

for multicasting information in a network of lossless channels. Specifically, the network is

represented as G = (V,E,c), where (V,E ) is a directed graph and c is the edge capacity vector

of length |E |. Subsequently, Li, Yeung, and Cai [2] showed that the multicast capacity can

be achieved by linear network coding.

Ahslwede et al. in [1] have established a theory of network coding for single-source and

multisource-source. For single-source network coding, they demonstrated that the maximum

achievable information rate for network coding is always upper bounded by max-flow min-cut

bound. Further, they demonstrated by many examples that this bound cannot be achieved

by conventional network switching and some kind of network coding [3] has to be applied at

each node of the network. Since past 5 years, recent discoveries in this field have generated

a lot of interest in research fraternity. A comprehensive survey on the theory of network

coding is presented in Yeung, Li, Cai, and Zhang in [4].

Network switching and network coding are two techniques of data combination to increase

throughput although the former is a special case of the latter. Switching gap [5], is defined

as the ratio of maximum achievable information rate using network coding (NC ) to that

of network switching (NS ). A natural problem arises from here, what is the switching gap
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for a given single source multicast network and under what conditions does switching gap

reaches its maxima and minima (which will be 1). Xue-Bin Liang in [6] has analyzed the

Ahlswede-Cai-Li-Yeung’s classical butterfly network [1] to determine switching gap of the

network as well as determined certain conditions on link capacities such that switching gap

of the network comes out to be unity.

In first part of major project, I have looked on the problem of network information flow in a

multicast network. Post[1] era, many people have worked on developing optimal strategies

for network information flow for different class of networks. I have tried to extend Liang’s

work [1] by taking modified versions of butterfly network and finding its switching gap under

a given set of conditions on the link capacities of the network. In this process, I analyze

singular-symmetric, dual-symmetric and triple-symmetric butterfly network and then give

an expression for a special case of a generic butterfly network. Apart from this, I am trying

to work out network switching gain for a class of network by devising an optimal switching

strategies for all min cuts for the network.

This chapter gives a short introduction to the problem. The rest of the report is organized

as follows. Next chapter gives motivation for this problem and later gives formal problem

statement. Chapter 3 gives an introduction to classical max flow min-cut theorem and its

applications. Chapter 4 gives a detailed note on game theory and dominance relationships

used in next chapter to calculate the network switching gain. Chapter 5 gives the gives

analysis of singular-symmetric butterfly network, dual-symmetric butterfly network, triple-

symmetric butterfly network and finally generic butterfly network. Chapter 6 concludes the

report and highlights course for next part of the project.
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Chapter 2

Motivation and Problem Statement

A lot of research in the realm of network coding have happened in recent years which pro-

vides the motivation for our work. Let G = (V,E) a point-to-point communication network

represented by a directed graph, where V is the finite set of vertices in the network and E

is the finite set of edges connecting two vertices say u and v ∈ V in the network G. We do

not consider any edge connecting a node to itself i.e., in other words we are not considering

multigraph. Each edge or link, say e is associated with a capacity, c which belongs to set

of positive rational numbers, R+. This network could be used to transmit information from

one node to other in the network. We can safely assume that transmission in the network

will be error free if and only if, transmission rate, r over any link e should be lesser then link

capacity, c. Let X be the information source, generating information in bit sequences spread

over the field Ψ node s ∈ V in the network G. Information gets transmitted from s to every

destination or sink nodes, t1, t2, . . ., tL ∈ V such that information could be reconstructed at

each of t i. Hence, without loss of any generality, we can say that information from source X

gets multicast to L distinct sinks in G. This boils down to a single source-multisink problem

in a multicast network. Please note that for both Network switching (NS) and Network

coding (NC), there will not be any information loss, however flow might not be conserved.

An interesting problem which is only partially explored is that, when is information rate

achieved by network coding (NC) equal to information rate achieved by (NS) under a given
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set of conditions on link capacities. For a generic network showing no symmetry, it would

be a tough problem to solve. We have tried to solve this problem for a specific case that

could be considered as a generic version of Ahlswede-Cai-Li-Yeung’s butterfly network after

modifying this network by taking capacities of all links at same level to be equal (see section

chapter 5 for further details).

