
 1

Applying Models in your Testing Process

Steven Rosaria
Harry Robinson

Intelligent Search Test Group
Microsoft Corporation

srosaria@microsoft.com
harryr@microsoft.com

Abstract

Model-based testing allows large numbers of test cases to be generated from a description
of the behavior of the system under test. Given the same description and test runner,
many types of scenarios can be exercised and large areas of the application under test can
be covered, thus leading to a more effective and more efficient testing process.

The Current State of Software Testing

The following techniques are common in conventional software testing:

• Handcrafted static test automation: the same fixed set of test cases is executed
on the system under test.

• Random input generation: test runners that can simulate keystrokes and mouse
clicks bombard the application under test with random strings and click on
arbitrary spots on the screen. This category also includes test runners that call API
functions in random order with random parameters. The test runners simply apply
one input after the other; they don’t know what happens after an input is applied.

• Hands-on testing: an army of ad hoc testers executes test cases interactively
against the system under test.

Let’s take a look at how these techniques might be applied to the Microsoft Windows®
clock application. The clock comes with a menu that allows the user to toggle a second
hand, date, and GMT time display. The display of the clock can be changed from analog
to digital and vice versa; the clock can be displayed without a title bar, where the user can
double click to go back to the full display:

 2

Static test automation for the clock could be in the form of a script that simply tries the
same sequence of actions in the exact same order each time. One such sequence might
look like this:

• Start the clock
• Select Analog from the menu
• Select Digital from the menu
• Bring up the Font dialog box
• Select the third font in the list box
• Click OK in the Font dialog box
• Close the clock

Each script is entirely fixed and has to be maintained individually; there is absolutely no
variation in the sequence of inputs.

One possible implementation of a random test runner is a test runner that simulates
pressing the combination of ALT and all letters of the alphabet in turn in order to try and
cover all menu bar options of an application under test. Many of those combinations may
be undefined. Also, if a menu option brings up a new window that does not have a menu

There is an option to set the display font,
which brings up a dialog box for this
purpose. This can only be done when the
clock is in digital setting.

Finally there is a simple “about” box
that can be closed.

No Title

Doubleclick

 3

of its own, the test runner is essentially wasting time trying to find menu choices. In a
similar fashion, the test automation may try to enter a text string in an input control that is
expecting floating-point numbers. While these are valid tests in and of themselves, it
would be nice to be able to control the inputs being applied. In other words, the test
runners have no idea of what is physically possible in the software under test, or what to
expect after executing an action; they just apply the input and keep going. Random test
automation might for example produce the following action sequence:

• Start the clock
• Type the string “qwertyuiop” (even though there isn’t a text box anywhere to

enter data)
• Press ALT-A, ALT-B, ALT-C, etc; nothing happens, the menu is activated only

by ALT-S
• After the menu is activated, press F, which brings up the Font dialog box
• Press ALT-A, ALT-B, ALT-C, etc; nothing happens, these shortcut keys are not

defined in the Font dialog box
• Click on random spots of the screen

If this goes on long enough, eventually the test runner gets the clock application back in
the main window and the whole process keeps going on and on until it is stopped by
uncovering a bug, by some form of timeout, or by a command from the tester.

Hands-on execution of test cases consists of going through all features of the clock
application and verifying the correctness by visually comparing the actual behavior with
the expected behavior. For a simple application such as the clock, this approach actually
gives reasonable coverage at a very low cost.

Test methods such as static test automation, random input generation, and hands-on
testing have some major drawbacks:

• The system under test is constantly changing in functionality. This means that
existing handcrafted static test automation must be adapted to suit the new
behavior, which could be a costly process.

• Handcrafted static test automation implements a fixed number of test cases that
can detect only specific categories of bugs, but the tests become less useful as
these bugs are found and fixed. This phenomenon is referred to as the “pesticide
paradox” [1]. A number of interesting bugs have been found in the clock
application simply by varying the input sequence, as described in [2].

• Applying inputs at random makes it difficult to control input sequencing in an
organized manner, which may lead to decreased test coverage. The entire
sequence of random choices is indeed controlled by a seed value, but it is a
process of trial and error to find a seed that ultimately results in a test sequence
that consists entirely of actions that are valid for the system under test.

• Hands-on test execution does not scale well to complex systems.

