Light
Home Light Fibre Optics Notable Scientists About Me Sign Guest Book View Book

 

Laser
Maser

    Light, form of energy visible to the human eye that is radiated by moving charged particles. Scientists have learned through experimentation that light behaves like a particle at times, and like a wave at other times. The particle like features are called photons. Photons are different from particles of matter in that they have no mass and always move at the constant speed of 300,000 km/sec. When light diffracts, or bends slightly as it passes around a corner, it shows wavelike behavior. The waves associated with light are called electromagnetic waves because they consist of changing electric and magnetic fields.

Light Emission

            Light can be emitted, or radiated, by electrons circling the nucleus of their atom. Electrons can circle atoms only in certain patterns called orbitals, and electrons have a specific amount of energy in each orbital. The amount of energy needed for each orbital is called an energy level of the atom. If an electron in a lower energy level gains some energy, it must jump to a higher level, and the atom is said to be excited. The motion of the excited electron causes it to lose energy, and it falls back to a lower level. The energy the electron releases is equal to the difference between the higher and lower energy levels. The electron may emit this quantum of energy in the form of a photon.

Electromagnetic Waves

            The waves that accompany light are made up of oscillating, or vibrating, electric and magnetic fields, which are force fields that surround charged particles and influence other charged particles in their vicinity. These electric and magnetic fields change strength and direction at right angles, or perpendicularly, to each other in a plane (vertically and horizontally for instance). The electromagnetic wave formed by these fields travels in a direction perpendicular to the field's strength (coming out of the plane). Light waves do not need a medium, or substance, through which to travel. Light from the sun and distant stars reaches the earth by traveling through the vacuum of space.

            The waves associated with natural sources of light are irregular, like the water waves in a busy harbor. Scientists think of such waves as being made up of many smooth waves, where the motion is regular and the wave stretches out indefinitely with regularly spaced peaks and valleys. Such regular waves are called monochromatic because they correspond to a single color of light.

 

Photons

            Photons may be described as packets of light energy, and scientists use this concept to refer to the particle like aspect of light. Photons are always associated with an electromagnetic wave of a definite frequency. In 1900 the German physicist Max Planck discovered that light energy is carried by photons. He found that the energy of a photon is equal to the frequency of its electromagnetic wave multiplied by a constant called h, or Planck's constant. This constant is very small because one photon carries little energy. Using the watt-second, or Joule, as the unit of energy, Planck's constant is 6.6260755 x 10-34 Joule-seconds in exponential notation.

Sources of Light

Incandescence

            In an incandescent light source, hot atoms collide with each other. These collisions transfer energy to some electrons, boosting them into higher energy levels. As the electrons release this energy, they emit photons. Some collisions are weak and some are strong, so the electrons are excited to different energy levels and photons of different energies are emitted. Candlelight is incandescent and results from the excited atoms of soot in the hot flame. Light from an incandescent light bulb comes from excited atoms in a thin wire called a filament that is heated by passing an electric current through it.

            The sun is an incandescent light source, and its heat comes from nuclear reactions deep below its surface. As the nuclei of atoms interact and combine in a process called nuclear fusion, they release huge amounts of energy. This energy passes from atom to atom until it reaches the surface of the sun, where the temperature is about 6000° C (11,000° F). Different stars emit incandescent light of different frequencies—and therefore color—depending on their mass and their age.

            The color of incandescent sources is related to their temperature, with hotter sources having more blue in their spectra, or ranges of photon energies, and cooler sources more red. About 75 percent of the radiation from an incandescent light bulb is infrared. Scientists learn about the properties of real incandescent light sources by comparing them to a theoretical incandescent light source called a black body. A black body is an ideal incandescent light source, with an emission spectrum that does not depend on what material the light comes from, but only its temperature.

Luminescence

            A luminescent light source absorbs energy in some form other than heat, and is therefore usually cooler than an incandescent source. The color of a luminescent source is not related to its temperature. A fluorescent light is a type of luminescent source that makes use of chemical compounds called phosphors. Fluorescent light tubes are filled with mercury vapor and coated on the inside with phosphors. As electricity passes through the tube, it excites the mercury atoms and makes them emit blue, green, violet, and ultraviolet light. The electrons in phosphor atoms absorb the ultraviolet radiation, and then release some energy to heat before emitting visible light with a lower frequency. In certain phosphor compounds, atoms remain excited for a long time before radiating light. A light source is called phosphorescent if the delay between energy absorption and emission is longer than one second. Phosphorescent materials can glow in the dark for several minutes after they have been exposed to strong light.

            Chemiluminescence occurs when a chemical reaction produces molecules with electrons in excited energy levels that can then radiate light. The color of the light depends on the chemical reaction. When chemiluminescence occurs in plants or animals it is called bioluminescence.

Synchrotron Radiation

            In a synchrotron light source, electrons are accelerated by microwaves and kept in a circular orbit by large magnets. The whole machine, called a synchrotron, resembles a large artificial atom. The circulating electrons can be made to radiate very monochromatic light at a wide range of frequencies.

 

Back to Top

 

 

Win $100 Million USD

 

 

 

 
1