The next chapter gives a short introduction of network flows and Max-Flow Min-Cut theo-

rem.
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Chapter 3

Max-Flow Min-Cut Theorem

In graph theory, a network flow is an assignment of flow to the edges of a directed graph,

called a flow network in this case, where each edge has capacity (which may be positive real

or integer), such that the amount of flow along an edge does not exceed its capacity. Further,

there is restriction that the amount of flow into a node equals the amount of flow out of it,

except if it is a source, which only has outgoing flow, or sink, which has only incoming flow.

A flow network can be used to simulate traffic in a road system, fluids in pipes, currents in

an electrical circuit, or anything similar in which something travels through a network of

nodes.

Given a graph G (V,E ) with nodes V and edges E, and special nodes source s (in-degree

0) and sink t (out-degree 0). Let f (u,v) be the flow from node u to node v, and c(u,v) the

capacity. Formally stating, a network flow is a real function f : V×V→R with the following

three properties for all nodes u and v :

1. Skew Symmetry: f (u,v) = -f (v,u)

2. Capacity Constraints: f (u,v) ≤ c(u,v)

3. Flow conservation:
∑

w∈V f (u,w) = 0, where w < (s, t)

5



The residual capacity of an edge is cf(u,v) = c(u,v) - f (u,v). A residual network is denoted

by G f (V,E f) and it consists of residual edges obtained by transforming the original network

G. This way there can be an edge from v to u in the residual network, even though there is

no edge from u to v in the original network.

A cut (S,T ) of flow network G=(V,E ) is a partition of V into S and T = V -S such that s

∈ S and t ∈ T.

An augmenting path is a path (u1, u2, . . ., uk), where u1 = s, uk = t, and cf (u i, u i + 1) >

0, such that more flow could be pushed along this path. There are various ways of choosing

an augmenting path and depending upon that different max flow determination algorithms

have been proposed.

3.1 The Maximum-Flow Min-Cut Theorem

Theorem : If f is a flow in a flow network G = (V, E ) with source s and sink t, then the 3

following statements are equivalent

1. f is a maximum flow in G.

2. The residual network G f contains no augmenting paths.

3. |f | = c(S, T ) for some cut (S, T ) of G .
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Chapter 4

Game Theory

Game theory is a branch of mathematical analysis developed to study decision making in

conflict situations. Such a situation exists when two or more decision makers who have

different objectives, act on the same system or share the same resources. There are two

person and multi person games. Game theory provides a mathematical process for selecting

an Optimum strategy (that is, an optimum decision or a sequence of decisions) in the face of

an opponent who has a strategy of his own. In game theory one usually makes the following

assumptions:

1. Each decision maker player has available to him two or more well-specified choices or

sequences of choices called plays.

2. Every possible combination of plays available to the players leads to a well-defined

end-state (win, loss, or draw) that terminates the game.

3. A specified payoff for each player is associated with each end-state (a zero-sum game

means that the sum of payoffs to all players is zero in each end-state).
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4. Each decision maker has perfect knowledge of the game and of his opposition; that is,

he knows in full detail the rules of the game as well as the payoffs of all other players.

5. All decision makers are rational; that is, each player, given two alternatives, will select

the one that yields him the greater payoff.

Game Theory finds wide application in areas of financial accounting, economics, sociology,

computer networks, stochastic based applications etc. Network switching can be formulated

as a special game, called matrix game played in the multicast networks [7, 12]. Interested

readers can refer [9, 10, 13] for further details.

4.1 Zero-Sum games

Formally, a game τ is said to be zero-sum if and only if at each terminal vertex of the game

tree, the payoff function (p1,...,pn) satisfies

n∑

i=1

pi = 0.

Figure 4.1 shows Game Tree for matching pennies. It is a very simple example of zero-sum

with two players. It consists of tossing a coin by each player and in case both outcomes are

heads or both are tails then player One wins, otherwise Two wins.