Model-based testing solves these problems by providing a description of the behavior, or
model, of the system under test. A separate component then uses the model to generate

 4

test cases. Finally, the test cases are passed to a test driver or test harness, which is
essentially a module that can apply the test cases to the system under test.

Given the same model and test driver, large numbers of test cases can be generated for
various areas of testing focus, such as stress testing, regression testing, and verifying that
a version of the software has basic functionality. It is also possible to find the most time-
efficient test case that provides maximum coverage of the model. As an added benefit,
when the behavior of the system under test changes, the model can easily be updated and
it is once again possible to generate entire new sets of valid test cases.

An Introduction to Model-Based Testing

The main premise behind model-based testing is to create a model, a representation of the
behavior of the system under test. One way to describe the system behavior is through
variables called operational modes [3][4]. Operational modes dictate when certain inputs
are applicable, and how the system reacts when inputs are applied under different
circumstances. This information is encapsulated in the model, which is represented by a
finite state transition table. In this context, a state is a valid combination of values of
operational modes. Invalid combinations of these values represent situations that are
physically impossible for the system under test, and are therefore excluded. Each entry in
the state transition table consists of an initial state, an input that is executed, and an
ending state that describes the condition of the system after the input is applied:

The model is created by taking any valid combination of values of operational modes as
the initial state. All inputs that are applicable from this state are then listed, along with the
new state of the software after the input is applied. As an analogy, think of a light switch
that can be turned on or off. When the light is on, it can’t be turned on again; similarly
when the light is already off, it can’t be turned off:

Model

Test Case
Generation

Test
Driver

System
under Test

Test
Case 1

Test
Case N

Input A

Input B

……

Initial Ending
state

Input

Light =
“OFF”

Light =
“ON”

TURN LIGHT ON Light =
“ON”

Light =
“OFF”

TURN LIGHT OFF

 5

By repeating this process is for all states, a state transition table is formed that describes
in great detail how the system under test behaves under all circumstances that are
physically possible within the confines of the areas being modeled.

Model-based testing is very nimble and allows for rapid adaptation to changes to the
system under development. As the software under test evolves, static tests would have to
be modified whenever there is a change in functionality. With model-based testing,
behavioral changes are handled simply by updating the model. This applies especially
well to temporary changes in the system under test. For example, if a certain area of the
system under test is known to be broken on a given build, static tests would keep running
into the same problem, or those particular commands to the test runner would have to be
rewritten to keep that from happening. On the other hand, if testing is done using a
model, inputs that lead to the known faulty areas can be temporarily disabled from the
model. Any test cases based on this new model will avoid the known errors and not a
single line of test code has to be changed.

Model-based testing is resistant to the pesticide paradox, where tests become less
efficient over time because the bugs they were able to detect have been fixed. With
model-based testing, test cases are generated dynamically from the model. Each series of
tests can be generated according to certain criteria, as explained later in this paper. In
addition, model-based testing can be useful to detect bugs that are sensitive to particular
input sequences. It is very important to note the fact that these additional benefits come at
no extra cost to the model or the test harness. This means that once the initial investment
has been made to create a model and a test harness, they are modified only sporadically.
Meanwhile, the same model can generate large numbers of test cases, which can then be
applied using the same test harness.

Developing a model is an incremental process that requires the people creating the model
to take into consideration many aspects of the system under test simultaneously. A lot of
behavioral information can be reused in future testing, even when the specifications
change. Furthermore, modeling can begin early in the development cycle. This may lead
to discovering inconsistencies in the specification, thus leading to correct code from the
very outset.

To a certain extent, the technique of applying inputs randomly offers an alternative to
static tests [5]. However, these types of test automation are not aware of the state of the
system under test; for example, the test automation does not know what window currently
has the focus and what inputs are possible in this window. Because of this, they will often
try to do things that are illegal, or they exercise the software in ways it will never be used.
In other words, it’s difficult to guide random input test automation in a cost-efficient way
precisely because of its purely random nature. Another consequence of this unawareness
of state is that random input test automation can only detect crashes, since it doesn’t
know how the system works. The test automation is only able to apply inputs, but it does
not know what to expect once an input has been applied. For example, the random test
runner may execute a sequence of inputs in one particular window that brings up a new
window that has a completely different set of possible inputs. Nevertheless, the test

 6

runner is unaware of this fact, and keeps on applying random keystrokes and mouse
clicks as if nothing had happened. On the other hand, model-based tests know exactly
what is supposed to be possible at any point in time, because the model describes the
entire behavior of the system under test. This in turn makes it possible to implement
oracles of any level of sophistication. It is feasible to build a certain level of intelligence
into the random test automation such that it will only try to apply inputs that are
physically possible. The test automation can keep track of the window that currently has
input focus and constrain the inputs that it will try to execute based on this knowledge.
The disadvantage of the random input generation method is that when the system under
test changes in behavior, the test automation has to be modified accordingly.

The disadvantages of model-based testing are that it requires that testers be able to
program, and that a certain amount of effort is needed to develop the model for all but the
simplest software systems; however, there are simple ways to minimize this effort [2].

Applying Model-Based Testing Principles to Software: an Example

The process of developing model-based software test automation consists of the
following steps:

1. Exploring the system under test
2. Domain definition: enumerating the system inputs
3. Developing the model
4. Generating test cases by traversing the model
5. Execution and evaluation of the test cases

This entire process of developing a model will now be explained using the Microsoft
Windows® clock application.

Exploring the System Under Test

In this stage the people creating the model get a general impression of the system’s
functionality, either by using the application or by going through the specification. For
each input they encounter, they make comments that answer two questions that are key in
describing the system behavior:

• When is the input available?
• What happens after the input is applied?

Let’s take a look at the behavior of the clock starting from the basics. After launching the
clock application, a user is in the “main” clock window, which displays the time of day.
The size of the clock window will be the same as it was the last time the clock application
was closed. The same rule also applies to the availability of a title bar. All the menu
inputs can be applied any time if the clock is in the main window and a title bar is

 7

available. The only exception to this rule is the option to set the font, which requires that
the clock be in digital mode. This input and the “About Clock…” input are the only
actions that bring up a new window.

The size of the clock window can be minimized, maximized, or restored. When the clock
is minimized and then restored, the window will go back to whichever size it was before
being minimized.

The clock can appear without a title bar by selecting “No Title” from the menu or by
double clicking on the clock face. If no title bar is available, the only things a user can do
are to double click to go back to full display or exit the clock by pressing ALT-F4.

Domain Definition

Following is an enumeration of the interesting system inputs:

Input Name Description
Analog Change to analog display
Digital Change to digital display
Set_Font Set the display font. Available only for digital setting
GMT Display the time in Greenwich Mean Time format.
No_Title Display without title bar. When the clock does not have a title

bar, the only inputs possible are double click to go back to full
display, and exit by pressing Alt-F4.

Seconds Toggle the seconds display
Date Toggle the date display
About Bring up the About box
DoubleClick Toggle between title bar and clock-only display
Font_OK Click OK in the Font dialog box
Font_TypeFont Type a random font name
Font_Cancel Click Cancel in the Font dialog box
Font_SelectFont Select a font at random from the font list box
About_OK Click OK in the About box
Invoke Launch the application. Applicable only when the clock is not

running.
Terminate_Close Exit the application by clicking the close window button
Terminate_Keystroke Exit the application by pressing Alt-F4
Maximize Maximize the application window. Can only be done if the

window is not maximized already.
Minimize Minimize the application window. Can only be done if the

window is not minimized already.
Restore_Window Restore the application window. Restores the window to its

original size, which could be either the standard window size

 8

or the maximized state, depending on the previous window
size. If the window starts up minimized and a
Restore_Window input is applied, the clock always goes to
the standard window size.

Developing the Model

The majority of inputs can of course only be applied only if the clock is running.
Conversely, the only action that can be performed when the clock is not running is to
start it. This can be encapsulated in the operational mode System = {Not_Invoked,
Invoked}.

A different set of actions can be executed depending on which window currently has the
focus, hence the operational mode Window = {Main, Font, About}.

The font can only be changed if the clock is displaying the time in digital format. This
warrants the operational mode Setting = {Analog, Digital}.

The menu operations such as switching from analog to digital display, showing the
second hand, and displaying the date are available only if there is a title bar, which leads
to the operational mode Display = {All, Clock_Only}.

Finally, the size of the clock window can be maximized, minimized, or restored (brought
back to its previous or normal size). If the clock window size is normal and it is
minimized, the Restore_Window input brings the window size back to normal. On the
other hand, if the clock is maximized and then minimized, the Restore_Window input
brings the window back to the maximized size. This justifies the operational mode
WindowSize = {Restored, Maximized, Minimized_From_Maximized,
Minimized_From_Restored}

The operational modes and input set can be combined to form the following state
transition table. Even though the state transition table looks complicated, [2] describes a
technique that makes it easy to generate the state transition table.