A finite zero sum 2 person game reduces to a matrix A, with as many rows as Player PI has

strategies and as many columns as player PII has strategies. In simpler terms, the payoff is

defined as the amount first Player PI receives from second Player PII. PI will try to maximize

it while PII will try to minimize it. It is a play of game such that, if PI chooses say, i th

row from the I rows and PII chooses say, j th column from the J columns, then the expected

payoff, is the element a ij, in the i th row and j th column of the matrix.
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Figure 4.1: Game of matching Pennies

We refer to rows and columns as pure strategies of PI and PII respectively. Aim of PI is to

maximize the minimum payoff, thereby guaranteing a lower bound called (gain floor) given

by

ν = max
1≤i≤I

min
1≤j≤J

aij

Similarly, PII will try to choose a pure strategy so as to minimize the maximum payoff

thereby, guaranteing an upper bound for loss (called loss ceiling) given by

ν = min
1≤j≤J

max
1≤i≤I

aij

It is clear that ν ≥ ν and equality holds ⇔ there exists a pair of strategies (i ∗, j ∗) satisfying

the following condition.

min
1≤j≤J

ai∗j = ai∗j∗ = max
1≤i≤I

aij∗ (4.1)

(i ∗,j ∗) satisfying (4.1) is called a saddle point for the payoff matrix A. It is a also termed as

Nash equilibrium point of the game since, at this point both the players are having maximum

gain and one way change of strategy by either player will not provide any gain. Saddle point

may or may not exist. For e.g., consider this game matrix.
∣∣∣∣∣∣∣∣∣∣∣∣

5 1 3

3 2 4

3 0 1

∣∣∣∣∣∣∣∣∣∣∣∣

It has a saddle point at 1st row 2nd column with ν=1.
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4.2 Mixed Strategy

A mixed strategy for a player is a probability distribution on the set of his pure strategies.

Precisely, if say ’m’ pure strategies are there, a mixed strategy reduces to m-vector, x=(x 1,

. . ., xm), satisfying

x i ≥0 and

∑m
i=1 x i = 1.

Let X be the set of all mixed strategies of PI and let Y be the set of all mixed strategies of

PII. If PI chooses mixed strategy x and PII chooses y, then the expected payoff is

A(x,y) =

m∑

i=1

m∑

j=1

xiaijyi or in matrix notation

A(x,y) = xAyT

νI = PI’s gain floor

= max
x∈X

min
j

xA · j
(A · j is the j th column of A)

νII = PII’s loss ceiling

= min
y∈Y

max
i

A · iyT

We can represent mixed strategy for PI by an I -dimensional probability distribution X =

(x 1, x 2, ..., x I)
T, where T denotes the transpose of a matrix. A mixed strategy for PII is

denoted by a J -dimensional probability distribution vector Y=(y1, y2, ..., yJ)
T. So, the

expected payoff in case PI chooses mixed strategy x and PII chooses mixed strategy y is

xTAY =

I∑

i=1

J∑

j=1

xiaijyj.

Let us define X as

X = {(x1, x2, ..., xI) ∈ RI | (4.2)
I∑

i=1

xi = 1 and xi ≥ 0 for i = 1, 2....I}.
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Now we can define PI’s expected gain-floor (νI) and PII’s expected loss ceiling (νII).

νI = max
x∈X

min
y∈Y

xTAY. (4.3)

νII = min
y∈Y

max
x∈X

xTAY. (4.4)

MiniMax Theorem : It states that

νI = νII (4.5)

Minimax Theorem implies that every matrix game with payoff matrix as A has at least one

pair of mixed strategies (x ∗,y ∗) where in, x ∗ ∈ X and y ∗ ∈ Y such that

νI = min
y∈Y

(x∗)TAy = (x∗)TAy∗ = max
x∈X

xTAy∗ = νII. (4.6)

So (x ∗,y ∗), is the saddle point of the expected payoff function xTAy. Following Lemma [13,

pg. 138, Eqn. (5)] characterizes the solution of a matrix game.

Lemma : For a matrix game with I×J payoff matrix A, a necessary and sufficient condition

for a mixed-strategy pair (x ∗, y ∗) given x ∗ ∈ X and y ∗ ∈ Y to be a Nash Equilibrium point

and for a real number ν ∈ R to be the value of the game is that every component of the

vector (x ∗)TA ∈ RJ is ≥ ν and every component of the vector Ay ∗ ∈ RI is ≤ ν.