Current State Input Next State
Not_Invoked Main Analog All Restored Invoke Invoked Main Analog All Restored
Not_Invoked Main Analog All Maximized Invoke Invoked Main Analog All Maximized
Not_Invoked Main Analog All
Minimized_From_Maximized

Invoke Invoked Main Analog All Minimized_From_Restored

Not_Invoked Main Analog All
Minimized_From_Restored

Invoke Invoked Main Analog All Minimized_From_Restored

Not_Invoked Main Analog Clock_Only Restored Invoke Invoked Main Analog Clock_Only Restored
Not_Invoked Main Analog Clock_Only
Maximized

Invoke Invoked Main Analog Clock_Only Maximized

Not_Invoked Main Digital All Restored Invoke Invoked Main Digital All Restored
Not_Invoked Main Digital All Maximized Invoke Invoked Main Digital All Maximized
Not_Invoked Main Digital All Invoke Invoked Main Digital All Minimized_From_Restored

 9

Minimized_From_Maximized
Not_Invoked Main Digital All
Minimized_From_Restored

Invoke Invoked Main Digital All Minimized_From_Restored

Not_Invoked Main Digital Clock_Only Restored Invoke Invoked Main Digital Clock_Only Restored
Not_Invoked Main Digital Clock_Only
Maximized

Invoke Invoked Main Digital Clock_Only Maximized

Invoked Main Analog All Restored Analog Invoked Main Analog All Restored
Invoked Main Analog All Restored Digital Invoked Main Digital All Restored
Invoked Main Analog All Restored GMT Invoked Main Analog All Restored
Invoked Main Analog All Restored No_Title Invoked Main Analog Clock_Only Restored
Invoked Main Analog All Restored Seconds Invoked Main Analog All Restored
Invoked Main Analog All Restored Date Invoked Main Analog All Restored
Invoked Main Analog All Restored About Invoked About Analog All Restored
Invoked Main Analog All Restored DoubleClick Invoked Main Analog Clock_Only Restored
Invoked Main Analog All Restored Terminate_Close Not_Invoked Main Analog All Restored
Invoked Main Analog All Restored Terminate_Keystroke Not_Invoked Main Analog All Restored
Invoked Main Analog All Restored Maximize Invoked Main Analog All Maximized
Invoked Main Analog All Restored Minimize Invoked Main Analog All Minimized_From_Restored
Invoked Main Analog All Maximized Analog Invoked Main Analog All Maximized
Invoked Main Analog All Maximized Digital Invoked Main Digital All Maximized
Invoked Main Analog All Maximized GMT Invoked Main Analog All Maximized
Invoked Main Analog All Maximized No_Title Invoked Main Analog Clock_Only Maximized
Invoked Main Analog All Maximized Seconds Invoked Main Analog All Maximized
Invoked Main Analog All Maximized Date Invoked Main Analog All Maximized
Invoked Main Analog All Maximized About Invoked About Analog All Maximized
Invoked Main Analog All Maximized DoubleClick Invoked Main Analog Clock_Only Maximized
Invoked Main Analog All Maximized Terminate_Close Not_Invoked Main Analog All Maximized
Invoked Main Analog All Maximized Terminate_Keystroke Not_Invoked Main Analog All Maximized
Invoked Main Analog All Maximized Minimize Invoked Main Analog All

Minimized_From_Maximized
Invoked Main Analog All Maximized Restore_Window Invoked Main Analog All Restored
Invoked Main Analog All
Minimized_From_Maximized

Terminate_Keystroke Not_Invoked Main Analog All
Minimized_From_Maximized

Invoked Main Analog All
Minimized_From_Maximized

Maximize Invoked Main Analog All Maximized

Invoked Main Analog All
Minimized_From_Maximized

Restore_Window Invoked Main Analog All Maximized

Invoked Main Analog All
Minimized_From_Restored

Terminate_Keystroke Not_Invoked Main Analog All
Minimized_From_Restored

Invoked Main Analog All
Minimized_From_Restored

Maximize Invoked Main Analog All Maximized

Invoked Main Analog All
Minimized_From_Restored

Restore_Window Invoked Main Analog All Restored

Invoked Main Analog Clock_Only Restored DoubleClick Invoked Main Analog All Restored
Invoked Main Analog Clock_Only Restored Terminate_Keystroke Not_Invoked Main Analog Clock_Only Restored
Invoked Main Analog Clock_Only Maximized DoubleClick Invoked Main Analog All Maximized
Invoked Main Analog Clock_Only Maximized Terminate_Keystroke Not_Invoked Main Analog Clock_Only Maximized
Invoked Main Digital All Restored Analog Invoked Main Analog All Restored
Invoked Main Digital All Restored Digital Invoked Main Digital All Restored
Invoked Main Digital All Restored Set_Font Invoked Font Digital All Restored
Invoked Main Digital All Restored GMT Invoked Main Digital All Restored
Invoked Main Digital All Restored No_Title Invoked Main Digital Clock_Only Restored
Invoked Main Digital All Restored Seconds Invoked Main Digital All Restored
Invoked Main Digital All Restored Date Invoked Main Digital All Restored
Invoked Main Digital All Restored About Invoked About Digital All Restored
Invoked Main Digital All Restored DoubleClick Invoked Main Digital Clock_Only Restored
Invoked Main Digital All Restored Terminate_Close Not_Invoked Main Digital All Restored
Invoked Main Digital All Restored Terminate_Keystroke Not_Invoked Main Digital All Restored
Invoked Main Digital All Restored Maximize Invoked Main Digital All Maximized
Invoked Main Digital All Restored Minimize Invoked Main Digital All Minimized_From_Restored
Invoked Main Digital All Maximized Analog Invoked Main Analog All Maximized
Invoked Main Digital All Maximized Digital Invoked Main Digital All Maximized
Invoked Main Digital All Maximized Set_Font Invoked Font Digital All Maximized
Invoked Main Digital All Maximized GMT Invoked Main Digital All Maximized
Invoked Main Digital All Maximized No_Title Invoked Main Digital Clock_Only Maximized
Invoked Main Digital All Maximized Seconds Invoked Main Digital All Maximized
Invoked Main Digital All Maximized Date Invoked Main Digital All Maximized

 10

Invoked Main Digital All Maximized About Invoked About Digital All Maximized
Invoked Main Digital All Maximized DoubleClick Invoked Main Digital Clock_Only Maximized
Invoked Main Digital All Maximized Terminate_Close Not_Invoked Main Digital All Maximized
Invoked Main Digital All Maximized Terminate_Keystroke Not_Invoked Main Digital All Maximized
Invoked Main Digital All Maximized Minimize Invoked Main Digital All

Minimized_From_Maximized
Invoked Main Digital All Maximized Restore_Window Invoked Main Digital All Restored
Invoked Main Digital All
Minimized_From_Maximized

Terminate_Keystroke Not_Invoked Main Digital All
Minimized_From_Maximized

Invoked Main Digital All
Minimized_From_Maximized

Maximize Invoked Main Digital All Maximized

Invoked Main Digital All
Minimized_From_Maximized

Restore_Window Invoked Main Digital All Maximized

Invoked Main Digital All
Minimized_From_Restored

Terminate_Keystroke Not_Invoked Main Digital All
Minimized_From_Restored

Invoked Main Digital All
Minimized_From_Restored

Maximize Invoked Main Digital All Maximized

Invoked Main Digital All
Minimized_From_Restored

Restore_Window Invoked Main Digital All Restored

Invoked Main Digital Clock_Only Restored DoubleClick Invoked Main Digital All Restored
Invoked Main Digital Clock_Only Restored Terminate_Keystroke Not_Invoked Main Digital Clock_Only Restored
Invoked Main Digital Clock_Only Maximized DoubleClick Invoked Main Digital All Maximized
Invoked Main Digital Clock_Only Maximized Terminate_Keystroke Not_Invoked Main Digital Clock_Only Maximized
Invoked Font Digital All Restored Font_OK Invoked Main Digital All Restored
Invoked Font Digital All Restored Font_TypeFont Invoked Font Digital All Restored
Invoked Font Digital All Restored Font_Cancel Invoked Main Digital All Restored
Invoked Font Digital All Restored Font_SelectFont Invoked Font Digital All Restored
Invoked Font Digital All Maximized Font_OK Invoked Main Digital All Maximized
Invoked Font Digital All Maximized Font_TypeFont Invoked Font Digital All Maximized
Invoked Font Digital All Maximized Font_Cancel Invoked Main Digital All Maximized
Invoked Font Digital All Maximized Font_SelectFont Invoked Font Digital All Maximized
Invoked About Analog All Restored About_OK Invoked Main Analog All Restored
Invoked About Analog All Maximized About_OK Invoked Main Analog All Maximized
Invoked About Digital All Restored About_OK Invoked Main Digital All Restored
Invoked About Digital All Maximized About_OK Invoked Main Digital All Maximized