4.3 Computation of Optimal Strategies

In case,if a saddle point exists, then pure strategies i and j or equivalently, the mixed strategy

x and y with x i=1, y i=1 and all other components equal to zero, will be optimal strategies

of PI and PII respectively.

Domination : In a matrix A, we say that the i th row dominates the k th row if

aij ≥ akj for every j and

aij > akj for atleast one j
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Similarly, we say that j th column dominates the i th column if,

aij ≤ ail for every i and

aij < ail for at least one i

Here is a working example

A =

∣∣∣∣∣∣∣∣∣∣∣∣

2 0 1 4

1 2 5 3

4 1 3 2

∣∣∣∣∣∣∣∣∣∣∣∣
2nd column dominates the 4th column ⇒ PII will never use 4th column.

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣

2 0 1 4

1 2 5 3

4 1 3 2

∣∣∣∣∣∣∣∣∣∣∣∣∣

3rd row dominates 1st row ⇒ PI will never use 1st row

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣

2 0 1 4

1 2 5 3

4 1 3 2

∣∣∣∣∣∣∣∣∣∣∣∣∣

3rd column dominates first column. So, eliminating all dominated components, we have

A =

∣∣∣∣∣∣∣∣
1 2

4 1

∣∣∣∣∣∣∣∣

So we need solve just the 2 × 2 game-matrix.

Another way to solve for optimal strategy for matrix games is by fictious play method given

in [10] but it works for integral link capacities. Moreover, it is intuitive and lacks formal

basis.
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Chapter 5

Results

This chapter gives the results of the work done till date. I have constructed different varia-

tions of classical butterfly network and calculated the switching gap for each of them. Based

upon the results, I have made an intuitive observation about generic version of this butterfly

network.

5.1 Analysis for Singular Butterfly Network

Figure 5.1 shows singular butterfly network. Here w i >0 denotes the link capacities of the

edges in the graph.

Now, according to Ahlswede-Cai-Li-Yeung’s fundamental theorem for single-source network

coding [1], the maximum achievable information rate denoted by R∗∗ is equal to the minimum

of the s-t cuts for all source-sink pairs in the network. To enumerate the s-t cuts, consider

the subgraph G′ = (V′,E′), where V′ ⊂ V and E′ ⊂ E, which is formed from graph shown in

above figure by removing all paths between s-t2. All s-t cuts are shown as dashed lines in

figure 5.2. The cut-set for this network is enumerated below.

1. {(s, a), (s, b)} = 2w1
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Figure 5.1: Singular-Symmetric Butterfly network

2. {(s, a), (b, c)} = w1 + w2

3. {(s, a), (a, c), (d, t1)} = 2w2 + w3

4. {(s, a), (a, c), (c, d)} = w1 + w2 + w4

5. {(a, t1), (a, c), (b, c)} = w1 + w2 + w5

6. {(a, t1), (c, d)} = w3 + w4

7. {(a, t1), (d, t1)} = w3 + w5

Similarly, for subgraph between s and t2, we have the following s-t cut sets.

1. {(s, a), (s, b)}=2w1

2. {(s, b), (a, c)}=w1 + w2

3. {(b, t2), (a, c), (b, c)}=2w2 + w3

4. {(s, b), (b, c), (c, d)}=w1 + w2 + w4

5. {(s, b), (b, c), (d, t2)}=w1 + w2 + w5

14



Figure 5.2: Singular-Symmetric Butterfly sub network

6. {(b, t2), (c, d)}=w3 + w4

7. {(b, t2), (d, t2)}=w3 + w5

For the given singular butterfly network, we have assumed the following conditions

w 1 <w 2

w 1 <w 3

w 4 <w 5

Based upon these three assumptions, we combine the various s− t cut set values and finally,

R∗∗ is equal the minimum of the following 5 values.

1. min(w 1,w 3)+min(w 4,w 5)

2. w 1+min(w 1,w 2)

3. 2w 2+w 3
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4. w 1+w 2+w 3

5. w 1+w 2+w 3+w 4

Under these conditions, we have R∗∗ is minimum of

R∗∗ = min (w1 + w4, 2w1).

R∗∗ = w1 + min(w1,w4). (5.1)

Now, we are left with problem to solve R∗ i.e. maximum achievable information rate by

network switching (NS). [7] gives a method to compute R∗ of a network by constructing

its payoff-matrix and then solving it as per game theory principles [8] and finally taking

reciprocal of it to get R∗. In a nutshell, first we determine multicast routes from source to

each of the sink nodes. This is a path enumeration problem and can be done by constructing

rooted trees for each of the link and then concatenating one path each from all such trees.

Formally, a rooted tree is defined as an acyclic digraph with a unique node, called its root

node, which has the property that there exists a unique path from the root node to each

other node. We call the set of links, τ as a multicast route of the underlying digraph from

the source node s to the sink nodes t1, t2, . . ., tl, if the digraph (S, τ) induced by τ is a rooted

tree of G with t1, t2, . . ., tl, whose root node is s and whose leaves are all sink nodes. If L=1,

a multicast route τ is the set of links of an open path from the source node s to the sink

node t1. Then for each multicast route τ j they have defined an indicator function over E as

χτ j(ei)=1 if ei ∈ τ j and 0 otherwise, for i = 1, 2, . . . , I and j = 1, 2, . . . , J. They have then

created an I × J payoff matrix A such that

ai j =
1

Θ(ei)
χτ j(ei)

for i = 1, 2, . . . , I and j = 1, 2, . . . , J with {e1, e2, . . . , eI} being the set of links E and {τ1, τ2, . . . , τJ}
being the set of multicast routes from s to t1, t2, . . . , tl.

Brute force method is to enumerate all multicast routes in the network, form a payoff matrix

say A using all links and multicast routes enumerated above and solve it to get its value i.e.,
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val(A). Then R∗ = 1/val(A). For this network given in Fig 5.1, payoff matrix is as follows

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1/w1 1/w1 1/w1 1/w1 1/w1 1/w1 0

1/w1 0 1/w1 1/w1 0 1/w1 1/w1

1/w3 1/w3 1/w3 0 0 0 0

0 1/w2 0 1/w2 1/w2 0 0

0 0 1/w2 0 0 1/w2 1/w2

1/w3 0 0 1/w3 0 1/w3 0

0 1/w4 1/w4 1/w4 1/w4 1/w4 1/w4

0 0 0 1/w5 1/w5 1/w5 1/w5

0 1/w5 1/w5 0 1/w5 0 1/w5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

However, this is not a feasible method for more complex networks since it will have many

more links and multicast routes than the network shown in fig 5.1.

We do not necessarily need an enumeration of all the multicast routes to find R∗ [7]. We need

to work only on the dominating links and dominating multicast routes. A link is dominated

by another link if every multicast routes including the former also includes the latter. A

multicast route is dominated by another multicast route if each dominating link in the latter

is also in the former. Applying successive elimination method from previous section, we can

use dominated links and dominated multicast routes to get a simpler square pay off matrix,

then find the value of the game and use it to get R∗.

Using assumptions about link capacities stated earlier to compute R∗∗, we have both the

links with capacities w 1 and the single link with capacity w 4 as dominating and these 3 links

form 3 multi cast routes. As a result, we get the following payoff matrix.

A1 =

∣∣∣∣∣∣∣∣∣∣∣∣

1/w1 1/w1 0

1/w1 0 1/w1

0 1/w4 1/w4

∣∣∣∣∣∣∣∣∣∣∣∣
Alternatively, using assumptions about various link capacities stated earlier, we see that row

number 1 dominates row number 3 and 4 and 5; row number 1 dominates row number 5 and

6 and row number 1 dominates row number 7 and 8 and 9. Removing all dominated rows
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we have, the following matrix.