Here is a simplified diagram of the state transition table. The About window and the
minimized clock state in the diagram actually represent 4 states each, but since they look
the same to a user, they have been condensed into one screen shot. Similarly, the Font
window represents 2 states; finally, the Not_Invoked states on either side of the
minimized clock state apply to both the Analog and Digital values for Setting.

The arcs labeled * represent the inputs:

Analog
GMT
Seconds
Date

The arcs labeled ** represent the inputs:

Digital
GMT
Seconds
Date

 11

System = Not_Invoked
Window = Main
Setting = Analog
Display = Clock_Only
WindowSize = Restored

System = Not_Invoked
Window = Main
Setting = Analog
Display = All
WindowSize = Restored

Invoke Terminate_Keystroke Invoke

No_Title

DoubleClick

DoubleClick

*

System = Not_Invoked
Window = Main
Setting = Analog
Display = Clock_Only
WindowSize = Maximized

System = Not_Invoked
Window = Main
Setting = Analog
Display = All
WindowSize = Maximized

Invoke Invoke

No_Title

DoubleClick

DoubleClick

*

AboutAbout_OK About About_OK

Maximize

Restore_Window

Restore_
Window
Maximize

Restore_
Window

Minimize Minimize

System = Not_Invoked
Window = Main
Setting = Digital
Display = Clock_Only
WindowSize = Restored

Invoke

System = Not_Invoked
Window = Main
Setting = Digital
Display = All
WindowSize = Restored

Invoke

System = Not_Invoked
Window = Main
Setting = Digital
Display = Clock_Only
WindowSize = Maximized

System = Not_Invoked
Window = Main
Setting = Digital
Display = All
WindowSize = Maximized

Invoke Invoke

No_Title

Double
Click

Double
Click

No_Title

DoubleClick

DoubleClick

** **

Font_SelectFont
Font_TypeFont

Set_
Font

Font_OK

Font_
Cancel

Set_Font

Font_OK

Font_Cancel

Restore_Window Restore_Window / Maximize

Minimize Minimize

Analog Digital Analog Digital

System = Not_Invoked
Window = Main
Setting = Analog / Digital
Display = All
WindowSize = Minimized_From_Restored

Invoke

Terminate_Keystroke
Terminate_Close

Terminate_Keystroke
Terminate_Close Terminate_Keystroke

Terminate_Keystroke
Terminate_Keystroke
Terminate_Close

Terminate_Keystroke
Terminate_Close

Terminate_Keystroke

Terminate_Keystroke

System = Not_Invoked
Window = Main
Setting = Analog / Digital
Display = All
WindowSize = Minimized_From_MaximizedTerminate_Keystroke

Invoke

About_OK

About About

About_OK

Restore_Window

Maximize

Generating Test Cases by Traversing the Model

Once a model is sufficiently developed to be useful, the same model can be used to
generate large numbers of test cases. Essentially the model can be considered a graph,
and a variety of graph traversal algorithms can be used to navigate the model and produce
an input sequence, or test case. Here are some examples:

• The Chinese Postman algorithm is the most efficient way to traverse each link in
the model. Speaking from a testing point of view, this will be the shortest test
sequence that will provide complete coverage of the entire model [6]. An
interesting variation is called the State-changing Chinese Postman algorithm,
which looks only for those links that lead to different states (i.e. it ignores self-
loops).

• The Capacitated Chinese Postman algorithm can be used to distribute lengthy test
sequences evenly across machines [7].

• The Shortest Path First algorithm starts from the initial state and incrementally
looks for all paths of length 2, 3, 4, etc. This is essentially a depth-first search.

• The Most Likely Paths First algorithm treats the graph as a Markov chain. All
links are assigned probabilities and the paths with higher probabilities will be
executed first. This enables the automation to be directed to certain areas of
interest [6].