∣∣∣∣∣∣∣∣∣∣∣∣

1/w1 1/w1 1/w1 1/w1 1/w1 1/w1 0

1/w1 0 1/w1 1/w1 0 1/w1 1/w1

0 1/w4 1/w4 1/w4 1/w4 1/w4 1/w4

∣∣∣∣∣∣∣∣∣∣∣∣
Now we see that column number 7 dominates column number 3, 4 and 6. Eliminating col-

umn number 3, 4 and 6, we have

∣∣∣∣∣∣∣∣∣∣∣∣

1/w1 1/w1 1/w1 0

1/w1 0 0 1/w1

0 1/w4 1/w4 1/w4

∣∣∣∣∣∣∣∣∣∣∣∣
Now, column 2 dominates column 3 or vice-versa since both are equal. Hence eliminating

column number 2, we get

A1 =

∣∣∣∣∣∣∣∣∣∣∣∣

1/w1 1/w1 0

1/w1 0 1/w1

0 1/w4 1/w4

∣∣∣∣∣∣∣∣∣∣∣∣
Please note that the rows of this matrix shows the dominant links in the singular butterfly

network where as the columns denote multicast routes. It is clear from [7] that val(A) =

val(A1). Using Lemma given in section III and applying lagrange multipliers [11] to A, we

have following cases.

1. Case 1: if 2w1 ≥ w4 then we have X ∗=(w1/(2w1+w4),w1/(2w1+w4),w4/(2w1+w4))

and Y ∗=((2w1-w4)/(2w1+w4),w4/(2w1+w4),w4/(2w1+w4)) are optimal strategies for

PI and PII and val(A) is

val(A) =
2

(2w1 + w4)

2. Case 2: if 2w1 < w4 then we have X ∗=(1/2,1/2,0) and Y ∗=(0,1/2,1/2) and val(A) is

val(A) =
1

2w1
.
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From these two cases, we get

val(A) = min ((2/(2w1 + w4)), (1/2w1)) .

Hence

R∗ =
1

val(A)
=

2w1 + min (2w1,w4)
2

. (5.2)

Using this,

R∗∗ = wi + wj. (5.3)

And,

R∗ =
2

wi + wj + min (wi + wj), (wk)
. (5.4)

Using (5.1) and (5.4), we have

R∗∗

R∗
=

2(w1 + min(w1,w4))
2w1 + min(2w1,w4)

.

Now conditioning on values of w1 and w4, we have following four cases.

1. case 1: If 2w1 < w4, then we have

R∗∗

R∗
=

4w1

4w1
= 1

2. case 2: If w1 < w4 < 2w1, then we have

R∗∗

R∗
=

2(w1 + w4)
2w1 + w4

R∗∗

R∗
=

2
1 + w4

2w1

19



3. case 3: If w4 < w1, then we have

R∗∗

R∗
=

2(w1 + w4)
2w1 + w4

R∗∗

R∗
=

2
1 + w1

w1+w4

If we have w1 = w4 = w, then the switching gap becomes,

R∗∗

R∗
=

2(w + w)
2w + w

=
4
3

(5.5)

5.2 Analysis for dual butterfly network

Figure 2 shows dual butterfly network. Here w i > 0 denotes the link capacities of the edges

in the graph.

Figure 5.3: Dual-Symmetric Butterfly network
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For the above network taking into account assumptions as in case of singular butterfly

network, R∗∗ is equal the following 7 values.

1. 3w 1

2. w 1+w 2

3. w 2+w 3+min(w 1,w 2)

4. w 1+w 4

5. 2w 4+w 3

6. 2w 1+w 3+w 5

7. w 1+w 2+w 3+w 4

From this set under the assumptions in section V, we only take minimum min-cuts and thus

R∗∗ = min (3w1,w1 + w2,w1 + w4). (5.6)

Using assumptions about link capacities stated earlier to compute R∗∗, we have all three links

with capacities w 1 and all two links with capacity w 4 as dominating and these 5 links form

5 multi cast routes. After elimination of dominated links and multicast routes, we get the

following payoff matrix.

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1/w1 1/w1 1/w1 1/w1 0

1/w1 1/w1 1/w1 0 1/w1

1/w1 1/w1 0 1/w1 1/w1

1/w4 0 1/w4 1/w4 1/w4

0 1/w4 1/w4 1/w4 1/w4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Proceeding as in previous section, we use the Lemma given in section III and apply lagrange

multipliers [11] to A and get following cases.
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1. Case 1 : If 3w1 ≥ 2w4 and 2w4 ≥ w1 then X ∗=(w1/(3w1+2w4),w1/(3w1+2w4),w1/(3w1+2w4),

w4/(3w1+2w4),w4/(3w1+2w4)) and

Y ∗=((3w1-2w4)/(3w1+2w4),(3w1-2w4)/(3w1+2w4), (2w4-w1)/(3w1+2w4),(2w4-w1)/(3w1+2w4),

(2w4-w1)/(3w1+2w4)) are optimal strategies for PI and PII and val(A) is

val(A) =
4

(3w1 + 2w4)
.

2. Case 2 : If 3w1 < 2w4 then X ∗=(1/3,1/3,1/3,0,0) and Y ∗=(0,0,1/3,1/3,1/3) are optimal

strategies for PI and PII and val(A) is

val(A) =
2

3w1
.

3. Case 3 : If 2w4 < w1 then X ∗=(0,0,0,1/2,1/2) and Y ∗=(1/2,1/2,0,0,0) are optimal

strategies for PI and PII and val(A) is

val(A) =
1

2w4
.

From these three cases, we get

val(A) = min
(
(

4
3w1 + 2w4

), (
2

3w1
), (

1
2w4

)
)
.

Hence,

R∗ = min
(
(
3w1 + 2w4

4
), (

3w1

2
), (2w4)

)
. (5.7)

Using (5.6) and (5.7), we have

R∗∗

R∗
=

min (3w1,w1 + w2,w1 + w4)

min
(
( 3w1+2w4

4 ), (3w1
2 ), (2w4)

) (5.8)
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If we have w 1=w 4=w then,

R∗∗

R∗
=

(2w)
(5w

4 )
=

8
5

= 1.60. (5.9)

5.3 Analysis for triple butterfly network

Figure 3 shows triple butterfly network. Here w i > 0 denotes the link capacities of the edges

in the graph.

Figure 5.4: Triple-symmetric Butterfly network

For the above network taking into account assumptions as in case of singular butterfly

network, R∗∗ is equal the following seven values.

1. 4w 1

2. w 1+w 2

3. w 2+w 3+min{w1,w2}
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4. w 1+w 4

5. 2w 4+w 3

6. 2w 1+w 3+w 5

7. w 1+w 2+w 3+w 4

From this set under the assumptions in section V, we only take minimum min-cuts and thus

R∗∗ = min (4w1,w1 + w2,w1 + w4). (5.10)

Using assumptions about link capacities stated earlier to compute R∗∗, we have all four links

with capacities w 1 and all three links with capacity w 4 as dominating and these 7 links form

7 multi cast routes. After elimination of dominated links and multicast routes, we get the

following payoff matrix.

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1/w1 1/w1 1/w1 1/w1 1/w1 1/w1 0

1/w1 1/w1 1/w1 1/w1 1/w1 0 1/w1

1/w1 1/w1 1/w1 1/w1 0 1/w1 1/w1

1/w1 1/w1 1/w1 0 1/w1 1/w1 1/w1

1/w4 1/w4 0 1/w4 1/w4 1/w4 1/w4

1/w4 0 1/w4 1/w4 1/w4 1/w4 1/w4

0 1/w4 1/w4 1/w4 1/w4 1/w4 1/w4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Proceeding as in previous section, we use the Lemma given in section III and apply lagrange

multipliers [11] to A and get following cases.

1. Case 1: If 4w1 ≥ 3w4 and 3w4 ≥ 2w1 then X ∗=(w 1/(4w 1+3w 4),w 1/(4w 1+3w 4),w 1/(4w 1+3w 4),

w 1/(4w 1+3w 4),w 4/(4w 1+3w 4),w 4/(4w 1+3w 4),w 4/(4w 1+3w 4)) and

Y ∗=((4w 1-3w 4)/(4w 1+3w 4),(4w 1-3w 4)/(4w 1+3w 4), (4w 1-3w 4)/(4w 1+3w 4),(3w 4-2w 1)/(4w 1+3w 4),

(3w 4-2w 1)/(4w 1+3w 4),(3w 4-2w 1)/(4w 1+3w 4),(3w 4-2w 1)/(4w 1+3w 4)) and val(A) is

val(A) =
6

4w1 + 3w4
.
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2. Case 2 : If 4w 1 <3w 4 then X ∗=(1/3,1/3,1/3,0,0,0,0) and Y ∗= (0,0,0,(w 4-w 1)/w 4,w 1/3w 4,w 1/3w 4,w 1/3w 4)

and val(A) is

val(A) =
(3w4 − w1)

3w1w4
.