 12

Extending the Model
Other areas of testing focus can also be implemented by incorporating their requirements
in the model. It is possible to do stress testing with models by creating abstract modes
that represent the availability of a certain resource. One could have a special-purpose
component that once activated, simulates failure for each request of that particular
resource. Given a simplistic system with 2 states, A and B, and 2 inputs:

A special input, let’s call it “disable resource”, is then included in the model, which will
activate the custom tool that will simulate failures. Conversely, there is also an input
“enable resource” that does the opposite. The “disable_resource” input will take the
system under test into a resource-restricted state where it will be possible to examine how
the system deals with failure on resource requests:

The resource in question could be for example the availability of a communications line
or system memory. By adding the inputs controlling the availability of the resource to the
model, a graph traversal algorithm will then include them in the test case it generates.
The state A’ represents the system operating in this resource-constrained environment.
Input 1 applied in state A’ has a different outcome from the same input applied in state A.
This approach exercises the exception handling of the system under test and gives an
accurate measure for the robustness of the system. An argument can be made that the
same type of stress testing can be achieved by disabling the resource from the very
beginning and then start running tests. Under these circumstances, all inputs will be
executed without that resource. By incorporating stress test situations inside a model, the
robustness of specific inputs can be tested with pinpoint accuracy.

Abstracting Inputs
The same concept of creating abstract modes and special-purpose inputs can also be used
to do boundary value testing with models. Suppose it is necessary to test an API function
called XYZ that takes an integer number as argument. One can define abstract inputs,
each of which handles an equivalence class of the input domain, namely the integer data
type:

• XYZNegativeBoundary: calls the API XYZ with the smallest negative number as
argument

• XYZZeroBoundary: calls the API XYZ with the argument 0

Input 1

 A B

Input 2

Input 1

 A B Input 2

A’

disable
resource

enable
resource

Input 1

 13

• XYZIntegerInRange: calls the API XYZ with an integer in the valid range
• XYZPositiveBoundary: calls the API XYZ with the largest positive number as

argument

Extensive functionality testing, regression testing, and verifying that a version of the
software has basic functionality can be covered by the Most Likely Paths First algorithm.
The inputs that a user is most likely to apply, or inputs of vital importance are assigned
high probabilities, so the graph traversal algorithm will select them more frequently.
Assigning high probabilities only to certain inputs in effect provides a fixed,
predetermined path that will be the same each time; note that this serves essentially the
same purpose as static tests, namely to verify that a few basic scenarios work, thereby
ensuring a minimum acceptable level of functionality. Also, tests can be focused on areas
that are used very often by weighting those specific areas more heavily.

Special Uses of the Model
The model itself can be altered to support different test strategies. For instance, the input
that terminates the system under test (let’s call it the “exit” input) appears in the model.
By removing all transitions of the exit input from the model, one can generate long input
sequences that essentially become tests to determine the continuous hours of operation.

One can easily implement a random graph traversal to achieve random testing using a
model. The advantage here is that no time will be wasted trying to apply unavailable
inputs, like typing garbage text strings in an input box that is expecting a floating-point
number. Model-based test automation knows at all times what is and what isn’t possible,
and what to expect after each action.
Finally, an algorithm can be implemented to take the shortest path to a specific part of the
model and then roam around in that area. The test case produced by such an algorithm
would make an excellent test case for retesting after a bug fix.

An interesting point is that particular graph traversal algorithms can be used to check the
validity of the model itself; in other words, by traversing the model it is possible to verify
whether all states are reachable from all other states.

It deserves mention once again that reliability, regression, verifying that a build has a
minimum level of functionality, and all these other areas of testing focus and types of
model coverage mentioned above come at no extra cost once a model and harness have
been developed. The greatest effort at that point goes into actually running test cases and
continued development of a suite of reusable graph traversal algorithms. An in-depth
discussion on the topic of graph traversal techniques is presented in [6].

Execution and Evaluation of the Test Cases

This is the stage where the system is actually tested. Testing is done by a test harness or
test driver, a program that can apply an input sequence to the system under test. A test

 14

driver consists of a decision module and an implementation module. Here is a possible
implementation of a test driver outlined by a dashed rectangle:

The decision module gets a test sequence from any one of the graph algorithms
mentioned in the preceding section. It reads the test sequence input by input, determines
which action is to be applied next, and calls the function in the implementation module
that performs that input. The implementation module logs the action it is about to
perform and then executes that input on the system under test. Next, it verifies whether
the system under test reacted correctly to the input. Since the model accurately describes
what is supposed to happen after an input is applied, oracles can be implemented at any
level of sophistication.