3. Case 3 : If 3w 4 <2w 1, then X ∗=(0,0,0,0,1/3,1/3,1/3) and Y ∗ = (1/3,1/3,1/3,0,0,0,0)

and val(A) is

val(A) =
2

3w4
.

From these three cases, we get

val(A) = min
(
(

6
4w1 + 3w4

), (
3w4 − w1

3w1w4
), (

2
3w4

)
)
.

Hence

R∗ = min
(
(
4w1 + 3w4

6
), (

3w1w4

3w4 − w1
), (

3w4

2
)
)
. (5.11)

Using (5.10) and (5.11), we have

R∗∗

R∗
=

min ((4w1,w1 + w2,w1 + w4))

min
(
(4w1+3w4

6 ), ( 3w1w4
3w4−w1

), (3w4
2 )

) . (5.12)

If we have w 1=w 4=w then,

R∗∗

R∗
=

(2w)
( 7w

6 )
=

12
7

= 1.72. (5.13)
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5.4 Analysis for generic butterfly network

Generic butterfly network is the singular-symmetric butterfly network repeated n times. So

it has one source and a total of n + 1 sinks.

Information rate with Network Coding (NC ),i.e., R∗∗ will be same as that of Triple network

except one term of (n + 1)w1.

R∗∗ = min ((n + 1)w1,w1 + w2,w1 + w4). (5.14)

Using assumptions about link capacities stated earlier to compute R∗∗, we have (n+1) domi-

nant links with capacities w 1 and n dominant links with capacity w 4. Thus the payoff matrix

for this network will be (2n + 1) × (2n + 1).

Graph theoretic approach cannot solve this pay off matrix. But one can give an intuitive

observation based on the results from above three sections.

1. Case 1 : If (n + 1)w1 ≥ nw4 and nw4 ≥ (n − 1)w1 then x 1=w 1/((n+1)w 1+nw 4),

x 2=w 1/((n+1)w 1+nw 4),. . .,xn=w 1/((n+1)w 1+nw 4); xn+1=w 4/(n+1)w 1+nw 4),. . ., x 2n+1=w 4/(n+1)w 1+nw 4).

And y1=((n+1)w 1-nw 4)/((n+1)w 1+nw 4),

y2=((n+1)w 1-nw 4)/((n+1)w 1+nw 4),. . .,

yn=((n+1)w 1-nw 4)/((n+1)w 1+nw 4);

yn+1=(nw 4-(n-1)w 1)/((n+1)w 1+nw 4),. . .,

y2n+1=(nw 4-(n-1)w 1)/((n+1)w 1+nw 4).

From these conditions, it follows that

val(A) =
2n

((n + 1)w1 + nw4)

Hence,
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R∗ =
((n + 1)w1 + nw4)

2n
(5.15)

Using (5.14) and (5.15), we have

R∗∗

R∗
=

min ((n + 1)w1,w1 + w2,w1 + w4)
((n+1)w1+nw4)

2n

(5.16)

If we have w 1=w 4=w then,

R∗∗

R∗
=

(4nw)
((2n + 1)w)

=
4n

2n + 1
. (5.17)
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Chapter 6

Conclusion and Future Work

In this work, I have studied information network flow problem on a single source multi-cast

network. I have tried to extend the idea in [6] by analyzing a generic butterfly network

under suitable assumptions about link capacities. From the results, I could conclude that

information rate due to Network coding is coming out to be same in all versions of the

network. This means as number of nodes are increasing the network, no additional gain is

coming out by using NC. On the other hand, information rate due to network switching

is decreasing as we are duplicating singular butterfly network. Hence, simple switching for

generic butterfly network does not increase throughput. Further, switching gain is equal to

coding gain only when all link capacities are equal.

Application of game theory for network switching is not generic and requires certain condi-

tions on link capacities. For the next semester, I will try device an optimal network switching

strategy from min-cut trees for any generic communication point to point network doing in-

formation multi-cast. I would also formulate a strategy to find switching gap for a generic

single source communication network. It would also be an interesting exercize to to study

the effects for channel losses on such a network when operating in wireless scenario.
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