A test harness designed in this particular way is able to deal with any input sequence
because its decision logic is dynamic. In other words, rather than always executing the
same actions in the same order each time, it decides at runtime what input to apply to the
system under test. Moreover, reproducing a bug is simply a matter of feeding as input
sequence the execution log of the test sequence that caused or revealed the failure.

The implementation module contains the code that actually applies inputs to the system
under test and verifies the results after the input is applied. As an example, here is some
Rational Visual Test® code for the clock test driver that brings up the the “About”
window:

Sub About()
 Print #log, "About" ‘First write the action that is to be performed to the log

 WMenuSelect("&Settings\A&bout Clock...") ‘Now apply the input

‘Verify that you're in the About window and halt if the caption is not “About
‘Clock”

 Dim strCaption As String
 strCaption = GetText(WGetActWnd(0))
 If strCaption <> "About Clock" Then FAIL "Incorrect window"

End Sub

A
B
C
…

Read in test
case one
input at a
time

if input_to_apply = “A”
 A()
if input_to_apply = “B”
 B()
…

A()
{
 Write to log “A”
 …
 //Execute input A
}

B()
{
 Write to log “B”
 …
 //Execute input B
}

Input sequence Decision module Implementation module

System
under test

 15

The caption of the active window must change to “About Clock” after the “About” input
is applied. If this is not the case then something went wrong somewhere. The test driver
will report failure and stop execution, and its log can be examined for a reproduction
scenario.

Invalid inputs can be handled in a similar manner. Here the correctness verification
would check that an error dialog box pops up or assert that an API does indeed fail when
invalid parameters are passed to it.

Model-Based Testing and Software Reliability Metrics

Using models improves reliability and facilitates reliability measurements. First of all,
there are the commonly used continuous hours of operation and mean time to failure
metrics. One distinct advantage of model-based testing shows up when measuring
coverage. It is not possible to execute all combinations of test paths. However, it is
feasible to measure what part of the model has been covered when generating test cases
with graph traversal algorithms. At this stage, determining coverage is basically reduced
to a sampling problem. Given the number of paths covered, an extrapolation can be made
as to what portion of the model has been covered.

Model-based testing has historically been used in industries such as telecommunications
and avionics, which have a stringent software quality bar. Case studies in those industries
[8][9] have shown a ten-fold productivity improvement in reaching that quality level. “At
this level of test generation productivity improvement, one test engineer using [a model-
based testing tool] can be as productive as ten test engineers using manual test
generation” [10].

The simple model creation and execution techniques described in the current paper make
this level of quality improvement available to all areas of the software industry.

Conclusion

Model-based testing is an efficient and adaptable method of testing software by creating a
model describing the behavior of the system under test. Large numbers of test cases can
be generated from this model using various graph traversal algorithms. A test harness
then executes these test cases against the system under test. Many areas of testing focus
can be implemented and different levels of model coverage can be achieved by using the
same model and test harness.

 16

References

1. B. Beizer, "Software Testing Techniques", 2nd Edition 1990.
2. H. Robinson, "Finite State Model-Based Testing on a Shoestring", Proceedings of

the Software Testing Analysis and Review Conference, San Jose, CA, Nov. 1999.
3. J. Whittaker, "Stochastic Software Testing", Annals of Software Engineering, 4,

August 1997.
4. I. El-Far, “Automated Construction of Software Behavior Models”, Masters

Thesis, Florida Institute of Technology, 1999.
5. N. Nyman, “GUI Application Testing with Dumb Monkeys”, Proceedings of

STAR West 1998.
6. H. Robinson, "Graph Theory Techniques in Model-Based Testing", 1999

International Conference on Testing Computer Software.
7. D. Dill, R. Ho, M. Horowitz, and C. Yang, “Architecture Validation for

Processors”, Proceedings of the 22nd annual International Symposium on
Computer Architecture, 1995.

8. L. Apfelbaum, and J. Doyle, “Model-Based Testing”, Presented at Software
Quality Week, 1997.

9. P. Savage, S. Walters, and M. Stephenson, "Automated Test Methodology for
Operational Flight Programs", Presented at IEEE Aerospace Conference, 1997.

10. J. Clarke, “Automated Test Generation from a Behavioral Model”, Presented at
Software Quality Week, 1998.

